

Introduction to Cosmology

Winter term 23/24 Lecture 14

Feb. 6, 2024

www.kit.edu

Recap of Lecture 13

The observed 'clumpiness' of the universe: matter power spectrum P(k)

- analysis of **density contrast** as function of **distance** r: **galaxy correlation function** $\xi(r) \Leftrightarrow$ as function of **wave number** k: matter power spectrum P(k)
- *DM* modes of specific wave number *k* evolve independently: important
 is time of first causal contact (in the radiation / matter dominated universe)
- small DM mode (large k): growth is delayed in radiation era $P(k) \sim k^{-3}$
- large DM mode (small k): growth is not delayed in matter era $P(k) \sim k$
- matter power spectrum P(k): allows to discriminate pure HDM vs. pure CDM

CDM: WIMPs as generic thermal relics

Thermal production of CDM: WIMPs*

- WIMPs: massive, non-baryonic thermal relics left over from the Big Bang, which interact via weak interaction only (+ gravity)
- only pair production / pair annihilation of WIMPs (\equiv *Majorana* particles with conserved *SUSY* quantum number R_P)
- very large mass (*TeV* − scale):
 ⇒ huge phase space in case of decay

CDM: WIMPs as generic thermal relics

Annihilation rate of WIMPs

- WIMPs: annihilation rate given by typical weak interaction strength

 $\sigma_{ann} = \sigma_{weak}$

- decoupling time t_{dec} from radiation bath is $t_{dec} \approx 10 ns$

 $\sigma_{ann}(t_{dec}) = H(t_{dec})$

this will result in the so-called *WIMP* miracle (to be discussed later)

Feb 6, 2024 G. Drexlin – Cosmo #14

5

CDM: **WIMPs** as generic thermal relics

Long-term ´slow´ propagation of WIMPs

 WIMPs: non-relativistic propagation with very limited free-streaming range due to kinematic relation:

 $E_{kin}(WIMP) \approx 0.05 \cdot m(WIMP)$

- after decoupling & during propagation: χ^0 from *SUSY* are stable over long, cosmological time scales due to intrinsic symmetry: *R* – parity *R*_P

HDM: v's as generic light thermal relics

Hot dark matter: relativistic free—streaming

v´s: ultra-relativistic propagation over an exceedingly large free-streaming range of > Gpc due to kinematic relation

 $E_{kin}(\nu) > 10^6 \cdot m(\nu)$

 after decoupling: stable over long, cosmological time scales due to conserved lepton number L

HDM: v's as generic light thermal relics

Hot dark matter: relativistic free—streaming

v´s: ultra-relativistic propagation is strongly suppressing annihilation in the early universe (also: there exist no lighter particles carrying lepton numbers in the SM)

⇒ weak interaction only (with baryonic matter)

- decoupling at $t \cong 1 \ s$ and $T \cong 1 \ MeV$ (see also: *chap*. 3.1 on Big Bang Nucleosynthesis, lecture #5)

Dark Matter: hot, warm or cold (HDM/WDM/CDM)

Generic particle models for cosmological DM – density $\rho_{DM} \cong 1 \, GeV/m^3$

Hot Dark Matter

particle candiate: active neutrinos $v_{e,\mu,\tau}$ $m \sim 0.05 \dots 0.8 eV$ number density: *N*(active): 339/*cm*³ decoupling: $T_{fr} = 2 - 3 MeV$ $T_{fr}/m \sim 10^6 \dots 10^7$ impact on LSS: wash-out of structure on scales $\lambda \leq 1 \, Gpc$

Warm Dark Matter particle candiate: *sterile* neutrinos v_s $m \sim 1 \dots 20 \ keV$ number density: $N(\text{sterile}): < 1/cm^3$ decoupling: no thermal process, but via ν –oscillations impact on *LSS*: wash-out of structure on scale $\lambda < 0.1 Mpc$

Cold Dark Matter

particle candiate: SUSY neutralinos χ^0 $m \sim 0.1 \dots 10 TeV$ number density: $N(\chi^0)$: < 10⁻⁹/cm³ decoupling: $T_{fr} = GeV \dots TeV$ $T_{fr}/m \sim 1/20$ impact on LSS: wash-out of structure on scales $\lambda < 0.1 pc$

