

Introduction to Cosmology

Winter term 22/23 Lecture 14 Feb. 14, 2023

www.kit.edu

Recap of Lecture 13

The observed 'clumpiness' of the universe: matter power spectrum P(k)

- strong evidence for DM: after the BAO-phase \Rightarrow baryons fall into gravity wells formed by evolving $DM \Rightarrow$ enhanced baryonic density contrast
- analysis of **density contrast**: as function of **distance** r galaxy correlation function $\xi(r) \Leftrightarrow$ as function of **wave number** k matter power spectrum P(k)
- *DM* modes of specific wave number *k* evolve independently: important is **time of first causal contact** (radiation- or matter- dominated universe)
- small DM mode (large k): growth is delayed in radiation era $P(k) \sim k^{-3}$
- large DM mode (small k): growth is not delayed in matter era $P(k) \sim k$

Thermal production of DM: what particle masses can be produced?

Thermal production of DM: relativistic case of neutrinos – no annihilation

Thermal production of DM: non-relativistic case of neutralinos – annihilation

Thermal production of DM: only two rather narrow mass ranges – eV or TeV

Thermal production of DM: only two rather narrow mass ranges – eV or TeV

- in order to avoid overclosure of the universe due to thermally produced
 DM (Ω_{DM} ≫ 1) particles in mass scale keV ... MeV or ≪ eV are excluded
 ⇒ weak interaction processes & subsequent freeze-out

Non-thermal production of *DM* for mass ranges: $m \ll eV$ or $m \sim keV \dots MeV$

- in order to avoid overclosure of the universe due to thermally produced
 DM (Ω_{DM} ≫ 1) particles in mass scale keV ... MeV or ≪ eV are excluded
 ⇒ non-thermal processes: ν-oscillations or symmetry breaking

Thermal relics: production & annihilation

The WIMP miracle of DM: phase 1 – thermodnamical equilibrium

- at $T \gg TeV$: due to their weak interaction, WIMPs are in thermodynmical equilibrium

we consider **co-moving number densities** $n_{\chi}(t)$ where the increase of the scale factor a(t) plays mo further role

Thermal relics: production & annihilation

■ The *WIMP* miracle of *DM*: phase 1 – thermodnamical equilibrium

- at $T \gg TeV$: due to their weak interaction, WIMPs are in thermodynamical equilibrium

rate (*WIMP* – pair production) \equiv rate (*WIMP* – pair annihilation)

Thermal relics: production & annihilation

The WIMP miracle of DM: phase 2 – annihilations reduce number density

The WIMP miracle of DM: we 'automatically' obtain Ω_{DM} if $\sigma_{ann} \approx 1 \ pb$

v: WIMP velocity at decoupling

Thermal relics: freeze-out as Cold Dark Matter

v: WIMP velocity at decoupling

Thermal Relicts: relativistic neutrinos

RECAP: neutrinos remain in thermal equilibrium until t = 1 s

- semi-leptonic reactions with protons, neutrons via *CC* (charged current) and *NC* (neutral current) processes: important to fix n/p - ratio for *BBN*

$$p + \overline{v_e} \leftrightarrow n + e^+$$
 $p + e^- \leftrightarrow n + v_e$

Thermal Relicts: relativistic neutrinos as HDM

neutrinos free-stream in evolving universe over distances d ~ Gpc

- neutrinos decouple after t = 1 s at temparture $T_{fr} \sim MeV$

sub - eV mass (KATRIN 2022: m(v) < 0.8 eV (90% CL)

 \Rightarrow resulting Lorentz- $\gamma = 10^6 \dots 10^7$

 \Rightarrow free-streaming distance $d \sim Gpc$

Thermal Relicts: relativistic neutrinos as HDM

neutrinos free-stream in evolving universe over distances $d \sim Gpc$

Thermal Relicts: relativistic neutrinos as HDM

neutrinos free-stream: wash out of small-scale structures in the universe

Massive ν 's (HDM) & matter power spectrum P(k)

