
twoside

18/01/2022

Full waveform inversion of ground-penetrating radar data
Lecture 9 of Full Waveform Inversion, WS 2021/22
Tan Qin and Thomas Bohlen

KIT – The Research University in the Helmholtz Association www.kit.edu

http://www.kit.edu/


Outline

1 Introduction

2 Methodology

3 Results

4 Summary

2 18/01/2022 Tan Qin and Thomas Bohlen – FWI of GPR data



1.1 Multi-offset GPR

Multi-offset ground-penetrating radar (GPR) measurement on site.
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1.1 Multi-offset GPR

Two typical GPR data acquisitions (Annan, 2005). In this lecture, we will focus on surface-based
GPR data. For crosshole GPR FWI, readers are recommended to Klotzsche et al. (2019) for details.
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1.1 Multi-offset GPR

True model and initial model used in the synthetic inversion example of this lecture. εr and σ are
the relative dielectric permittivity and electric conductivity, respectively. The red stars represent the
transmitters (sources). The receivers are placed to the right of the transmitter with an offset of 1–8
m.
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1.1 Multi-offset GPR

Radargram generated by a 100 MHz
Ricker wavelet source on the surface
of the true model and recorded by a
receiver array on the surface. Data is
normalized for better visualization.
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1.1 Multi-offset GPR

Radargram generated by a 100 MHz
Ricker wavelet source on the surface
of the initial model and recorded by a
receiver array on the surface.
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2.1 Forward problem

Maxwell’s equations including constitutive relations are shown as two rotation equations:{
− µ∂H

∂t −∇× E = Jm
ε∂E

∂t + σE−∇×H = −Je
(2.1)

where σ, ε and µ are the electric conductivity, dielectric permittivity and magnetic permeability,
respectively. Je and Jm are the electric and magnetic sources. H and E are the magnetic intensity
and electric intensity in Maxwell’s equations which explain the physical mechanism of
electromagnetic (EM) wave propagation.
Similar to seismic waves, eq. 2.1 can be solved by the finite-difference time-domain (FDTD)
method (Yee, 1966).

9 18/01/2022 Tan Qin and Thomas Bohlen – FWI of GPR data



2.1 Forward problem

Snapshots of the electric
wavefield propagating in the
true model (x -y plane where
x is the distance axis and y is
the depth axis).
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2.1 Forward problem
3D EM wave equations in isotropic media:

− µ∂Hx
∂t − ( ∂Ez

∂y −
∂Ey
∂z ) = Jmx

−µ∂Hy
∂t − ( ∂Ex

∂z −
∂Ez
∂x ) = Jmy

−µ∂Hz
∂t − (

∂Ey
∂x −

∂Ex
∂y ) = Jmz

ε∂Ex
∂t + σEx − ( ∂Hz

∂y −
∂Hy
∂z ) = −Jex

ε
∂Ey
∂t + σEy − ( ∂Hx

∂z −
∂Hz
∂x ) = −Jey

ε∂Ez
∂t + σEz − (

∂Hy
∂x −

∂Hx
∂y ) = −Jez

(2.2)

For convenience, we rewrite eq.2.2 as:{
M1∂tu+ M2u−Qu = s
u = (H,E)T , s = (Jm,−Je)T (2.3)
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2.1 Forward problem

M1 =



−µ 0 0 0 0 0
0 −µ 0 0 0 0
0 0 −µ 0 0 0
0 0 0 ε 0 0
0 0 0 0 ε 0
0 0 0 0 0 ε


, M2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 σ 0 0
0 0 0 0 σ 0
0 0 0 0 0 σ


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2.1 Forward problem



Q =



0 0 0 0 −∂z ∂y
0 0 0 ∂z 0 −∂x
0 0 0 −∂y ∂x 0
0 −∂z ∂y 0 0 0
∂z 0 −∂x 0 0 0
−∂y ∂x 0 0 0 0


=

(
0 D
D 0

)

D1 =

0 0 0
0 0 −1
0 1 0

 , D2 =

 0 0 1
0 0 0
−1 0 0

 , D3 =

0 −1 0
1 0 0
0 0 0


D = D1∂x + D2∂y + D3∂z , D∗i = DT

i = −Di

(2.4)

∗ is the transpose conjugate operation.
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2.2 Inverse problem
The objective function

Φ1(m) =
1
2 ||d

syn(m)− dobs ||22 =
1
2 ||Ru(m)− dobs ||22 (2.5)

where the synthetic data dsyn is extracted by the restriction operator R from the synthetic
wavefield u. The observed data dobs = (Hobs ,Eobs)T .
Augmented functional used in the 1st order adjoint-state method (Plessix, 2006):

L1(m,u,u1) = Φ1(u) + 〈u1, F (u,m)〉W
F (u,m) = M1∂tu+ M2u−Qu− s = 0
m = (ε,σ,µ)T ,u|t=0 = 0,u|x∈∂Ω = 0

