

Introduction to Cosmology

Winter term 23/24 Lecture 12

Jan. 23, 2024

www.kit.edu

Recap of Lecture 11

CMB: secondary anisotropies & search for circular polarization of CMB

- *ISW* effect: *I*ntegrated *S*achs–*W*olfe effect as further, independent evidence for the existence of dark energy / cosmological constant with $\Lambda \neq 0$

 \Rightarrow correlation analysis for superclusters & voids: $\Delta T \approx \pm (5 \dots 10) \mu K$

- SZ (Sunyaev–Zeldovich) effect:

spectral distortion due to inverse Compton effect in galaxy clusters due to keV – scale electrons, it requires to cut out clusters from CMB – analyses

- **inflationary theory**: rapid expansion of space-time can (in principle) be detected via gravitational waves (*GW*)
- search for curl-like polarisation patterns in CMB (but: beware of dust!)

4.2 **BAO – Baryon Acoustic Oscillations**

Formation in the early universe and relevance today at $t = t_0$

 $Gyr = 10^9 yr$

BAO – today's signature via correlation analysis

We can hunt for BAOs by looking for 'circles in the sky' (galaxy correlation)

imprint & characteristic
 signature of BAOs in an
 expanding universe:
 ⇒ density contrast of baryons
 on a specific length scale λ

detection of BAO via statistic correlations within the distribution of galaxies*

BAO – today's signature via correlation analysis

Karlsruhe Institute of Technology

- Large-scale galaxy surveys have identified the signature of BAOs
- physics of the early universe (t < 378.000 yr) in the primordial plasma with fundamental wave (rarefaction \rightarrow overdensity) revealed by galaxies: bump due to BAO at $d \approx 150 Mpc$ 0.040.040.040.04

4.3 Large–Scale galaxy surveys

The power spectrum of matter as revealed by deep galaxy surveys

- we now investigate the origin & evolution of *Large Scale Structures (LSS)* in the universe...

... *what* is the **origin/seed** of todays' structures?

... *when* did todays' large structures **develop**?

... *how* can we **measure** todays' large-scale structures?

Combining data from the CMB with LSS

We have two observational pillars to anchor our theoretical models

- **combination** is of major importance

CMB (WMAP, Planck)

galaxy surveys (2*dFGRS*, *SDSS*, ...)

Galaxy surveys: fundamentals & example

2dF – survey as an important (early) example of todays' galaxy surveys

2 degree Field survey (2dF) area: 1500 square-degrees objects: up to 19.5^{mag} field-of-view: 2°

focal plane

- measurement of redshift of lines via 392 optical fibers
- light analysed in spectrograph with $\lambda/\Delta\lambda > 1000$
- optical fiber is automatically positioned at the position of the galaxy to be investigated

Galaxy surveys: the next big step – SDSS

20 years to generate a complete galaxy redshift survey of the northern sky

- observations & data taking since 2000
- July 2020: most detailed 3 D map of the the universe is released

 photometry:
 5 colour bands with 30 CCDs

 354/476/628/769/925 nm

spectroscopy: 640 optical fibers ($\emptyset = 3^{\circ}$) for the selected galaxies)

*Sloan Digital Sky Survey

Galaxy surveys: the next big step – SDSS

20 years to generate a complete galaxy redshift survey of the northern sky

- observations & data taking since 2000
- July 2020: most detailed 3 D map of the the universe is released
- photometry: 5 colour bands with 30 *CCDs* 354/476/628/769/925 *nm*

spectroscopy: 640 optical fibers ($\emptyset = 3^{\circ}$) for the selected galaxies)

The density contrast $\delta(\vec{r}, t)$ of matter: how did it evolve over the Hubble time?

The density contrast $\delta(\vec{r}, t)$ of matter: a key parameter in structure formation

- RECAP: we (usually) consider co-moving coordinates

$$\delta(\vec{r},t) = \frac{\rho(\vec{r},t) - \overline{\rho}}{\overline{\rho}}$$

local density $\rho(\vec{r}, t)$ average density $\overline{\rho}$

The density contrast $\delta(\vec{r}, t)$ of matter: a key parameter in structure formation

