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Summary of lecture no. 2

We defined the misfit function E(ω,m) in the frequency domain

E =
1
2

∫
ω
|u1|2 dω

We calculated the gradient ∂E
∂m

∂E
∂m

=
∫

ω
<
[

∂u1

∂m
u∗1

]
dω

We inserted the Frechet-derivatives in the Bornapproximation and obtained

∂E
∂m

(y) = −ω2
∫

ω
< [(G(y , xs,ω)f (xs,ω)) (G(xr , y ,ω)u∗1)] dω (1)

which describes a zero-lag cross-correlation between the forward and residual backward
wavefield.
We illustrated the steepest descent FWI in a simple acoustic crosswell experiment.
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Outline

Derive the formula 1 again in the time domain by using the adjoint state method

The adjoint state method is a general formalism to derive gradients for linearized
forward problems

We first derive the linearized operator for the wave equation (again)

We define the so-called adjoint operator and show how this relates to the gradient

We derive the adjoint operator for the acoustic wave equation in the time domain

We will see that the adjoint method provides a general mathematical framework for the
gradient calculation.
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Linear forward operator

We consider the acoustic wave equation

m
∂2u
∂t2 − ∆u = f (x , t) (2)

We define a corresponding forward operator that ”solves” the wave equation

u = F̃ [m] (3)

We split our wavefield u = u0 + u1 up into background and scattered field. Our model
parameters m = m0 + m1 into background model and perturbed model. The Taylor series
of u around m0 then reads

u = u0 +
∂F̃
∂m

[m0]m1 +
1
2
〈 ∂2F̃

∂m2 [m0]m1,m2〉 (4)
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Linear forward operator

We will consider only the first order term of this Taylor series. This corresponds to
considering u1 only, i.e single scattering (Born approximation). We define the linear
operator

F :=
∂F̃
∂m

=
∂u
∂m

(5)

Compared with equation (4), this yields

u = u0 + Fm1 ⇒ u1 = Fm1, (6)

so that F describes a linear relation between u1 and m1, the Bornapproximation.

8 | 30 Bohlen – Full Waveform Inversion



Linear forward operator

To show the equivalence with the Born approximation, we differentiate the acoustic wave
equation (28) with respect to m

∂2u
∂t2 + m

∂2

∂t2
∂u
∂m
− ∆

∂u
∂m

= 0 (7)

Using (5) and (6), we replace ∂u
∂m = F = u1

m1
, resulting in

∂2u
∂t2 + (m0 + m1)

∂2

∂t2

u1

m1
− ∆

u1

m1
= 0

⇔ m1
∂2

∂t2 (u0 + u1) + (m0 + m1)
∂2u1

∂t2 − ∆u1 = 0
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Linear forward operator

In this equation, we can neglect the term m1
∂2u1
∂t2 , because those terms of higher order are

describing multiple scattering:

m0
∂2u1

∂t2 − ∆u1 = −m1
∂2u0

∂t2 , (8)

which already resulted from the Born scattering theory. The solution for the scattered field
u1 can be expressed by the Green’s function as

u1 = −G0m1
∂2u0

∂t2 (9)

This (the BA) is thus equivalent to the application of a linear forward operator

u1 = Fm1 (10)
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Adjoint operator

If H1 and H2 are Hilbert spaces and the operator T : H1 → H2 is linear, then the adjoint
linear operator T ∗ : H2 → H1 can be found with x ∈ H1 and y ∈ H2 via

〈Tx , y〉H2 = 〈x ,T ∗y〉H1 , (11)

where 〈〉H1 and 〈〉H2 denote scalar products in H1 and H2, respectively. In the integral
notation of the scalar products, this means∫

H2

Tx(r) y(r) drH2 =
∫

H1

x(r) T ∗y(r) drH1 (12)
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Adjoint operator

We now apply this to our problem u1 = Fm1. The adjoint operator F ∗ thus fulfills the
equation

〈dobs, Fm1︸︷︷︸
u1

〉D = 〈F ∗dobs,m1〉M, (13)

The left side is a scalar product in data space D.
The right side one in model space M.

