

Introduction to Cosmology

Winter term 23/24 Lecture 10 Jan. 9, 2024

www.kit.edu

Cosmology 2024

• Outlook: 2 Postdocs* at MPA riding cosmic waves of CMB in the early universe to study the parameters Ω_i

Exp. Teilchenphysik - ETP

Recap of Lecture 9

- CMB multipole expansion: a unique tool for cosmology
 - foreground: thermal (dust) / non-thermal (synchrotron, free-free scattering)
 - BOOMERanG, WMAP mission to L2 point: high-resolution CMB maps
 - angular correlation function $C(\theta)$ for $\Delta T/T$: expansion in multipoles ℓ
 - power spectrum: $(\Delta T)^2 = \ell \cdot (\ell + 1) \cdot C_{\ell}/2\pi$
 - large angles: flat Harrison Zel'dovich spectrum (zero-point QM fluctuations)
 - small angles: **BAO Baryon Acoustic Oscillations** (**DM** signature), today

Outlook: from scale invariance to BAOs

CMB multipole spectrum: study physics of the early universe t < 378.000 yr</p>

- large scales: fluctuations are frozen (´QM in the sky´)
- small scales: modification
 due to gravity & acoustic
 sound waves in the plasma

 BAOs: a perfect tool to measure baryon density Ω_B
 & dark matter density Ω_{DM}

Entire CMB spectrum up to large multipoles ℓ

On smaller scales, the initial density pertubations have been modified

Entire CMB spectrum up to large multipoles ℓ

On smaller scales, the initial density pertubations have been amplified

modification is due to close coupling of baryonic matter with radiation

- once a density perturbation is
 re-entering into causal contact,
 it will be shaped by 2 forces:
 - a) gravitational attraction

from dark matter, forming a quasi-fixed gravity well (dark matter Ω_{DM} is dominant & does <u>not</u> interact with photons)

b) radiation pressure

from photons, restoring force on baryons

modification is due to close coupling of baryonic matter with radiation

- once a density perturbation is
 re-entering into causal contact,
 it will be shaped by 2 forces:
 - a) gravitational attraction
 - from dark matter, forming a quasi-fixed gravity well (dark matter Ω_{DM} is dominant & does <u>not</u> interact with photons)

b) radiation pressure

from photons, restoring force on baryons

modification is due to close coupling of baryonic matter with radiation

- once a density perturbation is
 re-entering into causal contact,
 it will be shaped by 2 forces:
 - a) gravitational attraction
 - from dark matter, forming a quasi-fixed gravity well (dark matter Ω_{DM} is dominant & does <u>not</u> interact with photons)

b) radiation pressure

from photons, restoring force on baryons

modification is due to close coupling of baryonic matter with radiation

- John Peebles: standing acoustic waves in the early primordial plasma
- BAOs are based on well–established physics: standing acoustic waves
- important parameter:
 the speed of sound v_s

Recap*: speed of sound v_s during phase transition

- Phase transition from plasma to neutral matter: change of speed of sound
- speed of sound v_s before (plasma) & after (neutral atoms) recombination:
- plasma: very fast!

- neutral matter:

 $v_S^2 \approx 0 \Rightarrow$ full stop!

One more thing: acoustic oscillations are all in phase over entire universe

- acoustic oscillations in different (non–causally linked) regions: ⇒ *identical phases* ⇒ add coherently: no destructive interference (as expected for random phases)
- a possible solution, again: inflation in the very early universe has synchronised all density fluctuations – thus they all start with the same phase

One more thing: acoustic oscillations only in the plasma state t < 378000 yr</p>

- t = 0: causal interaction of baryons & photons in presence of *DM* gravity wells \Rightarrow a density perturbation starts to move with speed of sound $v_s = c/\sqrt{3}$
- $t = 378000 \ yr$: after recombination no baryon-photon interaction, sound wave is 'frozen' as $v_s \approx 0$ (\Rightarrow sound horizon of fundamental mode from t = 0 to $t = t_{rec}$)

Analogon: fundamental mode & overtones as standing acoustic wave(s)

**L* = sound horizon at $t = t_{rec}$

Exp. Teilchenphysik - ETP

- Analogon: fundamental mode & overtones in flute as standing acoustic wave
- *RECAP*: only standing acoustic waves will interfere constructively, all others will be wiped out due to destructive interference

*L = sound horizon at $t = t_{rec}$

BAO: only fundamental mode & overtones as standing acoustic waves

- **BAO:** only fundamental mode & overtones as standing acoustic waves
- t = 0 up to $t = 378000 \ yr$: fundamental mode (largest wavelength λ_1) with multipole $\ell \approx 200$ has just gone from rarefaction \rightarrow compression (one cycle)
- fundamental mode with $\ell \approx 200$ consists of a total of $(2\ell + 1 \approx 400)$ independent fluctuations, all adding with *coherent phase* to this specific mode with λ_1

