

Introduction to Cosmology

Winter term 23/24 Lecture 4 Nov. 14, 2023

www.kit.edu

Recap of Lecture 3

Friedmann (–Lemaître) equation: braking vs. acceleration

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3} \cdot \pi \cdot G \cdot \left(\frac{\rho(t)}{c^2} + \frac{3 \cdot P}{c^2} \right)$$

3 cosmological epochs:

$$\boldsymbol{\rho}(\boldsymbol{t}) = \boldsymbol{\rho}_r(\boldsymbol{t}) + \boldsymbol{\rho}_m(\boldsymbol{t}) + \boldsymbol{\rho}_V(\boldsymbol{t})$$

pressure **P**: important for a(t), $\dot{a}(t)$, $\ddot{a}(t)$, $\ddot{a}(t)$

- equation—of—state of vacuum:
$$P_V(t_0) = -1 \cdot \rho_V(t_0) \cdot c^2$$
 (anti–gravity)

Topology & geometry of the universe

- curvature parameter k = -1, 0, +1 (hyperbolic, flat, spherical)
- open questions: isotropy, limited/unlimited size, complex topologies,...

Friedmann eq. with cosmological constant Λ

Properties ρ_V and P_V of the vacuum 'merged' into one parameter: Λ

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3} \cdot \pi \cdot G \cdot \left(\rho_{r,m,V}(t) + \frac{3 \cdot P_{r,m,V}(t)}{c^2}\right)$$

matter, radiation & vacuum
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3} \cdot \pi \cdot G \cdot \left(\rho_{r,m}(t) + \frac{3 \cdot P_{r,m}(t)}{c^2}\right) + \left(\frac{\Lambda \cdot c^2}{3}\right)$$

matter & radiation vacuum

vacuum: a very important, key player in cosmology

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3} \cdot \pi \cdot G \cdot \left(\rho_V(t) + \frac{3 \cdot P_V(t)}{c^2}\right)$$
$$\frac{\Lambda \cdot c^2}{3}$$

using vacuum equation—of—state:

 $\boldsymbol{\rho}_V(\boldsymbol{t}) = -\mathbf{1} \cdot \boldsymbol{P}_V(\boldsymbol{t})$

- time-independent, constant parameter

$$\Lambda = +\frac{8\pi\cdot G}{c^2}\cdot \rho_V$$

Recap: properties of the vacuum

we keep this relation **constant**, ⇒ **cosmological constant**

$$\rho_V(t) = -1 \cdot P_V(t)$$

A very important constant in cosmology

$$\Lambda = +\frac{8\pi \cdot G}{c^2} \cdot \rho_V$$

- positive sign, thus it causes an <u>accelerated</u> expansion of the universe
- best experimental value at present:

 $\Lambda = [(2.14 \pm 0.13) \times 10^{-3} eV]^4$ \$\approx 1.1 \cdot 10^{-52} m^2 \approx 10^{-29} g/cm^3\$

A very important constant in cosmology

$$\Lambda = +\frac{8\pi \cdot G}{c^2} \cdot \rho_V$$

- positive sign, thus it causes an <u>accelerated</u> expansion of the universe
- best experimental value at present:

 $\Lambda = [(2.14 \pm 0.13) \times 10^{-3} eV]^4$ \$\approx 1.1 \cdot 10^{-52} m^2 \approx 10^{-29} g/cm^3\$

By · Space.com Published November 24, 2010 3:25pm EST | Updated January 13, 2015 1:59pm EST

A young Albert Einstein lectures in Vienna in 1921. (Ferdinand Schmutzer)

Experimental value & theoretical estimate: a 'small' discrepancy...

 $ho_V = 3.6 \quad GeV/m^3$ $ho_V = 10^{121} \; GeV/m^3$ observed:

estimate:

zero-point-energy of a quantum field?

- biggest discrepancy in all of science!
- reduced to 'only' 60 orders of magnitude in extended models of particle physics*

*supersymmetry (SUSY)

Popular science: vacuum energy is in central focus of interest (many articles, books,...)