F : M→ D: forward operator
F ∗ : D→ M: imaging or backward operator
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Adjoint operator

✱ ∇
f(x,t)

F

F*

m1

m0

dobs

Figure: Interpretation of the forward operator F
and its adjoint operator F ∗

〈dobs, Fm1︸︷︷︸
u1

〉 = 〈F ∗dobs,m1〉,

F : M→ D: forward operator
F ∗ : D→ M: backward operator
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Adjoint method

The Taylor expansion of the full operator F̃ gives

F̃ [m + h] = F̃ [m] +
∂F̃
∂m

[m]h + O(h2) = F̃ [m] + Fh + O(h2) (14)

We define the L2 misfit function

J(m) =
1
2
||F̃ [m]− dobs||2

=
1
2
〈F̃ [m]− dobs, F̃ [m]− dobs〉

=
1
2 ∑

r ,s

∫ T

0
|F̃ [m]− dobs|2 dt , (15)

dobs − F̃ [m]: data residual, ∑r ,s: summation over sources and receivers.
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Adjoint method

Inserting 14 into 15 yields

J(m + h) =
1
2
〈F̃ [m + h]− dobs, F̃ [m + h]− dobs〉

=
1
2
〈F̃ [m]− dobs, F̃ [m]− dobs〉+ 〈Fh, F̃ [m]− dobs〉+ O(h2)

= J(m) + 〈h,F ∗(F̃ [m]− dobs)〉+ O(h2) (16)

We compare with the general Taylor expansion

J(m + h) = J(m) + 〈h, ∂J
∂m
〉+ O(h2) (17)

and find the adjoint method

∂J
∂m

= F ∗(F̃ [m]− dobs) (18)

17 | 30 Bohlen – Full Waveform Inversion



Adjoint method

∂J
∂m

= F ∗(F̃ [m]− dobs)

The application of F ∗ corresponds to a back projection.
The back projection of data residuals gives the gradient.
The application of F ∗ is computationally very efficient. It avoids the explicit calculation
of the Frechet derivatives ∂u1

∂m1
which is much more expensive.

The gradient calculation requires only to forward simulations:
1 usynth = F̃ [m]m
2 ∂J

∂m = F ∗(usynth − dobs)

Often F = F ∗, i.e the same numerical solver can be used.
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F ∗ for the wave equation

We will now derive F ∗ for the acoustic wave equation. The starting point is

〈dobs,Fm1〉︸ ︷︷ ︸
data space

= 〈F ∗dobs,m1〉︸ ︷︷ ︸
model space

(19)

We consider only one source but multiple receivers at xr

dobs(x , t) = ∑
r

dr (t)δ(x − xr ) (20)

With Fm1 = u1, equation (19) can be written as∫
R3

∫ T

0
dobs(x , t) u1(x , t) dt dx =

∫
R3

F ∗dobs(x) m1(x) dx (21)
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F ∗ for the wave equation

The relation u1 = Fm1 implies the two wave equations

(m0
∂2

∂t2 − ∆)u0 = f (22)

(m0
∂2

∂t2 − ∆)u1 = −m1
∂2u0

∂t2 , (23)

which are describing the generation and propagation of the background wavefield u0 and
the scattered wavefield u1, respectively.
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F ∗ for the wave equation

We now consider an auxiliary wavefield q(x , t), the adjoint wavefield, that solves the wave
equation with dobs as right-hand side:

(m0
∂2

∂t2 − ∆)q(x , t) = dobs(x , t) (24)

It can be interpreted as wavefield that is generated by the observed data as source. We
substitute this into 〈dobs,Fm1〉 and obtain

〈dobs,Fm1〉 =
∫

R3

∫ T

0
(m0

∂2

∂t2 − ∆)q(x , t)u1(x , t) dt dx

=
∫

R3

∫ T

0
m0

∂2q
∂t2 u1 dt dx −

∫
R3

∫ T

0
∆q u1 dt dx (25)

22 | 30 Bohlen – Full Waveform Inversion



F ∗ for the wave equation

We apply two times a partial integration in both space and time. The first integral is
integrated in time, the second one in space. For the first one, we obtain