BAO: only fundamental mode & overtones as standing acoustic waves

- an **overtone** (here: the **first**) with shorter wavelength (here: $\lambda_2 = \frac{\lambda_1}{2} = L$) has just gone through > 1 cycle (here: **rarefaction** \rightarrow **compression** \rightarrow **rarefaction**)

BAO: only fundamental mode & overtones as standing acoustic waves

- a 'cosmic symphony' in the early universe of fundamental mode plus many overtones, each composed of $2\ell + 1$ independent (coherent!) fluctuations

BAO – acoustic waves are damped at high ℓ

Why are the temperature fluctuations at large multipoles *l* being damped?

- BAO take place in a strong heat bath: damping of small angle θ amplitudes

temperature fluctuations at large multipoles *l*: impacted by photon diffusion

- photons diffuse out from hotter (overdense) to colder (underdense) regions, thus

BAO – determining the topology of the universe

Taking into account the expansion of the universe and its topology

- since decoupling $(t = t_{dec})$ all lengthscales (such as λ_1) have increased by factor $a = (1 + z_{dec}) \approx 1100$ due to the **cosmic expansion** since t_{dec}
- now: let's investigate whether the corresponding angle < is modified by the topology of the universe

BAO – determining the topology of the universe

The fundamental mode revisited: the absolute sound horizon scale is known

- the wavelength of the fundamental mode $\lambda_1 = 2 L$: \Rightarrow measure the **absolute scale** of the **sound horizon** $L \sim v_S \cdot t_{dec} = \frac{c}{\sqrt{3}} \cdot t_{dec}$
- we measure $L = \lambda_1 / 2$ via angular size (multipole ℓ_1) of the fundamental mode

BAO – determining the topology of the universe

Taking into account the expansion of the universe and its topology

- for a **flat universe** we expect the fundamental mode (**1**. *CMB* peak) to appear at **multipole** $\ell_1 \approx 200$

BAO – determining the baryon density Ω_B

BAO first peak height is sensitive to Ω_B

'baryon loading':

- ⇒ the height of the first acoustic peak is sensitive to the total # of baryons in the universe Ω_B
- more baryons Ω_B
 - \Rightarrow height of 1. acoustic peak increases

BAO – determining the baryon density Ω_B

BAO ('baryon loading') measures $\Omega_B \Leftrightarrow$ compare to **BBN*** light element yields

BAO – determining the baryon density Ω_{R}

(fixed)

potential

BAO: baryon loading & Ω_B

- **'baryon loading**': baryons (matter) & radiation are 'in phase' – from rarefaction to compression (first peak)
- thus: each 2^{nd} peak (*odd* numbers): ⇒ matter & photons are 'in phase'

photons

baryons

BAO – determining the dark matter density Ω_{DM}

BAO: clear *CMB* evidence for $\Omega_{DM} \neq 0$

- matter density Ω_M with two contributions: dominant Dark Matter Ω_{DM} & baryons Ω_{B}
- increasing Ω_M : \Rightarrow scale of ΔT fluctuations will decrease, need to consider both even & odd peaks

100

80

60

40

matter

density Ω_M

BAO – determining the dark matter density Ω_{DM}

- **BAO:** a clear *CMB* evidence for $\Omega_{DM} \neq 0$
- as $\Omega_{DM} \gg \Omega_B$: this allows us to draw direct conclusions for Dark Matter density
- best indicator for Ω_{DM}:
 relative heights & positions of
 2. and 3. acoustic peaks
 - **modern analysis technique**: perform a **global fit** to the entire spectrum of all multipole orders!

ESA's Planck mission 2009 – 13

CMB measurements at the highest resolution so far

- nominal resolutions of *Planck*:
 - $-\Delta T/T \sim 2 \cdot 10^{-6}, \ \Delta \theta = 4' \dots 33'$
 - frequency range: 30 ... 857 GHz
- May 14, 2009: start with Ariane 5
- Aug 08, 2009 : begin of data taking
- Jan 16, 2012: *LHe* reservoir empty (5 *full sky surveys*)
- Mar 21, 2013: publication of first results
- Oct 23, 2013 : Planck deactivated
- Aug 10, 2021: final 2018 results V4 published*

focal plane

Planck – instrumentation of the focal plane

LFI – *L*ow *F*requency *I*nstrument

HFI – *H*igh *F*requency *I*nstrument

- secondary mirrors onto the 'focal plane' with two instruments* *LFI* and *HFI*
- LFI & HFI are cooled via LHe reservoir

