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Source time function inversion

/A

The synthetic seismograms of one source at one receiver at position x, can be calculated
with the Green’s function of the model mg via a convolution:

u(x,, 1) = /OT Gy (X5, Xt — )s(t) (1)

A convolution in time domain corresponds to a multiplication in frequency domain:

u(xr, w) = Gmy(Xs, Xr, w)s(w) )

DA
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Source time function inversion

A

The observed data can be described in the same way, only that the Green’s function of the
true model and the true source are used.

dobs (Xr, ) = Gmyye (Xs) Xr, @) Strue(w) 3)
Our goal is to find a linear filter ¢(w) in the frequency domain so that
Strue(w) - C<CU)S(CU) = min (4)

The filter ¢(w) is called source wavelet correction filter.

o> «Zroac

5|47 Bohlen - Full Waveform Inversion



L
-
—

Source time function inversion

We make the assumption
G:= Gmo = Gmtrue (5)

Then we can multiply the minimum condition with G, which gives
G(Strue — €S) = dops — CU = min (6)

We can thus apply the filter ¢ to the synthetic seismograms u instead of applying it on the
synthetic source

o> «Zroac
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Source time function inversion (IT

For minimization, we formulate the difference in (6) as L2-norm:

M
Js = Z/ | dobs (XK, ) — c(w)u(xk, w)|? dw+82/ lc(w)|? dw (7)
k=1“W w

damping

The summation over k considers that we have multiple (M) receivers at the locations x.
The second term is a damping term that will assure numerical stability by avoiding a
division by zero.

For discrete frequencies w; = IAw, I =0, ..., N — 1, we can write

~

M N—1 N1
Js = (Z Y [dobs (Xk, wi) — c(wp)u(xx, wi) [P+ €2 Y |c(w,)|2> Aw (8
k=1 I=0

=0
= Troar
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Source time function inversion A\‘(IT
We write the filter components c¢(w;) as sum of real and imaginary part:
c(w)) =c =cr+ic 9)

The function Js is minimized when all partial derivatives are zero, so

dJs dJs
aC/,H an aC/,/ 0 ( )

o> «Zroac
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Source time function inversion

/A

If we split also the wavefields dyps and u up into their real and imaginary parts, we can
calculate both partial derivatives. The summation of both results gives us the result for the

filter components

_ Y klq U™ (X, ;) obs (Xk, wi) (1)
2+ Yy [u(xe, w))|?

This filter is called Wiener-filter or water-level deconvolution.

DA
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Source time function inversion

For the application of the source time function inversion in FWI, there are some additional
remarks:

@ An advantage of this method is that the filter coefficients ¢; are resulting from a direct
inversion, i.e. only one iteration step is needed

® The filtered signal ¢(w)s(w) corresponds approximately to the true source signal

@ A stable and causal result for s, indicates a stable convergence

@ For the synthetic source s, any signal is possible, e.g. a d-impulse or a Ricker wavelet
@ In FWI, the source time function inversion is applied once per frequency interval

@ The same method can be applied to invert receiver-function correction filters

=] =ErHaA
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2D and 3D Geometrical Spreading A\‘(IT

X
Xl X2 !
X2 wavefront
wavefront
(a) 2D simulation: Line source (b) 3D field data: Point source
Figure: Description of geometrical spreading in 2D simulation and 3D field data. ., . =, .~
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Green’s functions for acoustic wave equation (IT

Our goal is to find a filter F(r, k) in frequency domain that transforms the 3D data into 2D
data assuming a line source. Here, r denotes the distance to the source. In order to find
this filter, we consider the acoustic wave equation

[aa; — CQ(X)A} u(x,t) = f(x,t) (12)
The Green’s function G(x, Xs, t) is the solution of
02 -
[81‘2 —c (X)A] G(x, X5, t) = 6(x — xs)ot (13)
with the source location xs. In frequency domain, this equation corresponds to
(k% + A] G(x, X5, w) = —475(X — Xs) (14)
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Green’s functions for acoustic wave equation

Assuming a constant velocity ¢, we obtain the follwing solutions in the far field:

