

Introduction to Cosmology

Winter term 22/23 Lecture 11 Jan. 24, 2023

www.kit.edu

Recap of Lecture 10

CMB: Baryon Acoustic Oscillations (BAO) & the Planck mission

- BAO: (standing) acoustic waves in the primordial plasma (sound horizon)
- fundamental mode: position $\ell_1 = 1/\sqrt{\Omega_{tot}}$ flat, Euclidean universe $\Omega_{tot} = 1$
- fundamental mode: height impacted by **baryon loading** $\Omega_B h^2 = 0.022$
- overtones: impacted also by **dark matter**, $\Omega_{DM} \approx 5 \times \Omega_{B}$
- **Planck** definitive CMB map, yielding fundamental parameters for **ACDM**
- CMB anomalies persist: low power & alingment in small multipoles,...

Secondary CMB anisotropies

- **CMB** anisotropies due to photon propagation over $t = 13.8 \cdot 10^9 yrs$
- secondary CMB anisotropies:
 - due to large-scale structures in an expanding ΛCDM – universe
 - galaxy clusters
 - voids
 - \Rightarrow **ISW-effect** due to non-zero Λ
 - SZ-effect from to scattering off e[−] in galaxy clusters

Secondary CMB anisotropies

CMB anisotropies due to photon propagation over $t = 13.8 \cdot 10^9 yrs$

- secondary CMB anisotropies:

- question 1:

how are the primary CMB anisotropies being influenced by the **accelerated expansion** of the universe?

- question 2:

how are the primary CMB anisotropies being influenced by **matter in galaxy clusters**?

Integrated Sachs-Wolfe (ISW) effect

Secondary anisotropy due to accelerated expansion of ΛCDM –universe

- let's now consider propagation of CMB in late *A* – dominated universe *a*(*t*) > 0.5 with an accelerated cosmic expansion:
 - ⇒ ISW-effect of CMB as (further)
 evidence for a non-zero value of
 vacuum energy density (Λ ≠ 0)
 - ⇒ ISW-effect of CMB manifests as secondary anisotropy $\Delta T/T$ at large scales $\theta > 2^{\circ}$

Integrated Sachs-Wolfe (ISW) effect

Secondary anisotropy due to accelerated expansion of ΛCDM – universe

- let's now consider propagation of CMB in time-dependent gravity $\Phi(t)$ wells (clusters) and hills (voids) in a universe with dominant $\Lambda \neq 0$:

⇒ galaxy super-cluster:

local overdensity how is CMB affected by $\Lambda \neq 0$?

⇒ cosmic void:

local underdensity how is CMB affected by $\Lambda \neq 0$?

ISW: CMB propagation in super-clusters/voids

Secondary anisotropies due to Λ

- in time-dependent gravity potentials $\Phi(t)$: the propagation of CMB photons is non-adiabatic with $\Delta E \neq 0$

RECAP: photons travelling in static potential $\Phi(x)$

Classcial case: adiabatic photon propagation with interchange $E_{pot} \leftrightarrow E_{kin}$

ISW effect: CMB propagation in $\Lambda \neq 0$ **universe**

- Secondary CMB anisotropy after photons have propagated an overdense super-cluster
- **entry: energy** E_1 CMB obtains a gain of E_{kin} when falling into the **gravity well** with potential Φ
- passage: energy between $E_1 \dots E_2$ vacuum energy Λ results in a stretching of the gravity well with potential $\Phi(t)$
- **exit: energy** E_2 CMB obtains a net gain of E_{kin} after climbing out of the **gravity well** with shallower potential Φ

ISW effect: CMB propagation in $\Lambda \neq 0$ **universe**

- Secondary CMB anisotropy after photons have propagated underdense void
- entry: energy E_1 CMB loses an amount of E_{kin} when climbing into the gravity hill with potential Φ
- passage: energy between $E_1 \dots E_2$ vacuum energy Λ results in a stretching of the gravity hill with potential $\Phi(t)$
- **exit: energy** E_2 CMB obtains a net loss of E_{kin} after falling out of the **gravity well** with shallower potential $\boldsymbol{\Phi}$

