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Source time function inversion

The synthetic seismograms of one source at one receiver at position xr can be calculated
with the Green’s function of the model m0 via a convolution:

u(xr , t) =
∫ T

0
Gm0(xs, xr , t − t ′)s(t ′) dt ′ (1)

A convolution in time domain corresponds to a multiplication in frequency domain:

u(xr ,ω) = Gm0(xs, xr ,ω)s(ω) (2)
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Source time function inversion

The observed data can be described in the same way, only that the Green’s function of the
true model and the true source are used.

dobs(xr ,ω) = Gmtrue(xs, xr ,ω)strue(ω) (3)

Our goal is to find a linear filter c(ω) in the frequency domain so that

strue(ω)− c(ω)s(ω) = min (4)

The filter c(ω) is called source wavelet correction filter.
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Source time function inversion

We make the assumption
G := Gm0 = Gmtrue (5)

Then we can multiply the minimum condition with G, which gives

G(strue − cs) = dobs − cu = min (6)

We can thus apply the filter c to the synthetic seismograms u instead of applying it on the
synthetic source
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Source time function inversion

For minimization, we formulate the difference in (6) as L2-norm:

Js =
M

∑
k=1

∫
w
|dobs(xk ,ω)− c(w)u(xk ,ω)|2 dω + ε2

∫
w
|c(ω)|2 dω︸ ︷︷ ︸
damping

(7)

The summation over k considers that we have multiple (M) receivers at the locations xk .
The second term is a damping term that will assure numerical stability by avoiding a
division by zero.
For discrete frequencies wl = l∆ω, l = 0, ...,N − 1, we can write

Js =

(
M

∑
k=1

N−1

∑
l=0
|dobs(xk ,ωl)− c(ωl)u(xk ,ωl)|2 + ε2

N−1

∑
l=0
|c(ωl)|2

)
∆ω (8)
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Source time function inversion

We write the filter components c(ωl) as sum of real and imaginary part:

c(ωl) = cl = cl,R + icl,I (9)

The function Js is minimized when all partial derivatives are zero, so

∂Js

∂cl,R
= 0 and

∂Js

∂cl,I
= 0 (10)
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Source time function inversion

If we split also the wavefields dobs and u up into their real and imaginary parts, we can
calculate both partial derivatives. The summation of both results gives us the result for the
filter components

cl =
∑M

k=1 u∗(xk ,ωl)dobs(xk ,ωl)

ε2 + ∑M
k=1 |u(xk ,ωl)|2

(11)

This filter is called Wiener-filter or water-level deconvolution.
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Source time function inversion

For the application of the source time function inversion in FWI, there are some additional
remarks:

An advantage of this method is that the filter coefficients cl are resulting from a direct
inversion, i.e. only one iteration step is needed

The filtered signal c(ω)s(ω) corresponds approximately to the true source signal

A stable and causal result for strue indicates a stable convergence

For the synthetic source s, any signal is possible, e.g. a δ-impulse or a Ricker wavelet

In FWI, the source time function inversion is applied once per frequency interval

The same method can be applied to invert receiver-function correction filters
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2D and 3D Geometrical Spreading
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Figure: Description of geometrical spreading in 2D simulation and 3D field data.
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Green’s functions for acoustic wave equation

Our goal is to find a filter F (r , k) in frequency domain that transforms the 3D data into 2D
data assuming a line source. Here, r denotes the distance to the source. In order to find
this filter, we consider the acoustic wave equation[

∂2

∂t2 − c2(x)∆
]

u(x , t) = f (x , t) (12)

The Green’s function G(x , xs, t) is the solution of[
∂2

∂t2 − c2(x)∆
]

G(x , xs, t) = δ(x − xs)δt (13)

with the source location xs. In frequency domain, this equation corresponds to[
k2 + ∆

]
G(x , xs,ω) = −4πδ(x − xs) (14)
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Green’s functions for acoustic wave equation

Assuming a constant velocity c, we obtain the follwing solutions in the far field:

3D : G3D(x , xs,ω) =
eikr

r
(15)

2D : G2D(x , xs,ω) =

√
2π

kr
eikr eiπ/4 (16)

with r = ||x − xs||. These solutions can be proved by transforming the Laplace operator in
equation (14) into spherical (3D) or polar coordinates (2D) and then inserting the Green’s
functions.
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Correction filter

The correction filter F should tranform the 3D data into 2D data, therefore it can be applied
on the Green’s function, so that G2D = F (r , k)G3D (Forbriger et al. 2014). Thus we have

F (r , k) =
G2D

G3D =

√
2πr

k
eiπ/4 (17)

The factor eiπ/4 effects a phase shift of π
4 , and the squared term effects a correction of the

amplitudes. With k = ω
c , this can be written as

F (r , k) =
√

2rc

√
π

ω
eiπ/4 =

√
2rc FT{

√
t−1} = Famp FT{

√
t−1}, (18)

where FT{
√

t−1} is the Fourier transform of the function
√

t−1 (Forbriger et al. 2014). We
define this now as the phase correction. It is independent of r and easy to implement.
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Amplitude correction

The amplitude correction Famp =
√

2rc depends on the travel distance r . The relation
r = ||x − xs|| is only valid for a homogeneous medium, where no reflections can occur.
This leads to different practical implementations of the amplitude correction depending on
the travel path of the waves. We will here take a look at two different cases (Forbriger et al.
2014)
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Amplitude correction in reflection seismic
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Figure: Travel path of a
reflected wave

If reflected waves are recorded, their travel path r is in
the beginning unknown and can only be calculated if
we know the model velocity. With an average velocity
c and the recorded time t , the travel path is r = ct . We
substitute r in the amplitude correction term to elimi-
nate it, so that

Famp =
√

2rc = c
√

2t (19)

The amplitude correction factor thus is proportional to the square root of the travel time,
which makes the correction quite simple. It works only well in smooth models and for not
too complex wave paths.
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Amplitude correction in shallow seismics
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Figure: Travel path of a direct
wave

For shallow seismic fields, the waves are travelling
nearly on the direct wave, so that the travel path r is
equal to the offset and therefore known. We can thus
eliminate the unknown velocity c in the amplitude cor-
rection factor via c = r

t :

Famp =
√

2rc = r

√
2
t

(20)

Even if the spreading correction was initially derived for a homogeneous acoustic medium,
this correction for shallow surface seismics works surprisingly well also for elastic surface
waves (Schäfer et al. 2014).
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True model

Schäfer et al. (2014)
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2D and 3D seismograms

Schäfer et al. (2014)
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Amplitude versus offset

Schäfer et al. (2014)
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Geometrical spreading correction

Schäfer et al. (2014)
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FWI of line-source seismograms

Schäfer et al. (2014)
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FWI of point-source seismograms

Schäfer et al. (2014)
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FWI of corrected point-source seismograms

Schäfer et al. (2014)
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Comparison of FWI results (Vs)

Schäfer et al. (2014)
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Simple Marmousi model

Köhn (2011)
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Simple Marmousi model

Köhn (2011)
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Simple Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Complex Marmousi model

Köhn (2011)
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Applications of geometrical spreading corrections

Surface waves

works surprisingly well for shallow seismic wave fields

single-trace transformation

applicable also in case of lateral heterogeneity

Reflected elastic wavefield

works sufficiently well in case of moderate structural heterogeneity (simple Marmousi
model)

artifacts in FWI reconstructions in case of strong structural heterogeneity (complex
Marmousi model)

no universal solution available
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