- What values of density contrast $\delta(\vec{r}, t)$ are measured in todays' universe?
- **smaller sizes**: very **large** values of density contrast (⇒ non–linear evolution)

object	$oldsymbol{\delta}(ec{r},t)$	dimension λ	mass $[M_{\odot}]$
globular clusters	10 ¹¹	10 – 100 <i>pc</i>	10⁵ 10⁶
open star cluster	10 ⁹	2 - 20 pc	$10^2 \dots 10^3$
galaxy	10 ⁶	30 kpc	10¹¹
galaxy cluster	10 ³	1 — 10 <i>Мрс</i>	10 ¹³
super-clusters	2 3	30 – 100 <i>Mpc</i>	10¹⁷
voids	0.20.3	< 100 <i>Mpc</i>	

- What values of density contrast are measured in todays universe?
- smaller sizes: very large values of density contrast (⇒ non–linear evolution)
 globular cluster spiral galaxy super–cluster

Visualizing the evolution of the density contrast δ over the Hubble time

• Visualizing the evolution of the density contrast δ over the Hubble time

- weak gravitational fields: Newtonian gravitation \Rightarrow apply perturbation theory
- increase of local inhomogenity in comparison to cosmic mean value $\overline{\rho}$

under-density (
$$\delta \rho < 0$$
):fasterregions expandregions expand(relative to $\overline{\rho}$)over-density ($\delta \rho > 0$):slower

Visualizing the evolution of the density contrast $\delta(\vec{r}, t)$ over the Hubble time

- weak gravitational fields: Newtonian gravitation \Rightarrow perturbation theory
- density contrast $\delta(\vec{r}, t)$ increases linearly with cosmic scale factor a(t)
- as soon as the density contrast reaches $\delta > 1$ the further evolution is non– linear \Rightarrow highly overdense regions (globular clusters) cannot be included in models

4.4 Evolution of large-scale structures

Impact of different DM models on the long-term evolution of structures

HDM =
Hot Dark Matter

WDM = Warm Dark Matter

CDM = *C*old *D*ark *M*atter

21 Jan 23, 2024 G. Drexlin – Cosmo #12

Cosmo #12 *Current KATRIN limit

Exp.

Structure formation: top-down vs. bottom-up

lime

Hot Dark Matter (HDM)

relativistic particles: freestreaming over Hubble time

- key example: light
 (sub -)eV scale neutrinos
- decoupling of $\nu's$: temperature $T_{dec} \sim 1 MeV$ mass: 0.8 eV - scale* or below
 - \Rightarrow Lorentz–factor $\gamma > 10^9$
 - $\Rightarrow free-streaming on typical \\ length-scale \lambda_{fs} \sim 1 \ Gpc$

Exp. Teilchenphysik - ETP

Structure formation: top-down vs. bottom-up

Cold Dark Matter (CDM)

non-relativistic particles: limited free-streaming range

- key example: heavy
 GeV ... TeV scale neutralinos
- decoupling of χ^0 : temperature $T_{dec} \sim 50 TeV$ mass: ~ TeV - scale or above
 - \Rightarrow Lorentz-factor $\gamma \sim 0.05$

 $\Rightarrow \text{free-streaming on typical} \\ \text{length-scale } \lambda_{fs} \sim pc$

top-down vs. bottom-up

universe with HDM/CDM

 $T_{dec} \sim 1 \text{ MeV } t_{dec} \sim 1 \text{ s}$ $m(\nu) < 0.8 \text{ eV } \gamma > 10^9$

 $T_{dec} \sim 50 \ TeV \ t_{dec} \sim 10^{-9} \ s$ $m(\chi^0) > 1 \ TeV \ \gamma \sim 0.05$

wash-out of small structures

HDM:

23 Jan 23, 2024 G. Drexlin – Cosmo #12 **WIMP: Weakly Interacting Massive Particle**

top-down vs. bottom-up

WIMPs (non-relativistic)

Different pathways to forming structures & different impact of wash-out

neutrinos (relativistic)

Structure formation: **bottom-up** scenario

A universe dominated by Cold Dark Matter

- structures with $10^5 \dots 10^6 M_{\odot}$ as basic building blocks \rightarrow proto-galaxies
- further evolution: many proto-galaxies are merging to large (spiral) galaxies
- final steps in evolution:
 galaxies merge to clusters
 which then are beginning to
 ´virialise´

Structure formation: **bottom**-up scenario

Elementary building blocks undergo many merger processes to galaxies

Structure formation: formation of filaments

The growth of galaxies via mergers: infall of matter from nearby filaments

How do galaxy clusters form and evolve?