Planck – HFI: a 'spider-web' bolometer

microwaves are absorbed by a super-conducting bolometer ('spider-web')

- **absorption** of microwaves: **tiny increase** of bolometer temperature *T*, which then is read—out by a **thermistor**

Comparing *COBE* ... *WMAP* ... *Planck*

Planck – cosmological parameters

- \Rightarrow CBM data are described within the Λ CDM concordance model
- ⇒ cosmological parameters based on CMB are derived from 2018 Planck data
- Planck data are fitted together with other data sets (galaxy surveys,...)

parameter	best fit value	
age of universe to	$(13.80 \pm 0.04) \cdot 10^9 yr$	dark Bernard T. T. Jones
Hubble constant* H ₀	$(67.8 \pm 0.9) \ km \ s^{-1} \ Mpc^{-1}$	26.8%
Baryon fraction $\Omega_B h^2$	$0.02226 \ \pm 0.000230$	Ω _b 4.9%
Dark Matter fraction $\Omega_{DM} h^2$	$0.1186\ \pm 0.0020$	dark energy 68.3%
Dark Energy Ω_{Λ}	0.685 ± 0.017	
time of decoupling trec	$(377730 \pm 3200) yr$	
red-shift of decoupling zrec	1090.9 \pm 0.7	

40

*see Hubble tension, lect. #2

CMB parameter-fitting can be challenging

- Model fits to CMB & other data: ⇒ sets of degenerate parameters
- example: **degeneracy** of the three key cosmological parameters $\Omega_{\Lambda} \ \Omega_{M} \ \& \ H_{0}$
- degeneracy of parameters:

different combinations of parameters yield **identical fits to data**

⇒ needs to be broken by additional information (orthogonal data sets,...)

Cosmological parameters: degeneracy broken

■ Model fits to *CMB* & other data: ⇒ sets of degenerated parameters

Anomalies in the CMB: WMAP 'Cold Spot'

- A large cold region revealed by WMAP: is it a cosmic 'super-void'?
- *WMAP* data have yielded a surprise: a 5° large cold *CMB* region, where $\Delta T \sim -70 \,\mu K$ (below *CMB* – average)
- also seen in VLA* data & others

*Very Large Array (radio dishes)

Anomalies in the CMB: WMAP 'Cold Spot'

Does the CMB indicate a super-void ?

- *WMAP* data have yielded a surprise: a 5° large cold *CMB* region, where $\Delta T \sim -70 \ \mu K$ (below *CMB* – average)
- also seen in *Planck* data
- probability in case of Gaussian fluctuations p = 1.85 %

Anomalies in the CMB: WMAP 'Cold Spot'

Does the *CMB* indicate a super-void with d = 300 Mpc at z = 1?

- this super-void, if it is really existing, would be much, much larger $(V \approx 30 \dots 100)$ than all other, average-sized voids

(highly speculative)
 interpretation of data:
 we are witnessing
 the ongoing collision
 with another universe
 ´next door´

Why is there so little power in the two lowest-order multipoles?

Why is there so little power in the two lowest-order multipoles?

Answer 1: it could point to the universe being a *Poincaré* manifold

Answer 2: it could point to the universe being a *torus* (not all dimensions a_i(t) did increase equally)

Anomalies in the CMB: circles in the sky?

Answer 3: universe with non-trivial topology: pairs of matching circles?

- simulated *Planck* map with a [2, 2, 2] toroidal symmetry

- none found so far ...

The 'axis of evil': pure coincidence or systematic effect in the analysis?

The universe lines up along the 'axis of evil'. Coincidence?

From the rotation of galaxies to cosmic expansion everything points in one direction. If only we knew why

SPACE 26 October 2016

By Stuart Clark

ESO/B. Tafreshi (twanightorg) COSMOLOGISTS called it the axis of evil. Spotted in 2005 in the cosmic microwave background, the allpervading afterglow of the big bang, the axis was a peculiar alignment of features where we would have

Anomalies in the CMB

Cosmic variance & the element of coincidence* in large data sets

Found: Hawking's initials written into the universe

SPACE 7 February 2010

By Richard Fisher and Rachel Courtland

Stephen Hawkings leaves his mark (Image: NASA/WMAP Science Team)

Is Stephen Hawking a galactic graffiti artist? Hidden away in the cosmic microwave background, the afterglow of the big bang, the initials "SH" are clear to view (see picture, right). We took a closer look and spotted

Riding early waves: interesting (new) books

CMB is fairly popular: many books on the market

Riding early waves: two Post-docs at MPA

Do NOT copy: surfing on acoustic (sound) waves in the Early Universe ...