Dark Matter: hot, warm or cold (HDM/WDM/CDM)

Generic particle models for cosmological DM – density $\rho_{DM} \cong 1 \, GeV/m^3$

Warm Dark Matter

particle candiate: *sterile* neutrinos v_s $m \sim 1 \dots 20 \ keV$

impact on LSS: wash-out of structure on scale $\lambda < 0.1 Mpc$

Cold Dark Matter

particle candiate: SUSY neutralinos χ^0 $m \sim 0.1 \dots 10 TeV$

impact on LSS: wash-out of structure on scales $\lambda < 0.1 pc$

Dark Matter: hot, warm or cold (HDM/WDM/CDM)

Generic particle models: the important Lee–Weinberg curve

Hot Dark Matter

particle candiate: *active* neutrinos $v_{e,\mu,\tau}$ $m \sim 0.05 \dots 0.8 eV$

Lee-Weinberg curve

이휘소

Weinberg

for thermal production & subsequent reduction due to annihilation processes: only **two narrow mass regions** to explain $\Omega_{DM} \sim 0.25$

Cold Dark Matter

Carlsruhe Institute of Technology

particle candiate: SUSY neutralinos χ^0 $m \sim 0.1 \dots 10 TeV$

impact on *LSS*: wash-out of structure on scales $\lambda < 0.1 pc$

impact on *LSS*:

wash-out of structure

on scales $\lambda \leq 1 \, Gpc$

 $v_{e,\mu, au}$

Thermal production of DM: what particle masses can be produced?

Thermal production of DM: relativistic case of neutrinos – no annihilation

Thermal production of DM: non-relativistic case of neutralinos – annihilation

Thermal production of DM: only two rather narrow mass ranges – eV or TeV

Lee–Weinberg curve: freeze–out at $T \sim 1 MeV$

Thermal production of MeV – scale particles is maximum as $t_{fr} = 1 s$

Thermal production of DM: only two rather narrow mass ranges – eV or TeV

- in order to avoid overclosure of the universe due to thermally produced
 DM (Ω_{DM} ≫ 1) particles in mass scale keV ... MeV or ≪ eV are excluded
 ⇒ assumption: weak interaction processes & subsequent freeze—out

Non-thermal production of *DM* for mass ranges: $m \sim keV \dots MeV$

we need to to avoid overclosure of the universe in case of thermal production:
 DM (Ω_{DM} >> 1) particles in mass scale keV ... MeV (or neV ... µeV*) are excluded!
 ⇒ only non-thermal processes: v – oscillations, or symmetry breaking

*region not shown in slides 14, 15

Thermal relics: production & annihilation

The WIMP miracle of DM: phase 1 – thermodynamical equilibrium

- at $T \gg TeV$: due to their weak interaction, WIMPs are in thermodynamical equilibrium

we consider co-moving number densities $n_{\chi}(t)$ where an increase of the scale factor a(t) does not need to be accounted for

Thermal relics: production & annihilation

- The WIMP miracle of DM: phase 1 thermodynamical equilibrium
 - at T >> TeV: due to their weak interaction, WIMPs are in thermodynamical equilibrium

rate (*WIMP* – pair production) \equiv rate (*WIMP* – pair annihilation)

Thermal relics: production & annihilation

The WIMP miracle of DM: phase 2 – annihilations reduce number density

v: WIMP velocity at decoupling

Thermal relics: freeze-out as CDM The WIMP miracle of DM: we 'automatically' obtain Cold Dark Matter **10⁰ 10¹ 10² 10³** time *t*(*ns*) - WIMP – velocity typical weak cross section WIMP miracle $x_{fr} = \frac{T_{fr}}{M_{WIMP}} = \frac{1}{20}$ $\Gamma_2(t_2)$ Next Exit 🗡 is non-relativistic 2 due to relation: $\Omega_{DM} = 0.27$ $T_{fr} \ll M_{WIMP}$ $T_{fr} \cong$ 5 GeV $m_{WIMP} =$ 10 **CDM 100** *GeV* temperature T(GeV)