ISW effect: scale of the photon energy gain/loss

non-adiabatic photon propagation only in vacuum-dominated universe

ISW effect: we correlate ΔT with *LSS* data sets

Large Scale Structure (LSS) data show distribution of super-clusters & voids

12 Jan 24, 2023 G. Drexlin – Cosmo #11 *Sloan Digital Sky Survey (see also next lecture) Exp. Teilchenphysik - ETP

ISW effect: we perform a correlation analysis

Correlating LSS data on super- clusters O and super-voids O with CMB

- can we confirm the expectation of the ISW-effect via a correlation analysis?

ISW effect: we see a strong correlation signal!

Confirmation of the ISW effect as strong evidence for the existence of Dark Energy ($\Lambda \neq 0$)

15 Jan 24, 2023 G. Drexlin – Cosmo #11

ISW effect: we see a strong correlation signal!

- Confirmation of the ISW effect as strong evidence for the existence of Dark Energy ($\Lambda \neq 0$) $\Sigma =$
- analysis of statistical correlation of the CMB-temperature with large-scale structures *LSS*: ($\delta\theta = 4^{\circ}/100 h^{-1} Mpc$)
 - $\checkmark \Delta T = (9.6 \pm 2.2) \, \mu K$ due to the ISW effect (~4 σ evidence)
 - Accelerated cosmic stretching of super-clusters & voids

ISW: an independent evidence for Dark Energy

ISW effect: we see a strong correlation signal!

- Confirmation of the ISW effect as strong evidence for the existence of Dark Energy ($\Lambda \neq 0$)
- analysis of statistical correlation of the CMB-temperature with large-scale structures LSS: ($\delta\theta = 4^{\circ}/100 \ h^{-1} \ Mpc$)
 - $\checkmark \Delta T = (9.6 \pm 2.2) \, \mu K$ due to the ISW effect (~4 σ evidence)
 - Accelerated cosmic stretching of super-clusters & voids

ISW: an independent evidence for Dark Energy

Planck: global ISW map

Sunyaev – Zel'dovich effect: CMB scattering off *e* **Sunyaev** – Zel'dovich effect: CMB scattering off

further effect causing secondary anisotropies: CMB interactions in clusters

- in dense galaxy clusters: CMB scatters off hot cluster electrons e⁻ on the keV scale via the inverse Compton effect ⇒ net energy gain
- the SZ-effect in a galaxy cluster is a **secondary anisotropy**, which has to be accounted for as a **noise effect** in CMB analyses

SZ effect in galaxy cluster

17 Jan 24, 2023 G. Drexlin – Cosmo #11* remember me from last lecture? This flat CMB part... Ex

Exp. Teilchenphysik - ETP

Sunyaev – Zel'dovich effect: CMB scattering off e

secondary anisotropies: CMB undergoes inverse Compton* scattering

18 Jan 24, 2023 G. Drexlin – Cosmo #11 * See also lectures on astroparticle physics, if interested Exp. Teilchenphysik - ETP

SZ-effect: CMB photons are much hotter

Our next correlation analysis: CMB photons that cross galaxy clusters

- SZ-example: Coma galaxy cluster (Abell 1656) in $d \sim 100 Mpc$ ($\emptyset = 2^{\circ}$)

SZ-signature: specific frequency dependence

- Effect of scattering: deficit at low *f* ⇒ excess at high *f* (energies)
 - SZ-example: galaxy cluster Abell 2319 in $d \sim 250 Mpc$ ($\emptyset = 2^{\circ}$)
 - ~1% of all CMB photons passing this cluster interact via the SZ-Effekt with the hot cluster gas (inverse Compton scattering)
 - Planck data show the characteristic SZ-dependence on photon frequency *f* photons gain energy via inverse Compton effect ('up-scattering')