3D: GP(x, x5, w) =

[orr . .
2D: GPP(x, x5, w) = /(—7rre""e’”/4 (16)

with r = ||x — xs||. These solutions can be proved by transforming the Laplace operator in
equation (14) into spherical (3D) or polar coordinates (2D) and then inserting the Green’s
functions.

eikr
— (15)

o> «Zroac
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Correction filter

/A

The correction filter F should tranform the 3D data into 2D data, therefore it can be applied
on the Green’s function, so that G?° = F(r, k) G®P (Forbriger et al. 2014). Thus we have

2D
2 ‘
Flr.k) = %BD = /e (17)

The factor e/ effects a phase shift of Z, and the squared term effects a correction of the
amplitudes. With k = ¢, this can be written as

F(r k) = \/ﬂ\/j e™/* = V2rc FT{Vt-1} = Famp FT{Vt"1}, (18)

where FT{+V/t~'} is the Fourier transform of the function v/t~ (Forbriger et al. 2014). We
define this now as the phase correction. It is independent of r and easy to implement. _
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Amplitude correction

The amplitude correction Famp = V2re depends on the travel distance r. The relation

r = ||x — xs|| is only valid for a homogeneous medium, where no reflections can occur.
This leads to different practical implementations of the amplitude correction depending on
the travel path of the waves. We will here take a look at two different cases (Forbriger et al.
2014)

o> «Zroac
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Amplitude correction in reflection seismic

/A

X ¥ If reflected waves are recorded, their travel path r is in
the beginning unknown and can only be calculated if
we know the model velocity. With an average velocity
C c and the recorded time t, the travel path is r = ct. We
substitute r in the amplitude correction term to elimi-
nate it, so that

Figure: Travel path of a
reflected wave Famp = V2rc = cv2t (19)

The amplitude correction factor thus is proportional to the square root of the travel time,
which makes the correction quite simple. It works only well in smooth models and for not
too complex wave paths.

o> «Zroac
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Amplitude correction in shallow seismics A\‘(IT
For shallow seismic fields, the waves are travelling

- v nearly on the direct wave, so that the travel path r is

= > equal to the offset and therefore known. We can thus

r eliminate the unknown velocity ¢ in the amplitude cor-

_ : rection factor via ¢ = §:
Figure: Travel path of a direct

wave

2

Even if the spreading correction was initially derived for a homogeneous acoustic medium,
this correction for shallow surface seismics works surprisingly well also for elastic surface
waves (Schéfer et al. 2014).

DA
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True model
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2D subsurface structure
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Figure 1. 2-D test structure for 2-D and 3-D modelling as well as for the ion tests. For poi

with black dashed lines. The red stars denote the source locations. The colour bars are chosen to cover this and following figures.

(3-D) the structure is uniformly
extended over 40 m in the third spatial dimension. (a) Displays the S velocity, (b) the P velocity and (c) the density model. For a better visualization the model
is cut offin a depth of 12 m. The FD-grid extends to a depth of 20 m. The absorbing boundary with convolutional perfectly matched layers (CPML) is indicated
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2D and 3D seismograms ﬂ(IT

(0) Shot ot profile location of § m (b) Shot ot profile location of 45 m (c) Shot ot profile location of 94 m
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Figure 2. Comparison of li i and poi i (vertical particle velocity) for the true model in Fig. 1; only every 10th

trace is displayed. Seismogram (a) shows a shot at profile location of 5 m (very left part of the model), seismogram (b) of 45 m (middle of the model) and
seismogram (c) of 94 m (very right part of the model). The seismograms are trace normalized otherwise comparison would not be possible due to different
decay of amplitudes.

Schéfer et al. (2014)
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Amplitude versus offset A“
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Figure 3. Comparison of amplitude-decay with offset of waves excited
by a line source (red line) and a point source (dashed black line) for a
shot at profile location of 5 m (vertical component). The rms amplitude is
normalized to nearest offset trace.

Schéfer et al. (2014)
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Geometrical spreading correction ﬂ(".

