

# Introduction to Cosmology

#### Winter term 22/23 Lecture 7 Dec. 13, 2022



www.kit.edu

#### **Recap of Lecture 6**



#### Primordial Nucleosynthesis: formation of light elements during first 3 min.

- thermodynamical equilibrium between p, n due weak interaction by  $\nu's$
- neutrino decoupling (freeze-out) at T = 1 MeV and t = 1 s (free-streaming v's)
- (n, p) ratio 1:6 at t = 1 s, no element synthesis due to intense heat bath
- fusion only starts at  $t \approx 1 \text{ min.}$  due to d bottleneck, then (n, p) ratio 1:7
- light element synthesis primarily to  ${}^{4}He$  with traces of *d*,  ${}^{3}He$ ,  ${}^{7}Li$

- BBN-prediction of primordial <sup>4</sup>*He* mass fraction  $Y_p = \frac{2(n/p)}{1+(n/p)} \approx 0.25$ 

#### **Recap of Lecture 6**





#### **Primordial Nucleosynthesis: light element yield as a function of** $\rho_B$

#### **Preview of this Lecture: light element yields**



**Determining the abundance of the light elements** d, <sup>4</sup>He, <sup>7</sup>Li for  $\Omega_B \& N_{\nu}$ 





#### Impact of baryon asymmetry $\eta$ on abundance of primordial ${}^{4}He$

- for increasing values of  $\eta$  we have more p, n relative to  $\gamma's$  from heat bath

 $\Rightarrow$  nucleosynthesis starts earlier at higher values of  $T_{fr}$ 

⇒ larger (n, p) – ratio: more deuterium d is fused, which then ends up as primordial  ${}^{4}He$  and a **larger value of**  $Y_{P}$ 





#### **Impact of baryon asymmetry** $\eta$ on abundance of primordial deuterium d

- deuterium is THE bottleneck of light element synthesis (small  $E_B = 2.2 MeV$ ) thus it is most strongly affected by parameter  $\eta$
- for increasing values of  $\eta$  we have more p, n relative to  $\gamma's$  from heat bath  $\Rightarrow$  more baryons due to higher density  $\rho_B \Rightarrow$  less deuterium d (it ends up more efficiently in primordial  ${}^{4}He$







**Impact of baryon asymmetry**  $\eta$  on abundance of primordial deuterium d

- deuterium is THE bottleneck of light element synthesis (small  $E_B = 2.2 MeV$ ) thus it is **best suited to deduce the baryon density**  $\Omega_B$ 



Impact of baryon asymmetry  $\eta$  on abundance of primordial lithium <sup>7</sup>Li

- lithium has a very small primoridal abundance & mass fraction  $< 10^{-7}$
- major challenge in measuring baryon density  $\Omega_B$ with the abundance of  $^7Li$  arises due to two reaction pathways:
  - a) for smaller values of  $\eta$  the EC reaction pathway  $^7Be + e^- \rightarrow ~^7Li + \nu_e$  is dominant
  - b) for *larger values* of  $\eta$  the  $(t, \gamma)$ -capture process  ${}^{4}He + {}^{3}H \rightarrow {}^{7}Li + \gamma$  is dominant





Impact of baryon asymmetry  $\eta$  on abundance of primordial lithium <sup>7</sup>Li

- lithium has a very small primoridal abundance & mass fraction  $< 10^{-7}$
- major challenge in measuring baryon density  $\Omega_B$



# Light element yields & future e-mobility



Impact of baryon asymmetry  $\eta$  on abundance of primordial lithium <sup>7</sup>Li

- lithium has a very small primoridal abundance & mass fraction  $< 10^{-7}$
- lithium is very important for the



#### Light element yields: spectroscopic results



#### We want to determine the light element yields of BBN in the universe today!

- each element is identified by its characteristic emission/absorption lines



#### Light element yields: results & systematics



#### Do we determine the correct light element yields of BBN in the universe?

- each element abundance is **modified** by  $13.8 \cdot 10^9$  yrs of stellar processes!