SZ-signature: specific frequency dependence

- **Effect of scattering: deficit at low** $f \Rightarrow$ excess at high f (energies)
 - SZ-example: galaxy cluster Abell 2319 in $d \sim 250 Mpc$ ($\emptyset = 2^{\circ}$)

SZ-effect is a noise signal: eliminate clusters

Remove effect of scattering: cut out all galaxy clusters identified

- removal: identified dense clusters & LSS – analyses by Planck: new cluster via CMB

> 1000 SZ sources (galaxy clusters) are know at present & excluded from CMB galaxy cluster PLCK G214.6+37.0 – **first cluster identified via SZ – effect**

Beyond Planck – future CMB challenges

CMB-S4: next-generation CMB experiment at South Pole & Chilean Andes

- plans to deploy 21 telescopes with 500 000 cryo-cooled bolometers

South Pole

- probe the nature of Dark Matter & Dark Energy ...
- capture transient phenomena ...

- signatures of primordial gravitational waves from inflationary phase ...
- map the matter throughout the sky...

Atacama desert

Beyond Planck – future CMB challenges

CMB-S4: next-generation CMB experiment at South Pole & Chilean Andes

CHAPTER 4 – STRUCTURE FORMATION IN THE UNIVERSE

4.1 Inflation & Early Universe

Inflationary phase of early universe with rapid increase of scale factor a(t)

- short time period $t = 10^{-36} \dots 10^{-32} s$
- huge increase of scale factor a(t) by value of > 10^{26}
- proposed origin: time evolution of scalar inflaton field (Higgs mechanism)
- solves flatness problem, eliminates (dilutes) number density of monopoles
- agrees with observed $\Delta T/T$ of the CMB

Inflation – Breakthrough Prize 2012....

Inflationary phase of early universe with rapid increase of scale factor a(t)

- solves the horizon problem, HZ-spectrum of CMB

Massachusetts Institute of Technology 2012 Breakthrough Prize in Fundamental Physics

For the invention of inflationary cosmology, and for his contributions to the theory for the generation of cosmological density fluctuations arising from quantum fluctuations in the early universe, and for his ongoing work on the problem of defining probabilities in eternally inflating spacetimes.

Alan Guth (MIT)

Inflation – can we verify it experimentally?

The 'Holy Grail' of Cosmology: imprint of inflation on polarisation of CMB

- key realisation – fast expansion phase of early universe a(t) leaves behind an imprint on CMB: \Rightarrow distinct polarization pattern of CMB due to gravitational waves

Inflation – not so easily verified experimentally

Polarization pattern of the CMB due to classical Thomson scattering off e⁻

- no signal without noise, here: we expect a polarization of the CMB due to scattering processes off nearby ionized gas
- linear polarization (~10 ... 20 %) of the CMB: $rot \vec{B} = 0$

CMB scatters off re-ionised regions ⇒ large-scale linear polarization pattern

first sky map of CMB polarization from WMAP: nearby ionised gas (non-primordial origin!)

Classical Thomson scattering: primordial plasma

Polarization pattern of the CMB due to classical Thomson scattering off e⁻

- more interesting for cosmology: CMB scattering off primordial plasma
- expected primordial polarization level ~1 % due to Thomson scattering at last surface, before decoupling ('last surface of scattering')
- from density fluctuations $\Delta \rho / \rho$ we expect a linear CMB polarization

30

Classical Thomson scattering: primordial plasma

Polarization pattern of the CMB due to classical Thomson scattering off e⁻

- CMB scattering off primordial plasma with anisotropic density distribution
- linear or 'scalar' polarization character (analogy: electric field E)

Classical Thomson scattering: primordial plasma

First experimental verification of CMB polarization by DASI* at the Southpole

polarization from scattering off primordial plasma is only visible at small scales