First pictures of the EUCLID mission: 1 week ago

■ Determining the properties of the dark universe by 3*D* − galaxy surveys

- history: $a(t), \dot{a}(t), \ddot{a}(t)$

10 Nov 14, 2023 G. Drexlin – Cosmo #4

Euclid telescope: First images revealed from 'dark Universe' mission

Euclid's first images: the dazzling edge of darkness

07/11/2023 803200 views 401 Likes

RELATED TOPIC: THE CASIMIR EFFECT

An experimental investigation into the strange properties of the vacuum

- vacuum is filled with virtual, short-lived particles (Heisenberg uncertainty relation)
- two parallel metal plates separated by few nm:
 boundary conditions at the plate surfaces

- ⇒ different **zero–point energy** inbetween
- \Rightarrow net force $F \sim 1/d^3$ (dominant at nm scale)
- \Rightarrow first experimental observation in 2001

Hendrik Casimir

vacuum fluctuations

plates

RELATED TOPIC: THE CASIMIR EFFECT

Successful experimental investigations

- vacuum is filled with virtual, short–lived particles (Heisenberg uncertainty relation)
- Casimir force can now be measured by integrated silicon chips (US–Chinese team)

at d = 11 nm $\Rightarrow P = 1 bar$

() AUGUST 4, 2020

Casimir force used to control and manipulate objects

by University of Western Australia

Credit: Jake Art

A collaboration between researchers from the University of Western Australia and the University of California Merced has provided a new way to measure tiny forces and use them to control objects.

*objects manufactured at μm – scale

SIDE-TOPIC: PRESSURE AND GRAVITY

The other end: extreme pressure inside a compact object (neutron star)

- neutron stars*: extremely compact objects
- radius $R \sim 10 \dots 20 \ km$, mass $M < 2 \dots 3 \ M_{\odot}$
- very high density $\rho \sim (6 \dots 8) \times 10^{17} kg/m^3$

J. Robert Oppenheimer

 'degeneracy' pressure of neutrons counteracts gravity, but it is itself acting as a source of the objects' super-strong gravitational field

⇒ limited masses of neutron stars

Friedmann–Lemaître Equations

- 2 fundamental equations to describe dynamics of cosmological expansion
 - expansion rates governed by: matter, radiation, vacuum
 - ⇒ total energy density & topology of the universe

Aleksandr Friedmann (1888 – 1925)

Georges Lemaître

(1894 - 1966)

Different cosmological epochs & a(t)

Radiation / matter / vacuum energy – dominated cosmological epochs

Friedmann–Equations for ΛCDM

Full picture of the evolution of a(t), $\dot{a}(t)$, $\ddot{a}(t)$ for all 3 cosmological epochs

- we will now* start to **integrate** our well-known **acceleration** equation to obtain a relation for the 'velocity' parameter $\dot{a}(t)$

Friedmann–Equations for *CDM*

picture of the evolution of a(t), $\dot{a}(t)$, $\ddot{a}(t)$ for epoch of matter dominance

- we now focus on the second epoch, where pressure–less matter is dominant at around $t \approx 10^4 \ yr$ after the Big Bang

Friedmann–Equations for *CDM*

Let's do some maths: integrate to obtain the second expansion equation

$$\ddot{a}(t) = -\frac{4}{3} \cdot \pi \cdot G \cdot \rho(t) \cdot a(t)$$

$$\downarrow$$

$$\dot{a}(t) = -\frac{4}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \frac{1}{a^2(t)} | \times 2 \cdot \dot{a}(t)$$

$$\dot{a}(t) \cdot 2 \cdot \dot{a}(t) = -\frac{2 \cdot 4}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \frac{\dot{a}(t)}{a^2(t)}$$

$$\downarrow$$

$$\dot{a}(t) \cdot 2 \cdot \dot{a}(t) = -\frac{2 \cdot 4}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \frac{\dot{a}(t)}{a^2(t)}$$

$$\downarrow$$

$$\dot{a}(t) \cdot 2 \cdot \dot{a}(t) = -\frac{2 \cdot 4}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \frac{\dot{a}(t)}{a^2(t)}$$

$$\downarrow$$

$$\dot{a}(t) \cdot 2 \cdot \dot{a}(t) = -\frac{8}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \left(\frac{-1}{a(t)}\right) - kc^2$$

 $\rho(t) = \rho_m(t)$

Karlsruhe Institute of Technolog

Friedmann–Equations: we're (almost) done...