(2.6)

where the inner product 〈h1,h2〉W in the domain W = Ω× [0, T ] is defined by (Ω is the spatial
computation domain):

〈h1,h2〉W =

∫ T

0

∫
Ω
h∗1(x , t)h2(x , t)dtdx (2.7)
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2.2 Inverse problem
For any u1:

L1(m,u,u1) = Φ1(u) (2.8)
We write the augmented functional explicitly:

L1(m,u,u1) =
1
2

∫ T

0

∫
Ω
(Ru− dobs)2dtdx +

∫ T

0

∫
Ω
u∗1(M1∂tu+ M2u−Qu− s)dtdx (2.9)

If the final condition and boundary condition of u1 are satisfied by:
u1|t=T = 0,u1|x∈∂Ω = 0 (2.10)

Integration by parts and then we get:

L1(m,u,u1) =
1
2

∫ T

0

∫
Ω
(Ru− dobs)2dtdx

+

∫ T

0

∫
Ω
[(−M1∂tu1)∗u+ (M2u1)∗u− (Qu1)∗u− u∗1s]dtdx

(2.11)
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2.2 Inverse problem
where

M∗1 = M1, (M1∂t)
∗ = −M∗1∂t = −M1∂t , M∗2 = M2

D∗ = (Di∂i )
∗ = −D∗i ∂i = Di∂i = D ⇒ Q∗ = Q

(2.12)

which is derived from the initial, final condition and boundary condition (eq. 2.6 and 2.10) (Yang
et al., 2016). Derivative of L1 with respect to wavefields u:

∂L1
∂u =

∫ T

0

∫
Ω

(
(Ru− dobs)R −M1∂tu1 + M2u1 −Qu1

)∗
dtdx (2.13)

To satisfy the final condition of u1 (eq. 2.10), the time needs to be reversed by substituting
t ′

= T − t (∂t′ = −∂t and dt ′
= −dt) in the above equation. Thus we get

∂L1
∂u = −

∫ 0

T

∫
Ω

(
R∗(Ru− dobs) + M1∂t′u1 + M2u1 −Qu1

)∗
dt ′dx (2.14)
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2.2 Inverse problem
By making ∂L1

∂u = 0, we obtain a self-adjoint equation:

M1∂t′u1 + M2u1 −Qu1 = −R∗(Ru− dobs)

u1 = (H1,E1)T = (H1x , H1y , H1z , E1x , E1y , E1z )
T (2.15)

Here the wavefield residual R∗(Ru− dobs) is used as the sources for back propagation. The 1st
order adjoint-state equation is:

u1 :

{
−µ∂H1

∂t′ −∇× E1 = −R∗(RH−Hobs)

ε∂E1
∂t′ + σE1 −∇×H1 = −R∗(RE− Eobs)

(2.16)

Derivative with respect to model parameters m from Eq. 2.9:

∇Φ1(m) =
∂Φ1
∂m =

∂L1
∂u

∂u
∂m +

∂L1
∂m =

∂L1
∂m =

∫ T

0
u∗1(

∂M1
∂m ∂tu+

∂M2
∂m u)dt (2.17)
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2.2 Inverse problem

The gradient of the objective function Φ1(m) with respect to electric parameters are shown as:

∇Φ1(ε) =

∫ T

0
(E1x

∂Ex
∂t + E1y

∂Ey
∂t + E1z

∂Ez
∂t )dt

∇Φ1(σ) =

∫ T

0
(E1x Ex + E1y Ey + E1zEz )dt

(2.18)

The magnetic permeability µ is assumed to be constant in the application of GPR. Logarithmic
parameterization (especially for the media with strong conductivity variations) (Meles, 2011):

ε̃ = log(ε/ε0), ∇Φ1(ε̃) = ε∇Φ1(ε)

σ̃ = log(σ/σ0), ∇Φ1(σ̃) = σ∇Φ1(σ)
(2.19)
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3 Results

True model, initial model and the model reconstructed by GPR FWI (permittivity and conductivity
simultaneously).
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3 Results

Waveform fit of the 1st, 9th and 17th shots.
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3 Results

Maximum amplitude fit of the 1st, 9th and 17th shots.
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3 Results

Misfit convergence curve as a function of iteration. A frequency-band variation from 5 to 40, 60,
80, 100 and 120 MHz is used in multiscale strategy to avoid cycle skipping in FWI (Bunks et al.,

1995). The “jump“ of misfit means that FWI switchs to the next inversion stage.
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4 Summary

Summary

(1) GPR simulation based on Maxwell’s equations.
(2) GPR FWI derived from the adjoint-state method.

Challenge

(1) Weak responds of the conductivity in surface-based GPR data.
Possible solution: joint inversion with electric resistance data.
(2) Cross-talk between permittivity and conductivity.
Possible solution: the 2nd order optimization method, such as truncated Newton method.
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