Thermal Relicts: relativistic neutrinos

RECAP: neutrinos remain in thermal equilibrium until t = 1 s

- **semi-leptonic** reactions with protons, neutrons via *CC* (*C*harged *C*urrent) and *NC* (*N*eutral *C*urrent) processes: important to fix n/p - ratio for *BBN*

$$p + \overline{\nu}_e \leftrightarrow n + e^+$$

 $p + e^- \leftrightarrow n + \nu_e$

*see Chap. 3.1

Thermal Relicts: relativistic neutrinos as HDM

a neutrinos free—stream in an evolving universe over distances $d \sim Gpc$

- neutrinos decouple after t = 1 s at freeze—out temparture $T_{fr} \sim MeV$

sub - eV mass (KATRIN 2022; m(v) < 0.8 eV (90% CL))

 \Rightarrow resulting Lorentz- $\gamma = 10^6 \dots 10^7$

⇒ free–streaming distance *d* ~ *Gpc*

Thermal Relicts: relativistic neutrinos as HDM

neutrinos free-stream in an evolving universe over distances $d \sim Gpc$

Thermal Relicts: relativistic neutrinos as HDM

neutrinos free-stream: wash-out of small-scale structures in the universe

Massive ν 's (HDM) & matter power spectrum P(k)Imprint of massive neutrinos on large wave numbers k of spectrum P(k)-CMB + LSSminimum value: **10**⁴ $\Sigma m_i(\nu)$ $\begin{pmatrix} \mathbf{x} \\ \mathbf{d} \end{pmatrix}$ 10³ $= 0.06 \, eV$ $\Sigma m_i(v)$ 10^{2} $= 1.8 \, eV$ (plus variation of other **10**¹ parameters: *h*, ...) **10⁰** 10^{-3} 10^{-2} 10^{-1} 1 wave number k ($h Mpc^{-1}$)

Massive ν 's (HDM) & matter power spectrum P(k) with the function of the f

Imprint of massive neutrinos on large wave numbers k of spectrum P(k)

- adding small amounts of HDM 1.4 to evolution of *LSS* reduces P(k)relative power Р*срм+нрм/Рсрм* 1.2 large factor $\Sigma m(\nu) = 0 eV$ 1.0 $P(k) \sim P_{CDM}(k) \cdot \left(1 - \frac{8 \cdot \Omega_{\nu}}{\Omega_{M}}\right)$ 0.8 $\Sigma m(\nu) = 0.3 eV$ 0.6 - example: $\Sigma m(\nu) = 0.3 eV$ $\Sigma m(v) = 1 eV$ 0.4 $\sim 15 \%$ reduction of power for 'small' structures at 10^{-3} 10^{-2} 10^{-1} $k = 1 h M p c^{-1}$ wave number $k (h M p c^{-1})$

Massive $\nu's$ (*HDM*): mass eigenstates $m_{1,2,3}$

primordial v's have cooled down to T = 1.9 K in today's universe

- neutrinos from *Big Bang* with masses $m \approx 50 \text{ meV}$ today are **bound** gravitationally in galaxy clusters (i.e. on scales $d \approx 50 \text{ Mpc}$)
- flavour states $v_{e,\mu,\tau}$ produced up to t = 1 s: today they have fully 'decoupled' to mass eigenstates $v_{1,2,3}$ (very long *de Broglie* wavelengths)

incoherentmass eigenstates of a former v_e

CHAPTER 5 – DARK UNIVERSE

5.1 Evidences for Dark Matter

Dark Matter & galaxy clusters

Fritz Zwicky proposes the existence of Dark Matter (from the Coma cluster)

- **observation**: (too) **high peculiar velocities** of single galaxies in the very large **Coma cluster of galaxies** !

Dark Matter & galaxy clusters

Fritz Zwicky proposes the existence of Dark Matter (from the Coma cluster)

 - explanation: non-luminous form of matter ('Dark Matter') which interacts only via its dominant gravitational potentials!

Dark Matter & rotational curves of galaxies

- Vera Rubin observes flat rotational profiles of galaxies
 - observation: (too) high velocities of single stars & gas clouds in the very large Andromeda spiral galaxy!