Imprint of massive neutrinos on large wave numbers k of spectrum P(k)

Massive ν 's (HDM) & matter power spectrum P(k)

Imprint of massive neutrinos on large wave numbers k of spectrum P(k)

Massive ν 's (*HDM*): mass eigenstates $m_{1,2,3}$

primordial v's have cooled down to T = 1.9 K in todays' universe

- neutrinos from Big Bang with masses $m \approx 50 \text{ meV}$ today are bound gravitationally in galaxy clusters (i.e. on scales $d \approx 50 \text{ Mpc}$)
- flavour states $v_{e,\mu,\tau}$ produced up to t = 1 s today have fully 'decoupled' to mass eigenstates $v_{1,2,3}$ (long *de Broglie* wavelengths)

CHAPTER 5 – DARK UNIVERSE

5.1 Evidences for Dark Matter

Dark Matter & galaxy clusters

Fritz Zwicky proposes the existence of Dark Matter (from the Coma cluster)

- observation: (too) high peculiar velocities of single galaxies in the very large **Coma cluster of galaxies** !

Virial theorem:

$$\left\langle E_{kin} \right\rangle = -\frac{1}{2} \left\langle U_{pot} \right\rangle$$

níchtleuchtende Materíe ~ 90% der Masse ím Coma-Cluster...)

F. Zwicky *Helv. Phys. Acta* **6** 110-127 (1933) ´Die Rotverschiebung von extragalaktischen Nebeln´

Dark Matter & galaxy clusters

Fritz Zwicky proposes the existence of Dark Matter (from the Coma cluster)

- explanation: non-luminous form of matter ('Dark Matter') which interacts only via gravitational potential!

Virial theorem:

$$\left\langle E_{kin}\right\rangle = -\frac{1}{2}\left\langle U_{pot}\right\rangle$$

níchtleuchtende Materíe ~ 90% der Masse ím Coma-Cluster...)

F. Zwicky *Helv. Phys. Acta* **6** 110-127 (1933) ´Die Rotverschiebung von extragalaktischen Nebeln´

Dark Matter & rotational curves of galaxies

Vera Rubin observes flat rotational profiles of galaxies

- observation: (too) high velocities of single stars & gas clouds in the very large Andromeda spiral galaxy!

Newton:

$$F = \frac{GM_rm}{r^2} = m \cdot a$$

non-lumínous matter ~90% of the mass ín galaxíes...

V. Rubin et al., *ApJ* **159** 379 (1970) 'Rotation of the Andromeda Nebula'

Dark Matter & rotational curves of galaxies

- Vera Rubin observes flat rotational profiles of galaxies
 - explanation: non-luminous form of matter ('Dark Matter') which interacts only via gravitational potential!

RECAP: Newton's Law & rotational curves

Sir Isaac: rotational velocity profile of a galaxy should fall off as $v_{rot} \sim 1/\sqrt{r}$

- explanation: there is missing mass in the galaxy, so we need a halo of **Dark Matter**

Rotational curves reveal a Dark Matter halo

Todays' observations: linear increase of enclosed mass M_r up to $r = 50 \ kpc$

33 Feb 14, 2023 G. Drexlin – Cosmo #14

Exp. Teilchenphysik - ETP

Rotational curves reveal a Darm Matter halo

Todays' observations: linear increase of enclosed mass M_r up to $r = 50 \ kpc$

Rotational Curves & the 'ad hoc' MOND theory

- galactic rotational profiles can be 'reproduced' by modifying Newtonian gravity

35 Feb 14, 2023 G. Drexlin – Cosmo #14

Rotational Curves & BAO: irrefutable proof of DM

MOND theory: you may fit rotation curves but fail to describe BAO, clusters,...

MOND theory not compatible with

a) **Baryon Acoustic Oscillations** via gravitational potential by **Dark Matter**

b) Bullet cluster

collision of two galaxy clusters: separation of baryons (hot cluster gas) from **Dark Matter** (made visible by gravitational lensing)

5.2 Gravitational Lenses

Revealing the presence of DM via the process of gravitational lensing

- A. Einstein: light is propagating along geodesic lines
- gravitational lenses:

distortion of the optical imaging due to gravitational potentials can be used to dervie **mass distribution of large objects** (galaxy clusters,...)