(@) Shot at profile location of 5 m (5) Shot at profile location of 45 m (¢) Shot at profile location of 94 m
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Figure 6. Result of hybrid ion for the radial ison of li i and int i (radial

sarticle velocity) with the kybrid transformation for the true model in Fig. 1; only every 10th trace is displayed. Seismogram (a) shows a shot at profile location
»f 5 m (very left-hand part of the model), seismogram (b) of 45 m (middle of the model) and seismogram (c) of 94 m (very right part of the model). The
ieismograms are not trace normalized but scaled by an offset dependent factor (/1 m)".

Schéfer et al. (2014)
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FWI of line-source seismograms

2D FWI result
: line-source wave fields
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Figure 9. 2-D FWI result using perfect line-source wavefields as observed data. The absorbing boundary with convolutional perfectly matched layers (CPML)
is indicated with black dashed lines. (a) Displays the S velocity, (b) the P velocity and (c) the density model.

Schafer et al{2014) o ~
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FWI of point-source seismograms
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Figure 10. 2-D FWI result using point-source wavefields as observed data. The absorbing boundary with convolutional perfectly matched layers (CPML) is

indicated with black dashed lines. (a) displays the S velocity, (b) the P velocity and (c) the density model.
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FWI of corrected point-source seismograms
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2D FWI result
observed data: hybrid transformation
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Figure 11. 2-D FWI result using i with hybrid as observed data. The absorbing boundary with convolu-
tional perfectly matched layers (CPML) is II’IdlCaICd with black dashed lines. (a) displays the S velocity, (b) the P velocity and (c) the density model.
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Comparison of FWI results (V;) ﬂ(".
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Figure 12. Comparison of 2-D FWI result (- velocuy model only) using perfect li and P as observed data.
(a) Displays the reconstructed S-velocity model using 1 (b) original poi i and (c)
with hybrid ion. The absorbing boundary with convolutional perfectly matched layers (CPML) is indicated with black dashed lines.

Schéfer et al.$2014) & ¢~
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Simple Marmousi model

2D: Amplitude ~ 1/r

3D: Amplitude ~ 1/1"2

Kéhn (2011)
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Simple Marmousi model A“(IT
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Simple Marmousi model A“
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Simple Marmousi model A“(IT
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Simple Marmousi model A“
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Simple Marmousi model

3D data, simple correction

y [km]

1 2 3 4 5
x [km]

1 2 3 4 5

2D data v, [m/s]

x [km]

4500

4000

3500

3000

2500

2000

1500

34|47 Bohlen - Full Waveform Inversion

R —

K

Karlsruhe Institute of Technology

- K(')'hn{201]3 Qe



Simple Marmousi model

3D data, simple correction 2D data Vv, [m/s]
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Simple Marmousi model

3D data, simple correction 2D data p [kg/ma]
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Complex Marmousi model
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Complex Marmousi model
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Complex Marmousi model \“(
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Complex Marmousi model
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Figure 6.4: Starting models for the Marmousi-II model.
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Complex Marmousi model ﬂ

P-wave velocity
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Figure 11.9: FWT results for complex Marmousi2 model. The P-wave velocity model
V,, estimated by the corrected 3D data (top) is compared with the result of the 2D
data inversion (bottom).
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Complex Marmousi model

S-wave velocity
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Figure 11.10: FWT results for complex Marmousi2 model. The S-wave velocity
model V; estimated by the corrected 3D data (top) is compared with the result of
the 2D data inversion (bottom).

Kéhn (2011)
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Complex Marmousi model
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Figure 11.11: FWT results for complex Marmousi2 model. The density model p
estimated by the corrected 3D data (top) is compared with the result of the 2D data
inversion (bottom).

Kéhn (2011)

=] = ral>

43|47 Bohlen - Full Waveform Inversion

e




Applications of geometrical spreading corrections A\‘(IT
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Surface waves

@ works surprisingly well for shallow seismic wave fields
@ single-trace transformation

@ gpplicable also in case of lateral heterogeneity
Reflected elastic wavefield

@ works sufficiently well in case of moderate structural heterogeneity (simple Marmousi
model)

@ artifacts in FWI reconstructions in case of strong structural heterogeneity (complex
Marmousi model)

® no universal solution available
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