

## **Full Waveform Inversion**

#### Applications of body waves

#### Thomas Bohlen



#### www.kit.edu



## Agenda

- 1. Introduction
- 2. Top-salt imaging using streamer data
- 3. FWI of OBC data in shallow water
- 4. Nondestructive testing
- 5. Medical imaging
- 6. Conclusions

 ${}^{\triangleleft} \Box \models {}^{\triangleleft} \equiv {}^{\flat} \mathscr{O} Q \bigcirc$ 



## Agenda

#### 1. Introduction

Top-salt imaging using streamer data

3. FWI of OBC data in shallow water

- 4. Nondestructive testing
- 5. Medical imaging

6. Conclusions

## **Applications of FWI**



In recent 20 years FWI has been applied sucessfully to different wave types on a broad range of spatial scales covering 9 orders of magnitude





## Agenda

#### 1. Introduction

- 2. Top-salt imaging using streamer data
- 3. FWI of OBC data in shallow water
- 4. Nondestructive testing
- 5. Medical imaging
- 6. Conclusions

 ${}^{\triangleleft} \Box \models {}^{\triangleleft} \equiv {}^{\flat} \mathscr{O} \land {}^{\bigcirc}$ 

## Acoustic/elastic FWI of marine streamer data



#### Goal

Imaging of structures above (and below) a salt dome located west of Africa.



#### Streamer (length 10 km) record P-waves in the water

(Thiel 2018) Data was provided by PGS

#### Marine streamer field data example



Recorded pressure field at the sea surface



(Thiel 2018)

< □ > < ≣ > り < @

## **Acoustic Finite-Difference Simulation**



Click to play



🔹 🗆 (Thie<u>t</u>-2018) o. 🗠



## Synthetic reconstruction test



Density



#### Initial model



(Thiel 2018) ∢□▶∢≣▶∽९९



## Synthetic reconstruction test



Density

10 | 44



< □ > < Ξ > <) < (~)













■ □ ▶ < = ▶ </li>







## Comparison of acoustic and elastic simulation





↓□ ▶ ↓ Ξ ▶ りへ(?)



#### Initial model and field data





#### Application of acoustic FWI to field data





14 | 44 Bohlen – Full Waveform Inversion

(Thiel 2018)

#### Application of elastic FWI to field data









(Thiel 2018)



#### Comparison of acoustic and elastic FWI models



< □ > < Ξ > < < </li>< < </li>< </l>< </li>< </ul>< </li>< </ul>

P-wave velocity

Data fit

#### Comparison of acoustic and elastic FWI models





## Acoustic/elastic FWI of marine streamer data for topsalt imaging



#### Conclusions

- Elastic FWI may be necessary even in marine environment in the presence of strong contrast discontinuities such as salt
- The discontinuities in the P-velocity (and density) show similarities to the reflectivity seen in migrated images



#### Agenda

1. Introduction

Top-salt imaging using streamer data

#### 3. FWI of OBC data in shallow water

- 4. Nondestructive testing
- 5. Medical imaging
- 6. Conclusions

 ${}^{\triangleleft} \Box \models {}^{\triangleleft} \equiv {}^{\flat} \mathscr{O} \land {}^{\bigcirc}$ 





Ocean-Bottom-Cable

- Length: 6 km, 240 Hydrophones
- 61 Airgun shots

Water depth approx. 130m

Maximum offset 9 km

(Kunert 2015, Kunert et al. 2016, Habelitz 2017) Data was provided by Addax



Acoustic simulation of wavefield in the final FWI model



(Habelitz 2017)





(Habelitz 2017) ∢□▶∢≣▶ዏ९ペ





(Habelitz 2017)

< □ > < Ξ > <) < (~



#### Performance of FWI

Click to play



< □ > < ≣ > り < @





< □ > < Ξ > りへで

(Habelitz 2017)





<sup>(</sup>Habelitz 2017)





(Habelitz 2017)



#### Conclusions

- Acoustic FWI of guided waves in shallow water was successful
- Higher resolution of Vp model reveals gas accumulations and pathways along faults
- Consistent with migrated images of reflected waves (independent data)



## Agenda

1. Introduction

Top-salt imaging using streamer data

3. FWI of OBC data in shallow water

- 4. Nondestructive testing
- 5. Medical imaging

6. Conclusions

 ${}^{\triangleleft} \Box \models {}^{\triangleleft} \equiv {}^{\flat} \checkmark {}^{\triangleleft} \land {}^{\bigcirc}$ 



#### **Motivation**

Non-destructive testing (NDT):

- Crucial task to prevent failures of building materials
- Current methods are limited in recovering material parameters

## ♀ IDEA

Full-waveform inversion can help to improve imaging of flaws and other anomalies in building materials

(Mueller 2020)



#### 2D reconstruction test



# Figure: 2D model with pipe and additional perturbations.



Start animation:

forward simulation



#### **Results of elastic FWI**





















## Data fit



field data (black) and modeled data (red): iteration 17 shot 2

Figure: Initial data (red) and final data (black).

## **Application of elastic FWI for NDT**



#### Conclusions

- High potential in recovering multi-parameter models with high resolution
- First test with measured data are promising
- Models with complex 3D pertubations and geometries will require 3D FWI



## Agenda

1. Introduction

Top-salt imaging using streamer data

3. FWI of OBC data in shallow water

4. Nondestructive testing

5. Medical imaging

6. Conclusions

 ${}^{\triangleleft} \Box \models {}^{\triangleleft} \Xi \models {}^{\triangleleft} \bigcirc {}^{\triangleleft} \bigcirc {}^{\bigcirc}$ 



## Acquisition geometry



2D acquisition geometry used in the reconstruction test. The ring array is equipped with 256 receivers and 16 sources.