Galaxy clusters: the largest gravitationally bound structures in the universe

Abell 2744 – Pandora' s cluster

Galaxy clusters: the process of 'virialisation'

- Decoupling from Hubble expansion: cluster with maximum amount of Upot
 - participation in Hubble expansion
 cluster reaches its maximum size

Galaxy clusters: the process of 'virialisation'

- Decoupling from Hubble expansion: cluster with maximum amount of Upot
 - Shrinking of cluster size
 Is virialised

Galaxy clusters: the process of 'virialisation'

- Characteristics of a fully virialised N body system
 - Virial theorem for gravitationally bound systems:

virial
$$V = \sum_{i=1}^{N} \frac{\mathbf{\dot{p}}_{i}}{|\mathbf{\dot{r}}_{i}|} \cdot \vec{r}_{i}$$

force position $i = 1 \dots N$ galaxies in cluster

$$\langle E_{kin} \rangle = -\frac{1}{2} \cdot \left\langle U_{pot} \right\rangle$$

relation between (average) kinetic energy & (average) gravitational potential

- allows to estimate* the **total mass** M of a cluster via galaxy velocities v_i

*s. Chap. 5.1, Fritz Zwicky

Superclusters of galaxies: the largest structures

Perseus

- Structures that are no longer bound: example Laniakea, our local one
 - as superclusters are gravitationally unbound: they do NOT follow the virial theorem, they are NOT 'virialised'
 Pisces-

Laniakea

- example: local supercluster Laniakea

 $N \approx 10^5$ galaxies in 500 galaxy clusters

d = 160 Mpc $M = 10^{17} M_{\odot}$

Superclusters of galaxies: the largest structures

- Your 'postal address': Laniakea, our local supercluster
 - as superclusters are gravitationally unbound: they do NOT follow the virial theorem, they are NOT 'virialised'

N – body simulations to study evolution of LSS

We now make use of large computing power to model N – body interactions

- basis: Cold Dark Matter mass 'units' of $M \sim 10^9 M_{\odot}$ which interact purely via gravitation (no other interactions are being turned on)
- second step: baryons fall into potential wells of *CDM*1. linear increase of the density contrast δ
 2. once we reach a density contrast δ ~ 1 the non–linear regime is reached (*i.e.* baryons start to form interstellar gas clouds, stars,...)
- we can thus retrace the evolution of Large Scale Structures (LSS) via numerically very challenging N body simulations:
 <u>Millennium</u>, <u>Millennium XXL</u>, <u>DEUS</u>, <u>Illustris</u>, ...

N – body simulations to study evolution of *LSS*

- Basic principles of modern large-scale N body simulations
 - basis: **\Lambda CDM concordance model** with 'standard' parameters
 - purely **gravitational interaction** of the dominant *CDM* fraction
 - 'observed' volume: several Gpc
 - typical 'particle' mass: $M < 10^{10} M_{\odot}$
 - $N = (10 \dots 550) \times 10^9$ particles ($\equiv DM$ clumps)
 - cosmological time scales: $z = 20 \dots 0$ (today)

Exp. Teilchenphysik - ETP

N – body simulations to study evolution of *LSS*

- Millennium: the first large-scale realistic N – body simulation for LSS
 - performed by the VIRGO consortium
 - size: 10^{10} 'particles' each with $10^9 M_{\odot}$
 - volume: cube with edge length a = 700 Mpc
 - only gravitational interaction of dark matter
 - then modelling of baryons starts: \rightarrow baryonic matter falls into DM gravitational wells

N – body simulations: results of *Millennium* run

Exp. Teilchenphysik - ETP

- volume: cube with edge length $a = 4.3 \ Gpc$

- size: $3 \cdot 10^{10}$ (particles) each with $5 \cdot 10^9 M_{\odot}$

- only gravitational interaction of dark matter
- 300 CPU years: 10 days with 12228 cores \Rightarrow confirmation of earlier simulation runs)

N – body simulations: Millennium XXL

N – body simulations: *Millennium XXL* results Karlsruhe Institute of Technology cluster signal SZ effect optical X -rays lensing*

*gravitational lensing

Exp. Teilchenphysik - ETP

- performed by the **TNG*** consortium

2018: further improvements with the aim to

- extensive modelling of all relevant physics processes: gravitational interaction, cosmological expansion using *H*(*t*), gas hydrodynamics, star formation & formation of black holes
- interaction of *DM*, gas & stars:

study the formation of galaxies

important for precise investigations of underlying cosmological parameters

The Illustris Simulation

N – body simulations: next step Illustris – TNG