Dark Matter & rotational curves of galaxies

Vera Rubin observes flat rotational profiles of galaxies

V. Rubin et al., *ApJ* **159 379** (**1970**) ´Rotation of the Andromeda Nebula´

Dark Matter – future surveys

- Vera Rubin observatory: Legacy Survey of Space and Time
- 8.4 m mirror telescope with 3.2 giga pix CCD (2025 ff)

Dark Matter – future surveys

- Vera Rubin observatory: Legacy Survey of Space and Time
- 8.4 m mirror telescope with 3.2 giga pix CCD (2025 ff)

A day in the life of a mountaintop telescope builder

01/18/24 | By Joe Howlett

Margaux Lopez is one of a team of engineers preparing the Vera Rubin Observatory in Chile for the arrival of the largest digital camera ever built for astrophysics and cosmology.

VERA C. RUBIN OBSERVATORY

symmetry

Dark Matter & flat rotational curves of galaxies

- Sir Isaac: rotational velocity profile of a galaxy should fall off
 - explanation: non-luminous form of matter ('Dark Matter') which interacts only via gravitational potential!

Dark Matter & flat rotational curves of galaxies

Sir Isaac: rotational velocity profile of a galaxy should fall off as $v_{rot} \sim 1/\sqrt{r}$

 - explanation: non-luminous form of matter ('Dark Matter') which interacts only via gravitational potential!

- expected rotation curve for stars

$$a = G \cdot \frac{M_r}{r^2} = \frac{v_{rot}^2}{r}$$
$$\Rightarrow v_{rot}(r) = \sqrt{\frac{G \cdot M_r}{r}}$$

- falling curve expected (if there is **no DM**)

Flat rotational curves reveal a Dark Matter halo

DM halo: characteristic $1/r^2$ density profile

Today's observations: linear increase of enclosed mass M_r up to $r = 50 \ kpc$

 $v_{rot}(r) = const.$

$$\Rightarrow M_r \sim r$$

$$\Rightarrow \rho(r) \sim \frac{1}{r^2}$$

linear increase of enclosed mass M_r

halo profile

- DM – halo with (80 ... 90)% of entire mass

based on validity of **Newtonian Gravity**

Exp. Teilchenphysik - ETP

DM 'alternative': the 'ad hoc' MOND theory

MOND: MOdified Newton Dynamics - a rather unlikely DM 'competitor'

- galactic rotation profiles can be 'reproduced' by modifying Newtonian gravity

$$F = m \cdot \mu(\frac{a}{a_0}) \cdot a$$

- case #1:
$$a/a_0 \ll 1$$
: $\mu = \frac{a}{a_0}$

- case #2: elsewhere:
$$\mu = 1$$

- introduction of 'fundamental acceleration'

$$a_0 \approx 1.2 \cdot 10^{-10} \ m \ s^{-2}$$

MOND theory: a one-trick pony ?

MOND: Modified Newton Dynamics as an 'alternative' to Dark Matter

- galactic rotation profiles can be 'reproduced' by modifying Newtonian gravity

Rotational Curves & BAO: irrefutable proof of DM

MOND theory: you may fit rotation curves but fail to describe BAO, clusters,...

MOND theory not compatible with

a) **Baryon Acoustic Oscillations** via gravitational potential by **Dark Matter**

 b) Bullet cluster
 collision of two galaxy clusters:
 separation of baryons (hot cluster gas)
 from Dark Matter (made visible by gravitational lensing)

5.2 Gravitational Lenses

Revealing the presence of DM via the process of gravitational lensing

- A. Einstein: light is propagating along geodesic lines
- gravitational lenses:

distortion of the optical imaging due to gravitational potentials can be used to dervie **mass distribution of large objects** (galaxy clusters,...)

- **strong lensing**: arcs, rings, multiple images of far-off galaxies/quasars
- weak lensing: statistical distortion of images of single galaxies

Strong and weak gravitational lensing

- Important techniques to map out regions of Dark Matter: strong & weak
- we can 'see' where Dark Matter is

Strong gravitational lensing

An ideal method to map the spatial distribution of DM on galactic scales

thin lens formula

g : distance of source

f : focal length

b : distance of observer

 perfect alignment of source, lens & observer: we see an Einstein ring with an opening angle θ_E

Strong gravitational lensing

An ideal method to map the spatial distribution of DM on galactic scales

M : **Mass** of the lens (shows presence of *DM*) $D_S = D_{LS} + D_L$ (source – observer)

always considerable amount of DM