∫
R3

∫ T

0
m0

∂2q
∂t2 u1 dt dx =

∫
R3

m0
∂q
∂t

u1

∣∣∣∣T
0

dx −
∫

R3

∫ T

0
m0

∂q
∂t

∂u1

∂t
dt dx

=
∫

R3
m0

∂q
∂t

u1

∣∣∣∣T
0

dx −
∫

R3
m0q

∂u1

∂t

∣∣∣∣T
0

dx +
∫

R3

∫ T

0
m0q

∂2u1

∂t2 dt dx

(26)
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F ∗ for the wave equation

For the second one, we use the theorem of Green, which transforms a volume integral into
a surface integral via∫

V
(u1∆q − q∆u1) dx =

∫
∂V

(
u1

∂q
∂n
− q

∂u1

∂n

)
dSx , (27)

where ∂V is the surface of the volume V , ∂q
∂n is the derivative in direction of the normal

vector of the surface and dSx means integration over the whole surface (Bronštejn 2015).
With this theorem, the second integral in equation (25) can be written as∫

V

∫ T

0
∆q u1 dt dx =

∫
V

∫ T

0
q∆u1 dt dx +

∫
∂V

∫ T

0
u1

∂q
∂n

dSx dt −
∫

∂V

∫ T

0
q

∂u1

∂n
dSx dt ,

(28)

where we substituted the space integration over R3 with a finite volume V . V can be
chosen arbitrary large.
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F ∗ for the wave equation

Together with (26), the result for the scalar product is

〈dobs,Fm1〉 =
∫

V

∫ T

0
q
(

m0
∂2

∂t2 − ∆
)

u1 dx dt +
∫

V
m0

∂q
∂t

u1

∣∣∣∣T
0

dx −
∫

V
m0q

∂u1

∂t

∣∣∣∣T
0

dx

−
∫

∂V

∫ T

0
u1

∂q
∂n

dSx dt +
∫

∂V

∫ T

0
q

∂u1

∂n
dSx dt (29)

This can be simplified significantly by introducing boundary conditions. Because we chose
the volume V so large that it covers nearly the space R3, it is impossible for the waves to
reach the boundary of this volume in the considered travel time T . Thus, the integrations
over the boundary of V can be neglected.
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F ∗ for the wave equation

We use the starting conditions u(t = 0) = 0 and ∂u
∂t (t = 0) = 0 and the final conditions

q(t = T ) = 0 and ∂q
∂t (t = T ) = 0. The latter two conditions are fulfilled (and the integrals

vanish) only when the q(t) propagates backwards in time. Then, equation (29) becomes

〈dobs,Fm1〉 =
∫

V

∫ T

0
q(x , t)

(
m0

∂2

∂t2 − ∆
)

u1(x , t) dx dt

= −
∫

V

∫ T

0
q(x , t)m1

∂2u0

∂t2 dx dt , (30)

where we used equation (23) for the last step. Because of 〈dobs,Fm1〉 = 〈F ∗dobs,m1〉,
this gives us the RTM imaging condition

F ∗dobs = −
∫ T

0
q(x , t)

∂2u0

∂t2 (x , t) dt (31)
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F ∗ for the wave equation

With this we can calculate the gradient

∂J
∂m

(m) = F ∗(F̃ [m]− dobs) (32)

We introduce the adjoint source fadj in the adjoint equation (24)

(m0
∂2

∂t2 − ∆)q(x , t) = fadj (33)

By comparison with 31 we see
fadj = dobs: RTM imaging condition, fadj = F̃ [m]− dobs: gradient

∂J
∂m

(m) = F ∗(F̃ [m]− dobs) = −
∫ T

0
q(x , t)

∂2u0

∂t2 (x , t) dt (34)

where q(x , t) now corresponds to the backward propagated residual wave field.
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Summary

We introduced the adjoint method which is equivalent to the linear perturbation approach (BA)

∂J
∂m

= F ∗(F̃ [m]− dobs)

The adjoint operator is defined by
〈dobs,Fm1〉︸ ︷︷ ︸

data space

= 〈F ∗dobs,m1〉︸ ︷︷ ︸
model space

Explicit calculation for the wave equation

m
∂2u
∂t2 − ∆u = f (x , t)

∂J
∂m

(m) = F ∗(F̃ [m]− dobs) = −
∫ T

0
q(x , t)

∂2u0

∂t2 (x , t) dt
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