## Light element yields: atomic physics as basis



Spectroscopy of the three light BBN elements d,  ${}^{4}He$ ,  ${}^{7}Li$ 

Не

d

Li

<sup>4</sup>*He*: emission lines from recombination processes of  $He^+$ -ions in galactic H-II - regions\* and in Blue Compact Dwarf (BCD) galaxies

<sup>2</sup>*H*: absorption lines of  ${}^{2}H(Ly - \alpha \text{ line})$  in extragalactic clouds along the line-of-sight of distant quasars (which provide a 'back-illumination')

<sup>7</sup>*Li*: absorption lines of <sup>7</sup>*Li* in atmospheres of stars in halo (**Spite plateau**)

# Measuring the ${}^{4}He$ –abundance



Using high-precision spectroscopy to measure the primordial <sup>4</sup>*He* yield

# *He* $\lambda = 587.6 nm$

- transition  $3d \rightarrow 2p$ : strongest optical transition ideally suited for high-precision spectrographs





 $1s \ 3d \ (23.07 \ eV) \rightarrow 1s \ 2p \ (20.96 \ eV)$ 

 $\Delta E = 2.11 \ eV \ (\lambda = 587.6 \ nm, \text{ yellow line})$ 

# Measuring the ${}^{4}He$ –abundance



#### Observing Blue Compact Dwarf galaxies at the VLT spectrograph



BCDs: small galaxies – poor in ´metals´
 ⇒ few stellar fusion reactions



UV – light of very massive stars BCD

regions  $\Rightarrow$  gas is ionised (*He*<sup>+</sup>) by

- BCDs: rich in gas – large star-forming

# Measuring the ${}^{4}He$ –abundance



#### Observing Blue Compact Dwarf galaxies at the VLT spectrograph

 $\lambda = 587.6 nm$ 

- BCDs: many line emissions visible, we analyse peak height at 587.6 nm





Не

# Measuring the ${}^{4}He$ –abundance: systematics



#### **Abundance of** ${}^{4}He$ in the universe continually increases due to fusion

- hydrogen burning: fusion cycles generate non-negligible amounts of  ${}^{4}He$ 



# Measuring the ${}^{4}He$ –abundance: systematics



#### **Abundance of** ${}^{4}He$ in the universe continually increases due to fusion

| $\overline{Y_{\rm p}(^{4}{\rm He})}$ | $\pm 1\sigma_{\rm stat}$ | $\pm 1\sigma_{\rm sys}$ | $\pm 1\sigma_{\rm tot}$ | # systems |   |
|--------------------------------------|--------------------------|-------------------------|-------------------------|-----------|---|
| 0.2453                               | 0.0034                   |                         |                         | 16        |   |
| 0.2451                               | 0.0019                   | 0.0018                  | 0.0026                  | 1         |   |
| 0.243                                | 0.005                    |                         |                         | 16        | 2 |
| 0.2462                               | 0.0022                   |                         |                         | 120       | 2 |
| 0.2436                               | 0.0040                   |                         |                         | 54        |   |
| 0.2448                               | 0.0027                   | 0.0018                  | 0.0033                  | 7         |   |
|                                      |                          |                         |                         |           |   |



- good agreement with BBN theory



\* 1503.08146.pdf (arxiv.org)

#### evaluation period – Dec. 5 – 16, 2022



Please take your time to evaluate the cosmo lectures & exercises/tutorials

lectures: QR-code & link



https://onlineumfrage.kit.edu/evasys/public/online/index/in dex?online\_php=&p=AGFKD&ONLINEID=5805711167583455 7075727718326824247031928 exercises & tutorials: QR-code & link



https://onlineumfrage.kit.edu/evasys/public/online/index/in dex?online\_php=&p=D6CZR&ONLINEID=6531479768302787 87680879409014532250250735

4022021

#### deuterium–abundance: $Ly - \alpha$ absorption line



• We use the Lyman- $\alpha$  transition at  $\lambda = 121.55$  nm to observe  $d({}^{2}H)$ 