Second Friedmann Expansion Equation

$$\dot{a}^{2}(t) = -\frac{8}{3} \cdot \pi \cdot G \cdot \rho_{0} \cdot \left(\frac{-1}{a(t)}\right) - kc^{2} \qquad \text{re-use: } \rho_{0} = \rho(t) \cdot a^{3}(t)$$
$$\dot{a}^{2}(t) = \frac{8}{3} \cdot \pi \cdot G \cdot \rho(t) \cdot a^{2}(t) - kc^{2} \qquad | : a^{2}(t)$$
$$\textbf{H}^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3} \cdot \pi \cdot G \cdot \rho(t) - \frac{kc^{2}}{a^{2}(t)} \qquad \text{of the universe}$$

- allows to calculate Hubble parameter $H^2(t)$ for CDM epoch

Topology and overall energy density

Curvature parameter k 'from integration': impact on scale parameter a(t)

Topology and overall energy density: some math

$$\left(\frac{\dot{a}(t)}{a(t)}\right)^2 - \frac{8}{3} \cdot \pi \cdot G \cdot \rho(t) \qquad = -\frac{kc^2}{a^2(t)} \qquad | \cdot \frac{a(t)^2}{2} \\ \frac{\dot{a}(t)^2}{2} - \frac{4}{3} \cdot \pi \cdot G \cdot \rho(t) \cdot a(t)^2 = -\frac{k \cdot c^2}{2} \qquad \qquad \rho(t) = \frac{\rho_0}{a^3(t)} = \rho_0 \cdot \frac{x^3}{r^3(t)} \\ \frac{\dot{r}(t)^2}{2 \cdot x^2} - \frac{4}{3} \cdot \pi \cdot G \cdot \rho_0 \cdot \frac{x}{r(t)} = -\frac{k \cdot c^2}{2} \qquad \qquad a(t) = \frac{r(t)}{x} \\ \dot{a}(t) = \frac{\dot{r}(t)}{x} \\ \dot{a}(t) = \frac{\dot{r}(t)}{x}$$

Karlsruhe Institute of Technology

Topology and overall energy density: some math

$$\frac{\dot{r}(t)^{2}}{2 \cdot x^{2}} - \frac{4}{3} \cdot \pi \cdot G \cdot \rho_{0} \cdot \frac{x}{r(t)} = -\frac{k \cdot c^{2}}{2} \qquad | \cdot x^{2}$$

$$\frac{\dot{r}(t)^{2}}{2} - G \cdot \frac{M(x)}{r(t)} = -\frac{k \cdot c^{2}}{2} \cdot x^{2}$$

$$\frac{\dot{r}(t)^{2}}{2} - G \cdot \frac{M}{r(t)} = -\frac{k \cdot c^{2}}{2}$$

$$for unit sphere$$

$$x \equiv 1$$

$$M = M(x)$$

Т

Karlsruhe Institute of Technology

Topology and overall energy density: curvature k

Curvature k of the universe is determined by its total energy E_{tot}

Topology and overall energy density

Heisenberg uncertainty relation in view of the total energy of the universe

Topology and overall energy density

 $= 0.000 \pm 0.005$

2015 findings of the *Planck* satellite mission: a universe <u>without</u> curvature

 $-kc^2$

- analysis of the CMB multipole distribution* curvature $\mathbf{k} = \mathbf{0} \ (\mathbf{\Omega}_{\mathbf{k}})$ from 1. peak at $\ell \sim 200$

*see following lectures #8 & 9

overall energy density & inflationary cosmology

- 2015 findings of the *Planck* satellite vs. expectation from theory of inflation
- inflation theory:

exponential increase of size a(t) of universe at time $t = 10^{-36} \dots 10^{-32} s$ due to evolution of a scalar field \Rightarrow typical expansion factor $\gg 10^{26}$ \Rightarrow flat space, no curvature

- observational fact (Planck, 2015):

Topology and overall energy density

2018 findings of the *Planck* satellite mission: a universe <u>with</u> curvature??