11 m tower with bottom dome to prevent interference from ground heat

32 Jan 24, 2023 G. Drexlin – Cosmo #11

*DASI – Degree Angular Scale Interferometer Exp. Teilchenphysik - ETP

Holy Grail: curl-like CMB polarization from inflation

Curls in the CMB polarization patterns due to very early gravitational waves

- CMB radiation is strechted / squeezed by primordial gravitational waves
- **'tensor'** polarization character (analogy: magnetic field *B* with rot $B \neq 0$)

⇒ tensor CMB polarization

analogy to B —field: non-vanishing rotation

Early inflationary phase & CMB polarizations

Accelerated masses during inflation: emssion of gravitational waves

Hunting primordial curls in the CMB: BICEP2

March 17, 2014: interesting news from the Southpole: we have a signal!!

17 Mar 2014

[astro-ph.CO]

03.3985v1

- BICEP2 reports on the detection of a B - mode (tensor) signal of the CMB polarization with 7 σ from 2010-12 data*

TO BE SUBMITTED TO A JOURNAL TBD Preprint typeset using LATEX style emulateapj v. 04/17/13

BICEP2 I: DETECTION OF B-mode POLARIZATION AT DEGREE ANGULAR SCALES

BICEP2 COLLABORATION - P. A. R. ADE¹, R. W. AIKIN², D. BARKATS³, S. J. BENTON⁴, C. A. BISCHOFF⁵, J. J. BOCK^{2,6}, J. A. BREVIK², I. BUDER⁵, E. BULLOCK⁷, C. D. DOWELL⁶, L. DUBAND⁸, J. P. FILIPPINI², S. FLIESCHER⁹, S. R. GOLWALA²,
M. HALPERN¹⁰, M. HASSELFIELD¹⁰, S. R. HILDEBRAND^{2,6}, G. C. HILTON¹¹, V. V. HRISTOV², K. D. IRWIN^{12,13,11}, K. S. KARKARE⁵, J. P. KAUFMAN¹⁴, B. G. KEATING¹⁴, S. A. KERNASOVSKIY¹², J. M. KOVAC^{5,16}, C. L. KUO^{12,13}, E. M. LEITCH¹⁵, M. LUEKER⁵, P. MASON², C. B. NETTERFIELD⁴, H. T. NGUYEN⁶, R. O'BRIEN⁶, R. W. OGBURN IV^{12,13}, A. ORLANDO¹⁴, C. PRYKE^{9,7,16}, C. D. REINTSEMA¹¹, S. RICHTER⁵, R. SCHWARZ⁹, C. D. SHEEHY^{9,15}, Z. K. STANISZEWSKI^{2,6}, R. V. SUDIWALA¹, G. P. TEPLY², J. E. TOLAN¹², A. D. TURNER⁶, A. G. VIEREGG^{5,15}, C. L. WONG⁵, AND K. W. YOON^{12,13}

to be submitted to a journal TBD

ABSTRACT

We report results from the BICEP2 experiment, a Cosmic Microwave Background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around $\ell \sim 80$. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor (TES) 150 GHz bolometers each with temperature sensitivity of $\approx 300 \ \mu K_{cur} \sqrt{s}$. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square degrees was observed to a depth of 87 nK-degrees in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations and results. We find an excess of B-mode power over the base lensed- Λ CDM expectation in the range $30 < \ell < 150$, inconsistent with the null hypothesis at a significance of $> 5\sigma$. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. We also estimate potential foreground signals and find that available models predict these to be considerably smaller than the observed signal. These foreground models possess no significant cross-correlation with our maps. Additionally, cross-correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring synchrotron or dust at 2.3σ and 2.2σ , respectively. The observed *B*-mode power spectrum is wellfit by a lensed-ACDM + tensor theoretical model with tensor/scalar ratio $r = 0.20^{+0.07}_{-0.05}$, with r = 0 disfavored at 7.0 σ . Subtracting the best available estimate for foreground dust modifies the likelihood slightly so that r = 0is disfavored at 5.9σ .