- **strong lensing**: arcs, rings, multiple images of far-off galaxies/quasars
- weak lensing: statistical distortion of images of single galaxies

Strong and weak gravitational lensing

Important techniques to map out regions of Dark Matter

Strong gravitational lensing

An ideal method to map the spatial distribution of DM on galactic scales

g : distance of source

b : distance of observer

- perfect alignment of source, lens & observer: we see an Einstein ring with opening angle θ_E

Strong gravitational lensing

An ideal method to map the spatial distribution of DM on galactic scales

M : Mass of the lens (shows presence of DM) $D_S = D_{LS} + D_L \text{ (source - observer)}$

- perfect alignment of source, lens & observer: we see an Einstein ring with opening angle θ_E
- ~70 Einstein rings/arcs observed: always considerable amount of *DM*

Weak gravitational lensing

Karlsruhe Institute of Technology

Small (statistical) strechting of galaxy images: large-scale imaging of DM

- weak gravitational lensing due to extended lensing galaxy cluster with DM
 ⇒ statistical strechting (factor ~ 1%) of the images of galaxies in
 - the background
 - ⇒ perform statistical analysis

´stretching´ of a galaxy by factor 1%

Weak gravitational lensing

Small (statistical) strechting of galaxy images: large-scale imaging of DM

- primary ratio of the semi-axes (major to minor) of a galaxy image is unknown:
 stretching of image due to weak lens has to be analysed statistically
- signature of a **void** (under-dense region): major axes align **radially** to void signature of a **cluster** (over-dense region): major axes align in a **ring-like** form

Weak gravitational lensing

Small (statistical) strechting of galaxy images: large-scale imaging of DM

- primary ratio of the semi-axes (major to minor) of a galaxy image is unknown:
 stretching of image due to weak lens has to be analysed statistically
- signature of a **void** (under-dense region): major axes align **radially** to void signature of a **cluster** (over-dense region): major axes align in a **ring-like** form

Weak lensing: distribution of DM in a cluster

Example of DM – distribution in galaxy clusters Abell 901/902

Rare: weak & strong lensing in the same picture

Combination of the two effects in galaxy cluster CL0025 + 1654

 observation of strong lensing: several blue arcs of lensed images of far-off background galaxies

weak lensing: distribution of dark matter

Combination of the two effects in galaxy cluster CL0025 + 1654

- observation of strong lensing: several blue arcs of lensed images of far-off background galaxies
- observation of weak lensing: statistical distortion of the images of 7000 background galaxies
- allows to map distribution of *DM* of the in-between cluster CL0025+1654 which acts as weak gravitational lens

Weak lensing: the famous Bullet cluster

■ *DM* – distribution in galaxy: separation from baryons after collision

Weak lensing: the famous Bullet cluster

■ *DM* – distribution in galaxy: separation from baryons after collision

Weak lensing: the famous Bullet cluster

Phases of collision process between 2 galaxy clusters – evidence for DM

- Dark Matter:

no dissipation, no interaction processes during collision

DM & gas separated

- Baryonic gas:

49

during collision: gas is shocked & strongly heated due to very intense interactions (dissipation)

Cosmology: 'final' open questions

Is the vacuum (electroweak ground state) stable over very long times?

Cosmology: 'final' open questions

- Is the vacuum (electroweak ground state) stable over very long times?
- spontaneous decay via a tunneling process to the ´true´ vacuum state...

a <u>new</u> Standard Model....

Cosmology: 'final' open questions

Is the universe cyclic? Did it emerge from the 'Big Bounce'?

- signature of a possible earlier collapsed universe: observation of rings in the CMB

Cosmology: 'final' question

Where did it all come from?

COSMOLOGY MARCHES ON

THANK YOU...