- analysis of CMB radiation using lensing effect*

Article | Published: 04 November 2019

Planck evidence for a closed Universe and a possible crisis for cosmology

Eleonora Di Valentino, Alessandro Melchiorri 🖂 & Joseph Silk

Nature Astronomy (2019) Cite this article

Abstract

The recent Planck Legacy 2018 release has confirmed the presence of an enhanced lensing amplitude in cosmic microwave background power spectra compared with that predicted in the standard Λ cold dark matter model, where Λ is the cosmological constant. A closed Universe can provide a physical explanation for this effect, with the Planck cosmic microwave background spectra now preferring a positive curvature at more than the 99% confidence level. Here, we further investigate the evidence for a closed Universe from Planck, showing that positive curvature naturally explains the anomalous lensing $\Omega_k = -0.007 \dots - 0.095$ (99% CL)

*see lectures # 13 & 14

inflationary cosmology: acclerated masses

2021 update from BICEP3 vs. expectation from the theory of inflation

- inflationary epoch should have produced
 specific GW* signal: but no detection!

BICEP3 tightens the bounds on cosmic inflation

10/26/21 | By Nathan Collins

A new analysis of the South Pole-based telescope's observations has all but ruled out several popular models of inflation.

Nov 14, 2023 G. Drexlin – Cosmo #4 * Gravitational Waves, see ATP – 2 (summer 2024) Exp. Teilchenphysik - ETP

Friedmann equations for a flat CDM universe

Second expansion equation: development of $\rho(t)$ over cosmic time scales t

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2}$$
$$= \frac{8}{3} \cdot \pi \cdot G \cdot \rho_{m}(t)$$
$$H(t) \sim \sqrt{\rho_{m}(t)}$$

we now need to account
 for the vacuum energy (Λ)

Friedmann equations for a flat ΛCDM universe

Second expansion equation taking into account the cosmological constant

- integration introduces an additional term for H(t) which is dominant at present

time t

Calculated values of H(t)

Calculated values of H(t)

Calculated values of H(t) and todays H_0

Hubble tension*: 'true' value of H_0

■ *∧CDM* model

nearby universe

CMB data + ACDM

is it the final answer?

nature International weekly journal	of science	
Home News & Comment Research Careers & Job	s Current Issue Archive Audio & Video For Authors	
News & Comment $ ightarrow$ News $ ightarrow$ 2016 $ ightarrow$ April $ ightarrow$ Artic		
ATURE NEWS	< 🛛 🖨	
Aeasurement of Universe's	expansion rate creates	

Discrepancy between observations could point to new physics.

Davide Castelvecchi

11 April 2016

Rights & Permissions

X-ray: MASA/CXC/SAO: Optical: Delter Hartmann; Infrared: NASA/JPL-Catlec Data from galaxies such as M101, seen here, allow scientists to gauge the speed at which the universe is supportion.

The universe's puzzlingly fast expansion may defy explanation, cosmologists fret

The controversial "Hubble tension" promises deep insight but, like dark matter and dark energy, could remain just another mystery

1 NOV 2023 • 2:55 PM ET • BY ADRIAN CHO

34 Nov 14, 2023 G. Drexlin – Cosmo #4 *more than 1000 publications up to now...

Exp. Teilchenphysik - ETP

Friedmann Equations, cosmological constant Λ

The two equations governing the cosmological evolution

expansion equation for k = 0

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3} \cdot \pi \cdot G \cdot \rho_{m,\gamma}(t) + \frac{\Lambda c^{2}}{3}$$

acceleration equation for k = 0

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3} \cdot \pi \cdot G \cdot \left(\rho_{m,\gamma}(t) + \frac{3 \cdot P_{m,\gamma}(t)}{c^2}\right) + \frac{\Lambda c^2}{3}$$

Aleksandr Friedmann

Different cosmological epochs & a(t)