Subject headings: cosmic background radiation — cosmology: observations — gravitational waves — inflation — polarization

1. INTRODUCTION

¹ School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK ² Denartment of Physics. California Institute of Technology, Pasadena The discovery of the Cosmic Microwave Background (CMB) by Penzias & Wilson (1965) confirmed the hot big bang paradigm and established the CMB as a central tool for the study of cosmology. In recent years, observations of its temperature anisotropies have helped establish and refine the "standard" cosmological model now known as ACDM, under

35 Jan 24, 2023 G. Drexlin – Cosmo #11 * extraordinary claims demand extraordinary evidence Exp

Hunting primordial curls in the CMB: BICEP2

March 17, 2014: sensational news from the Southpole

- BICEP2 reports on the detection of a B - mode (tensor) signal of the CMB polarization with 7 σ from 2010-12 data VSICS TON'

Home > May 2014 (Volume 67, Issue 5) > Page 11, doi:10.1063/PT.3.2367

Polarization measurement detects primordial gravitational waves

Cosmic inflation is bolstered, but some inconsistencies await resolution Alan Chodos

'Smoking Gun' Reveals How the Inflationary **Big Bang Happened**

New findings show that the universe underwent a burst of inflation that was seemingly faster than the speed of light in the first instant of its existence.

Cosmic inflation: 'Spectacular' discovery hailed

The measurements were taken using the BICEP2 instrument at the South Pole telescope facility

By Jonathan Amos Science correspondent, BBC News

NEWS

NBC

Scientists say they have extraordinary new evidence to support a Big Bang Theory for the origin of the Universe.

Researchers believe they have found the signal left in the sky by the superrapid expansion of space that must have occurred just fractions of a second after everything came into being.

It takes the form of a distinctive twist in the oldest light detectable with

Hunting primordial curls in the CMB: BICEP2

March 2014: sensational news from the Southpole, but wait: news by Planck

- BICEP2 reports on the detection of a B - mode (tensor) signal of the CMB polarization with 7 σ from 2010-12 data

Primordial curls in the CMB: it's just dust...

Sept. 2014: sensational news from the Southpole bites the dust...

TELESCOPES AND SPACE MISSIONS | RESEARCH UPDATE

BICEP2 gravitational wave result bites the dust thanks to new Planck data

22 Sep 2014 Tushna Commissariat

Dirty window: The 'dusty' sky as seen by Planck

Astronomers working on the Background Imaging of Cosmic Extragalactic Polarization (BICEP2) telescope at the South Pole hit the headlines earlier this year when they claimed to have seen the first evidence for the primordial "B-mode" polarization of the cosmic microwave background (CMB). But a new analysis of polarized dust emission in our galaxy, carried out by the Planck collaboration, has shown that the part of the sky observed by BICEP2 has much

thermal emission from dust: Planck shows that BICEP2 had just measured ...dust...

Combined analysis from BICEP2 & Planck

nature

Jan. 2015 joint publication: entire 'GW-signal' can be explained by dust...

- combined analysis Planck-BICEP2:
 no evidence for cosmological
 B mode (tensor) signal due to GW
- contribution due to **noise** (dust rings) substantially larger than assumed by BICEP2 in original publication
- polarization data confirm earlier measurements $\Omega_B \& \Omega_{DM}$ based (unpolarized) ΔT – data sets

Dust to dust

What lessons can be learned from the presentation of the gravitational-waves story? *

ore than six months after the initial announcement that scientists had found evidence of gravitational waves — echoes of the Big Bang itself — the claim is hanging by a thread. Subsequent analysis showed that much of the signal could have been contaminated by galactic dust. The predictions of Nobel prizes for the team have faded. The champagne has gone flat.

Extraordinary claims, as the saying almost goes, demand more scrutiny than usual to make sure they stand up. That is how science works. Claim and counter-claim: intellectual thrust and experimental parry.