

Introduction to **Cosmology**

Winter term 22/23 Lecture 4 Nov. 29, 2022

www.kit.edu

Recap of Lecture 3

Topology & geometry of the universe

- curvature parameter k = -1, 0, +1 (hyperbolic, flat, spherical)
- open questions: isotropy, limited/unlimited size, more complex topologies,...
- Friedmann-Lemaître equation: accleration / braking

pressure P: important for $a(t), \ddot{a}(t)$

 $\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3}\pi G\left(\rho(t) + \frac{3\dot{P}}{c^2}\right) \qquad 3 \text{ cosmological epochs:} \\ \rho(t) = \rho_m(t) + \rho_r(t) + \rho_v(t)$

- equation-of-state of vacuum: $P_V(t_0) = -1 \rho_V(t_0) \cdot c^2$ (anti-gravitation)

Friedmann eq. with cosmological constant Λ

Properties ρ_V and P_V of the vacuum 'merged' into one parameter: Λ

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3}\pi G \cdot \left(\rho_{m,r,V}(t) + \frac{3P_{m,r,V}}{c^2}\right) = -\frac{4}{3}\pi G \cdot \left(\rho_{m,r}(t) + \frac{3P_{m,r}}{c^2}\right) + \left(\frac{\Lambda c^2}{3}\right)$$

matter, radiation & vacuum matter & radiation vacuum

vacuum equation-of-state:

 $\rho_V(t) = -\mathbf{1} \cdot P_V(t)$

we keep this relation constant, thus we have ⇒ cosmolog. constant

Cosmological constant Λ

A very important constant in cosmology

- time-independent, constant parameter

$$\Lambda = \frac{8\pi G}{c^2} \cdot \rho_V$$

- positive sign, thus *accelerated* expansion
- best experimental value at present:

 $\Lambda = [(2.14 \pm 0.13) \times 10^{-3} eV]^4$ \$\approx 1.1 \cdot 10^{-52} m^2 \approx 10^{-29} g/cm^3\$

vacuum equation-of-state:

$$\rho_V(t) = -\mathbf{1} \cdot P_V(t)$$

Cosmological constant Λ

Experimental value & theoretical estimate: a 'small' discrepancy

observed: $\rho_V = 3.6 \ GeV/m^3$

estimate: $\rho_V = 10^{121} \ GeV/m^3$

zero-point-energy of a quantum field?

- biggest discrepancy in all of science!
- reduced to 'only' 60 orders of magnitude in extended models of particle physics

- literature tip: S. Weinberg et al. Likely Values of the Cosmological Constant

Popular science: vacuum energy in focus

Dark Energy Theory and Observations

Luca Amendola and Shinji Tsujikawa

TOPIC: THE CASIMIR EFFECT

An experimental investigation of the strange properties of the vacuum

- vacuum is filled with virtual, short-lived particles (Heisenberg uncertainty relation)
- two parallel metal plates separated by few nm: boundary conditions at the plate surfaces

- ⇒ impact on electro-magnetic field (virtual photons)
- ⇒ different zero-point energy inbetween
- \Rightarrow net force $F \sim 1/d^3$ (dominant at *nm*)
- ⇒ experimental observation in 2001

Hendrik Casimir

TOPIC: THE CASIMIR EFFECT

An experimental investigation of the strange properties of the vacuum

- vacuum is filled with virtual, short-lived particles (Heisenberg uncertainty relation)
- Casimir force can now be measured by integrated silicon chips (US-Chinese team)

A Cribe

*objects manufactured at μm – scale

TOPIC: PRESSURE AND GRAVITY

Extreme pressures inside a compact object (neutron star)

- neutron stars*: extremely compact objects
- radius $R \sim 10 20 \text{ km}$, mass $M < 2 3 M_{\odot}$
- very high density $\rho \sim (6-8) \times 10^{17} kg/m^3$

- 'degeneracy' pressure of neutrons counteracts gravity, but is itself a source of the gravitational field
 - ⇒ limited masses of neutron stars

Robert Oppenheimer

Friedmann-Lemaître Equations

2 fundamental equations to describe dynamics of cosmological expansion

- expansion rates governed by: matter, radiation, vacuum
 - ⇒ total energy density & topology of the universe

Aleksandr Friedmann (1888 – 1925)

Friedmann-Equations

Recap: acceleration of a homogenous & isotropic universe

- we will now start to **integrate** our well-know acceleration equation to obtain a relation for parameter $\dot{a}(t)$

Friedmann-Equations: let's do some maths...

Integration to obtain the second expansion equation

$$\ddot{a}(t) = -\frac{4}{3}\pi \cdot G \cdot \rho(t) \cdot a(t)$$

$$\dot{a}(t) = -\frac{4}{3}\pi \cdot G \cdot \rho_0 \cdot \frac{1}{a^2(t)} | \cdot 2 \cdot \dot{a}(t)$$

$$\dot{a}(t) \cdot 2 \cdot \dot{a}(t) = -\frac{2 \cdot 4}{3}\pi \cdot G \cdot \rho_0 \cdot \frac{\dot{a}(t)}{a^2(t)}$$
integration
$$\dot{a}^2(t) = -\frac{8}{3}\pi \cdot G \cdot \rho_0 \cdot \left(\frac{-1}{a(t)}\right) - kc^2$$
k: integration constant

14 Nov 29, 2022 G. Drexlin – Cosmo #4

Friedmann-Equations: we're (almost) done...