#### deuterium–abundance: $Ly - \alpha$ absorption line

Spectroscopic challenges to separate hydrogen isotope  ${}^{2}H$  from  ${}^{1}H$ 

- spectroscopic challenge #1: the  $Ly - \alpha$  -lines of  ${}^{2}H$  and  ${}^{1}H$ lie very close together (only reduced mass  $\mu = (m_1 \cdot m_2)/(m_1 + m_2)$  differs  $\Rightarrow$  resolution  $\Delta E/E \approx 2.7 \cdot 10^{-4}$  needed
- spectroscopic challenge #2: the  $Ly - \alpha$  —lines of  ${}^{2}H$  and  ${}^{1}H$ differ by a huge amount in their intensity (flux ratio ~  $10^{-5}$ )  $\Rightarrow {}^{1}H$  — line often saturated





#### deuterium–abundance: $Ly - \alpha$ forest



#### Observing the absorption lines of gas clouds illuminated by quasars



 quasar (supermassive black hole) at center of a galaxy acts as very bright beacon located far away, illuminating gaseous clouds with <sup>2</sup>H and <sup>1</sup>H on the line-of-sight



 $Ly - \alpha$  absorption lines  $\lambda_i$  of extragalactic clouds

#### deuterium–abundance: $Ly - \alpha$ forest



Observing the absorption lines of gas clouds illuminated by quasars

quasar

- each gas cloud absorbs quasar light at ist individual cosmological distance  $z_i$ 

 $\Rightarrow$  the Lyman $-\alpha$  –forest



 $z_0 = 2.89$ 

#### deuterium–abundance: $Ly - \alpha$ forest



#### Observing the absorption lines of gas clouds illuminated by quasars

- identify all lines that belong to a specific cloud at smaller redshifts\*  $z_i$ 



$$z = (\lambda_{obs}/\lambda_{emit}) - 1$$

#### deuterium–abundance: $Ly - \alpha$ forest systematics

**Deuterium is destroyed by fusion** (pp-, CNO – chains) due to stars

- identify the largest value of  ${}^{2}H/{}^{1}H$  along the line-of-sight



- oldest objects: smaller systematics

- fusion: primordial d burned to  ${}^{4}He$ 



 $z = (\lambda_{obs}/\lambda_{emit}) - 1$ 

#### deuterium-abundance: results

# Analysis of line profiles and intensity ratios

- further challenges: extragalactic clouds can be rotating ⇒ lines are Doppler-broadened
- further challenges: saturation of  ${}^{1}H$  – line  $\Rightarrow$  use of other lines
- present (2022) PDG-value:

$$\frac{D}{H} = (25.47 \pm 0.25) \cdot 10^{-6}$$



# abundance of $^{7}Li$ – Spite plateau

Observation of absorption line from <sup>7</sup>Li: select old, metal-poor stars

- absorption (doublet-) line of <sup>7</sup>Li at deep red wavelength  $\lambda = 670.7 nm$
- primordial <sup>7</sup>Li located in the atmosphere of the old, metal-poor star



# abundance of $^{7}Li$ – Spite plateau

Karlsruhe Institute of Technology

- Observation of absorption line from <sup>7</sup>Li: select old, metal-poor stars
  - low-mass  $(m \sim 0.1 M_{\odot})$  stars in the galactic halo: small fusion rates
  - stars with high surface temperature T: minimum amount of surface convection



# abundance of $^{7}Li$ – Spite plateau



#### Observation of absorption line from <sup>7</sup>Li: select old, metal-poor stars



 stars with high surface temperature *T*: minimum surface convection
 ⇒ reduces dangerous buring of <sup>7</sup>Li which decreases the primordial yield



# abundance of $^{7}Li$ – the 'anomaly'

Karlsruhe Institute of Technolo

#### Observation of absorption line from <sup>7</sup>Li: a systematic effect unexplained



observed values of <sup>7</sup>Li below the BBN expectation: the <sup>7</sup>Li –anomaly manifests even in stars with high surface temperature (´Spite plateau´) ⇒ missing lithium

$$\frac{Li}{H} = (1.6 \pm 0.3) \cdot 10^{-10}$$

(wild?) speculations:
 is this due to time-varying
 natural constants or decaying
 dark matter??