Measurement with a 2D ring transducer (Sandhu et al., 2015)



Prototype of a ultrasound device with a full 3D acquisition geometry (Ruiter et al., 2017).

(Kühn 2018) ∢□▶∢≣▶ዏ�?



#### **Reconstruction of speed of sound**



True, initial and inverted speed of sound models (Kühn 2018)

37 | 44



## **Reconstruction of damping**

|                    | x in m              |                    |                                                |     |      |     |                |        |     |      |     |          |      |        |
|--------------------|---------------------|--------------------|------------------------------------------------|-----|------|-----|----------------|--------|-----|------|-----|----------|------|--------|
|                    |                     |                    |                                                |     |      |     | 0              | 0.05   | 0.1 | 0.15 | 0.2 | <u> </u> | 1000 |        |
| Propagation medium | Q <sub>p,true</sub> | Q <sub>p,FWI</sub> | $\sigma(\textit{\textbf{Q}}_{\textit{p,FWI}})$ |     |      |     | 0.05           |        |     |      |     |          | 900  |        |
| Fat                | 462                 | 459                | 172                                            | 1   |      |     |                | SP     |     |      |     |          |      |        |
| Fibroglandluar     | 279                 | 263                | 125                                            |     |      |     | E 0.1          | A.     |     |      |     | -        | 300  |        |
| Tumour             | 385                 | 382                | 109                                            |     |      |     | ý              | 135    |     | 121  |     |          |      |        |
| Blood vessels      | >1000               | 178                | 83                                             |     |      |     | 0.15           |        | 200 | 500  |     | -        | 700  |        |
| Skin               | 644                 | 394                | 381                                            |     |      |     | 0.15           |        |     |      |     |          |      |        |
| Water              | >1000               | NA                 | NA                                             | J   |      |     | 0.2            |        |     |      |     | -        | 300  |        |
|                    |                     |                    |                                                |     |      |     | 0.2            |        |     |      |     |          |      | ъ      |
|                    |                     |                    | Initial model                                  |     |      |     | reconstruction |        |     |      |     |          | 500  | y lad  |
|                    |                     |                    | 0 0.05                                         | 0.1 | 0.15 | 0.2 | 0              | 0.05   | 0.1 | 0.15 | 0.2 |          |      | dualit |
|                    |                     | 0                  |                                                |     |      |     | °              |        |     |      | ,   | -        | 100  |        |
|                    |                     | 0.05               |                                                |     |      |     | 0.05           | ( ship |     |      |     | -        | 300  |        |
|                    |                     | ш.<br>ц. 0.1       |                                                |     |      |     | ш. 0.1<br>Ц.   | 100    |     | S.   |     |          | 200  |        |
|                    |                     | 0.15               |                                                | _   |      |     | 0.15           |        | 000 |      |     |          | 100  |        |
|                    |                     | 0.2                |                                                |     |      |     | 0.2            |        |     |      |     |          |      |        |

True, initial and inverted quality factor models (Kühn 2018)

True model

< □ > < ≣ > <) < (~

## Data fit





(Kühn 2018)

< □ > < ≣ > りへ (~

## Visco-acoustic FWI for medical imaging



#### Conclusions

- Forward modelling is very expensive due to the high frequencies in medical imaging
- 3D applications are still prohibitive
- 2D visco-acoustic FWI of synthetic data with good illumination works very well
- Detailed models of P-velocity and attenuation can be recovered



## Agenda

1. Introduction

Top-salt imaging using streamer data

3. FWI of OBC data in shallow water

4. Nondestructive testing

5. Medical imaging

#### 6. Conclusions

 ${}^{\triangleleft} \Box \models {}^{\triangleleft} \equiv {}^{\flat} \mathscr{O} \land {}^{\bigcirc}$ 

## Conclusions



 $\langle \Box \rangle \langle \Xi \rangle \langle O$ 

#### Summary

First applications revealed that FWI is applicable on different wave types acquired on a broad range of spatial scales. We are still in the early stage of the development of this technology.

#### Current directions of research

- Application to 3D seismic data
- Reduction of number of forward modellings for 3D applications
- Multi-parameter reconstruction techniques using higher order optimization methods
- Quantification of uncertainties



# Thank you for your attention

- 🖄 Thomas.Bohlen@kit.edu
- @ http://www.gpi.kit.edu/



#### References



- Habelitz, P. M. (2017), 2D akustische Wellenforminversion geführter Wellen im Flachwasser, Master's thesis, Karlsruhe Institute of Technology. URL: https://publikationen.bibliothek.kit.edu/1000080198
- Kühn, F. (2018), Ultrasound medical imaging using 2d viscoacoustic full waveform inversion, Master's thesis, Karlsruhe Institute of Technology. URL: https://publikationen.bibliothek.kit.edu/1000089567
- Kunert, M. (2015), Anwendung der 2D akustischen Wellenforminversion auf OBC-Daten, Master's thesis, Karlsruhe Institute of Technology. URL: https://publikationen.bibliothek.kit.edu/1000052718
- Kunert, M., Kurzmann, A. & Bohlen, T. (2016), Application of 2D Acoustic Full Waveform Inversion to OBC-data in Shallow Water, *in* '78th EAGE Conference and Exhibition 2016', EAGE.

URL: http://earthdoc.eage.org/publication/publicationdetails/?publication=85791

- Mueller, J. (2020), 2D elastic full-waveform inversion of ultrasonic data for non-destructive testing, Master's thesis, Karlsruher Institut für Technologie (KIT).
- Thiel, N. (2018), Acoustic and elastic FWI of marine dual-sensor streamer data in the presence of salt, PhD thesis, Karlsruher Institut für Technologie (KIT). URL: https://publikationen.bibliothek.kit.edu/1000082625