Second Friedmann Expansion Equation

$$\dot{a}^{2}(t) = -\frac{8}{3} \cdot \pi \cdot G \cdot \rho_{0} \cdot \left(\frac{-1}{a(t)}\right) - kc^{2} \qquad \text{re-use: } \rho_{0} = \rho(t) \cdot a^{3}(t)$$
$$\dot{a}^{2}(t) = \frac{8}{3} \cdot \pi \cdot G \cdot \rho(t) \cdot a^{2}(t) - kc^{2} \qquad | : a^{2}(t)$$

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho(t) - \frac{kc^{2}}{a^{2}(t)}$$

- allows to calculate Hubble parameter $H^2(t)$ for different epochs

Topology and overall energy density

Curvature parameter k 'from integration': impact on scale parameter a(t)

Topology and overall energy density: some math

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho(t) - \frac{kc^{2}}{a^{2}(t)} \qquad |\cdot\frac{a(t)^{2}}{2}$$

$$\rho(t) = \frac{\rho_{0}}{a^{3}(t)}$$

$$a(t) = \frac{r(t)}{x}$$

$$\dot{a}(t) = \frac{\dot{r}(t)}{x}$$

$$\frac{\dot{r}(t)^{2}}{2} - \frac{4}{3} \cdot \pi \cdot G \cdot \rho(t) \cdot a(t)^{2} = -\frac{k \cdot c^{2}}{2}$$

$$\frac{\dot{r}(t)^{2}}{2 \cdot x^{2}} - \frac{4}{3} \cdot \pi \cdot G \cdot \rho_{0} \cdot \frac{x}{r(t)} = -\frac{k \cdot c^{2}}{2}$$

Karlsruhe Institute of Technology

Topology and overall energy density: some math

$$\frac{\dot{r}(t)^2}{2 \cdot x^2} - \frac{4}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \frac{x}{r(t)} = -\frac{k \cdot c^2}{2} \quad |\cdot x^2|$$

$$M(x) = \frac{4}{3} \cdot \pi \cdot \rho_0 \cdot x^3$$
for unit sphere
$$x \equiv 1$$

$$M = M(x)$$

$$\frac{\dot{r}(t)^2}{2} - G \cdot \frac{M(x)}{r(t)} = -\frac{k \cdot c^2}{2} \cdot x^2$$

$$\frac{\dot{r}(t)^2}{2} - G \cdot \frac{M}{r(t)} = -\frac{k \cdot c^2}{2}$$

Karlsruhe Institute of

Topology and overall energy density: curvature k

Curvature k of the universe is determined by ist total energy E_{tot}

Topology and overall energy density

Heisenberg uncertainty relation in view of the total energy of the universe

Topology and overall energy density

angular scale Θ

2015 findings of the Planck satellite mission: a universe <u>without</u> curvature

- analysis of the CMB multipole distribution* kc^2 curvature k = 0 (Ω_k) from 1. peak at $\ell \sim 200$ $= 0.000 \pm 0.005$ (Ω_k) multipole moment ℓ $R_{curv} = a^{-1}$ 2000 2500 50 500 1000 1500 10 6000 fluctuations $\Delta T^2(\mu K^2)$ 5000 4000 3000 2000 planck 1000 0 1° 0.2° 90° 18° 0.1° 0.07°

*see lectures 8 & 9

overall energy density & inflationary cosmology

2015 findings of the Planck satellite & expectation from the theory of inflation

- inflation: exponential increase of the size a(t) of universe from time t = 10⁻³⁶s ... 10⁻³²s due to a scalar field, typ. expansion factor ≫ 10²⁶
 ⇒ flat space, no curvature
- **observation**: space is flat to ~0.5% (Planck, 2015)

Topology and overall energy density

2018 findings of the Planck satellite mission: a universe <u>with</u> curvature??

- analysis of CMB radiation using lensing effect*

Article | Published: 04 November 2019

Planck evidence for a closed Universe and a possible crisis for cosmology

Eleonora Di Valentino, Alessandro Melchiorri 🖂 & Joseph Silk

Nature Astronomy (2019) Cite this article

Abstract

The recent Planck Legacy 2018 release has confirmed the presence of an enhanced lensing amplitude in cosmic microwave background power spectra compared with that predicted in the standard Λ cold dark matter model, where Λ is the cosmological constant. A closed Universe can provide a physical explanation for this effect, with the Planck cosmic microwave background spectra now preferring a positive curvature at more than the 99% confidence level. Here, we further investigate the evidence for a closed Universe from Planck, showing that positive curvature naturally explains the anomalous lensing $\Omega_k = -0.007 \dots - 0.095$ (99%*CL*)

*see lectures 13 & 14

inflationary cosmology: acclerated masses

2021 update from BICEP3 & expectation from the theory of inflation

 - inflation should have produced a specific GW* signal: but no detection!