#### **Observed light element yields & baryon density**



**Combining results for**  ${}^{4}He$ ,  ${}^{2}H$ ,  ${}^{7}Li$  and comparison with  $\Omega_{B}$  from the CMB



### **Observed light element yields & baryon density**

- **Combining results for**  ${}^{4}He$ ,  ${}^{2}H$ ,  ${}^{7}Li$  and comparison with  $\Omega_{B}$  from the CMB
- deriving  $\Omega_B$  from

- deriving  $\Omega_B$  from



# Schramm plot for BBN

#### Comparison of BBN & CMB

- observed BBN light element yields are broadly consistent with precise CMB results, but systematics remains
- with  $N(\gamma)$  from CMB we have\*

 $5.8 \le \eta_{10} \le 6.5 (95\% CL)$ and thus  $(h^2 \cong 0.5)$  $0.021 \le \Omega_B h^2 \le 0.024 (95\% CL)$ 



33 Dec 13, 2022 G. Drexlin – Cosmo #7 \*  $\eta_{10}$  = baryon-asymmetry in units of  $10^{-10}$ 

### Schramm plot for BBN

#### Comparison of BBN & CMB

- observed BBN light element yields are broadly consistent with precise CMB results, but systematics remains
- accuracy, trueness, precision





# **BBN & missing baryons**

- Case of 'missing baryons'
- observed, luminous baryons (galaxies & stars, cold gas, plasma, intergalactic medium)
  30% less than expected from the BBN value









#### **38** Dec 13, 2022 G. Drexlin – Cosmo #7



#### **BBN** as tool for novel particle physics at t = 1 s



#### **BBN** as tool for extra neutrino generations





#### **BBN** as tool for extra neutrino generations



- Freeze-out temperature T<sub>fr</sub> depends on the # of relativistic degrees-of-freedom!
- impact of  $\Delta N_{\nu}$ :  $\Rightarrow$  larger value of H(t) $\Rightarrow$  increase of  $T_{fr}$

- more n's are available

- primordial <sup>4</sup>*He* mass fraction *Y*<sub>*P*</sub> **increases** 



#### **BBN** results need to be combined with CMB data



**Primordial** <sup>4</sup>*He* mass yield  $Y_P$  combined with baryon density  $\Omega_B$  from CMB



### **BBN** results need to be combined with CMB data



#### **Primordial** <sup>4</sup>*He* mass yield $Y_P$ combined with baryon density $\Omega_B$ from CMB

- cetailed calculation gives SM-expectation of  $N_{\nu} = 3.045$  for 3 generations, resulting from the finite time interval for v-decoupling
- if observation provides  $N_{\nu} \gg 3.045$  : there are  $eV \dots keV \text{scale extra-}\nu's$  or



#### **BBN** results need to be combined with CMB data



- **Primordial** <sup>4</sup>*He* mass yield  $Y_P$  combined with baryon density  $\Omega_B$  from CMB
- 8 - latest data from BBN & CMB esa analyses degereesof freedom  $N_{\nu}$ planck (Planck 2018) give a result of neutrino relativistic 6  $N_{\nu} = 2.92 \pm 0.36$ 5 4 - no evidence of light  $v_s$  or other dark radiation (gravitinos,...) 3 or metastable  $(Z^0)$ Cooke et al. (2014) 2 THE STANDARD MODEL 0.020 0.022 0.024 0.026 0.018  $N_{\nu} = 3.045$ baryon density  $\Omega_{B}h^{2}$

# INSERTION: compare $N_{\nu}$ to measurements at LEP

How do these results relate to the much earlier results at CERN's LEP?



Large Electron Positron Collider - *LEP* experiments performed a precision measurement of the **invisible width**  $\Gamma_{inv}$  of the  $Z^0$ 





# **INSERTION:** investigating the $Z^0$ invisible width



**The invisible width**  $\Gamma_{inv}$  of the  $Z^0$ 



Large Electron Positron Collider



95