Radiation / matter / vacuum energy – dominated cosmological epochs

- evolution of scale parameter a(t) calculated with Friedmann equations

dominant part	equation-of-state	density	scale parameter
radiation	$P_r = +1/3 \cdot \rho_r c^2$	$ ho_r \sim a^{-4}$	$a(t) \sim t^{1/2}$
matter	$P_m \cong 0$	$ ho_m \sim a^{-3}$	$a(t) \sim t^{2/3}$
vacuum energy	$P_V = -1 \cdot \rho_V c^2$	$\rho_V = const.$	$a(t) \sim e^{\alpha \cdot t}$
		onstant density $p_V = 3.6 \ GeV/m^3$	$\alpha = \sqrt{\Lambda/3}$ exponential increase

Afterthought #1: matter-dominated, flat universe

Hypothetical assumption: present, flat universe that contains only baryons

- flat universe (k = 0), no vacuum energy ($\Lambda = 0$)
- critical energy density ρ_c for a flat universe with baryons only:

$$\rho_{c} = \frac{3}{8 \cdot \pi \cdot G} \cdot H_{0}^{2} = 9.2 \cdot 10^{-27} \, kg/m^{3}$$

$$= 5.1 \ GeV/m^3$$
 (i. e. $\sim 5 \text{ protons per } m^3$)

• our present universe features a baryon density ρ_b

 $ho_b = 0.2 \ GeV/m^3$ (*i.e.* $ho_b < 5\% \ {
m of} \
ho_c$)

Afterthought #2: Hubble time t_H – definition

Hubble time t_H is based on a scenario* with uniform expansion rate H_0

*here we use H_0 from local measurements

Afterthought #2: Hubble time $t_H \& H_0$

- Linear and acutal expansion rate of our universe
- <u>surprise</u>: rather good approximation of a(t) by a **linear increase** using <u>present</u> value of H_0
- exact Friedmann solution: at first braked expansion (ä(t) < 0), now accelerated expansion with ä(t) > 0

Afterthought #2: Hubble time $t_H \& H_0$

Actual expansion rate $a(t) \& \Omega_i$

O ara a dimonoionlaca paramatara divat

Dimensionless density parameters Ω_i

- Ω_i are a dimensionless parameters, given by ratio of actual density ρ_i relative to critical critical density ρ_c for a flat universe

$$-\Omega_{tot} = \sum \rho_i = 1$$
 for a flat universe with $E_{tot} = 0$

Summing up all density parameters Ω_i

- contributions: matter – radiation – vacuum – curvature $k \neq 0$

42

Building a Standard Model of cosmology

 $\Omega_i =$

$$\frac{\rho_i}{\rho_c} = \frac{\sigma n \cdot \sigma}{3 H_0^2} \cdot \rho_i$$
$$\rho_i = \frac{\rho_i}{2}$$

07. (

 ρ_c

$$\Omega_{tot} = \Omega_m + \Omega_\gamma + \Omega_V + \Omega_k$$

Hubble expansion H(t): CosmoCalc - a very useful app

Cosmological parameters & their implications: an app for your smartphone

- select your model universe & see its properties

 $H(t)^2 = H_0^2 \cdot \left[\left(\Omega_r(t) + \Omega_m(t) + \Omega_V(t) + \Omega_k(t) \right] \right]$

$$H(t)^{2} = H_{0}^{2} \cdot \begin{bmatrix} \Omega_{r}(0) \cdot (1+z)^{4} \\ + \Omega_{m}(0) \cdot (1+z)^{3} \\ + \Omega_{V}(0) \\ + \Omega_{k}(0) \cdot (1+z)^{2} \end{bmatrix} \sim \frac{1/a^{4}}{\sim 1/a^{3}}$$

CosmoCalc App for *iOS*

Scale parameter a(t) for different models

The end (of todays' lecture)

Friedmann equations revisited

$$\frac{H(t)^{2}}{H_{0}^{2}} = \Omega_{r} \cdot a^{-4} + \Omega_{m} \cdot a^{-3} + \Omega_{v} + \Omega_{k} \cdot a^{-2}$$

$$H^{2}(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^{2} = \frac{8}{3} \cdot \pi \cdot G \cdot \rho_{m,v}(t) + \frac{\Lambda c^{2}}{3}$$

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4}{3} \cdot \pi \cdot G \cdot \left(\rho_{m,v}(t) + \frac{3 \cdot P_{m,v}(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$(Is T HAT it?)'$$

$$Is T HAT the BIG BANG?$$