BICEP3 tightens the bounds on cosmic inflation

10/26/21 | By Nathan Collins

A new analysis of the South Pole-based telescope's observations has all but ruled out several popular models of inflation.

Friedmann equations for a flat universe

Second expansion equation: development of $\rho(t)$ over cosm. time scales t

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho_{m,r,V}(t)$$

$$= \frac{8}{3}\pi G\rho_{m,r}(t) + \frac{\Lambda c^{2}}{3}$$

$$H(t) \sim \sqrt{\rho_{m,r}(t)} + const.$$

$$[10^{-23}]$$

$$10^{-25}$$

$$10^{-27}$$

$$10^{-27}$$

time t

Friedmann equations for a flat universe

Second expansion equation: development of $\rho(t)$ over cosm. time scales t

RECAP: Friedmann-Lemaître Equations

The two equations governing cosmological evolution

expansion equation with curvature k

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho(t) - \frac{kc^{2}}{a(t)^{2}}$$

acceleration equation

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3}\pi G\left(\rho(t) + \frac{3P}{c^2}\right)$$

$$\rho(t) = \rho_m(t) + \rho_r(t) + \rho_v(t)$$

Aleksandr

Friedmann

Georges Lemaître

RECAP: Friedmann-Lemaître Equations

The two equations governing cosmological evolution using Λ

expansion equation for k = 0 with Λ

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3}\pi G\rho(t) + \frac{\Lambda c^{2}}{3}$$

acceleration equation for k = 0 with Λ

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3}\pi G\left(\rho(t) + \frac{3P}{c^2}\right) + \frac{\Lambda c^2}{3}$$

 $\rho(t) = \rho_m(t) + \rho_r(t)$

Aleksandr Friedmann Georges Lemaître

Different cosmological epochs & a(t)

Radiation / matter / vacuum energy – dominated cosmological ages

Different cosmological epochs & a(t)

Radiation / matter / vacuum energy – dominated cosmological ages

- evolution of scale parameter a(t) calculated with Friedmann equations

dominant part	equation-of-state	density	scale parameter
radiation	$P_r = +1/3 \cdot \rho_r c^2$	$\rho_r \sim a^{-4}$	$a(t) \sim t^{1/2}$

Matter-dominated model of cosmology

Hypothetical assumption: present, flat universe that contains only baryons

- flat universe (k = 0), no vacuum energy ($\Lambda = 0$)
- critical energy density ρ_c for flat universe, baryons only:

$$\rho_c = \frac{3}{8\pi G} H_0^2 = 9.2 \times 10^{-27} \frac{kg}{m^3}$$

$$= 5.1 \ GeV/m^3$$
 (i.e. ~ 5 protons per m^3)

Our present universe has a baryon density ρ_b

= 0.2 GeV/m^3 (i.e. $ho_b < 5\%$ of ho_c)

Building a Standard Model of cosmology

- Ω_i is a dimensionless parameter, given by ratio of actual density ρ_i relative to critical critical density ρ_c for a flat universe

-
$$\Omega_{tot} = \sum \rho_i = 1$$
 for a flat universe with $E_{tot} = 0$

Summing up all density parameters Ω_i

- contributions: matter – radiation – vacuum – curvature $k \neq 0$

$$\boldsymbol{\Omega}_{tot} = \boldsymbol{\Omega}_m + \boldsymbol{\Omega}_r + \boldsymbol{\Omega}_V + \boldsymbol{\Omega}_k$$

$$\Omega_i = \frac{\rho_i}{\rho_c} = \frac{8\pi \cdot G}{3 H_0^2} \cdot \rho_i$$

Hubble time t_H : definition & relation to H_0

Hubble time t_H is based on a scenario with uniform expansion rate H_0

Hubble time t_H and actual expansion rate

Linear and acutal expansion rate of our universe

- <u>surprise</u>:

rather good approximation of a(t) by a linear increase using <u>present</u> value of H_0

- <u>exact Friedmann solution</u>: at first braked expansion $(\ddot{a}(t) < 0)$, now accelerated expansion with $\ddot{a}(t) > 0$

Hubble time t_H and actual expansion rate

Hubble expansion H(t): CosmoCalc – a useful app

Cosmological parameters & their implications: an app for your smartphone

- select your model universe & see its properties

$$H(t)^{2} = H_{0}^{2} \cdot \left[\Omega_{m}(t) + \Omega_{r}(t) + \Omega_{V}(t) + \Omega_{k}(t)\right]$$

$$H(t)^{2} = H_{0}^{2} \cdot \begin{bmatrix} \Omega_{m}(0) \cdot (1+z)^{3} & \sim 1/a^{3} \\ + \Omega_{r}(0) \cdot (1+z)^{4} & \sim 1/a^{4} \\ + \Omega_{V}(0) & const. \\ + \Omega_{k}(0) \cdot (1+z)^{2} & \sim 1/a^{2} \end{bmatrix}$$

CosmoCalc App für iOS

The end (of todays' lecture)

Friedmann equations revisited

