

Introduction to Cosmology

Winter term 23/24 Lecture 7 Dec. 5, 2023

www.kit.edu

Recap of Lecture 6

Primordial Nucleosynthesis: formation of light elements during first 3 min.

- thermodynamical equilibrium between p, n due weak interaction by $\nu's$
- ν decoupling (freeze-out) at T = 1 MeV & t = 1 s (\Im free-streaming of $\nu's$)
- -(n, p) ratio 1:6 at t = 1 s, no element synthesis due to intense heat bath
- fusion only starts at $t \approx 1$ min. due to d bottleneck, then (n, p) ratio 1:7
- light element synthesis primarily to ${}^{4}He$ with small traces of d, ${}^{3}He$, ${}^{7}Li$: can be used to determine **baryon density** Ω_{b}

Recap of Lecture 6

Primordial Nucleosynthesis: light element yield as a function of ρ_B

Primordial nucleosynthesis & yield of ${}^{4}He$

Synthesis of light elements essentially stops at ⁴He

- fusion beyond ⁴*He* is difficult: this is a **very stable** (double magic) **nucleus**
- ⁴*He* is difficult to destroy, also tiny cross-sections for capture of p, n, d
- almost all neutrons are incorporated into ${}^{4}He$ (\Rightarrow available *n* limits its formation)
- usual parameter in literature: primordial ${}^{4}He mass$ fraction Y_{p}

Primordial nucleosynthesis & yield of ${}^{4}He$

A quick estimate on the ${}^{4}He$ – mass fraction Y_{p} as function of (n, p) ratio

- we start with the calculated (n, p) ratio of 1:7 at the onset of **BBN**
- we then form ⁴*He* via the initial ratio out of $(2n + 2p) + 12p = {}^{4}He + 12p$ 2n : 14p
- we now calculate the ⁴*He* mass fraction $Y_p = {}^4He/(2 n + 14 p)$

with $m_n = m_p = m_{nucl}$ we have $= 4 m_{nucl} / 16 m_{nucl} = 0.25$

- for the (n, p) – ratio of 1 : 7 we expect a ⁴*He* mass fraction $Y_p = 0.25$

Preview of this Lecture: light element yields

Determining the abundance of the light elements d, ⁴He, ⁷Li for $\Omega_B \& N_{\nu}$

Impact of baryon asymmetry η on abundance of primordial ${}^{4}He$

- for increasing values of η we have more p, n relative to $\gamma's$ from heat bath

 \Rightarrow nucleosynthesis starts earlier at higher values of T_{fr}

 \Rightarrow larger (n, p) – ratio: more deuterium *d* is fused, which then ends up as primordial ⁴*He*, thus we have a **larger value of** *Y*_{*P*}

Impact of baryon asymmetry η on abundance of primordial deuterium d

- deuterium is THE bottleneck of light element synthesis (small $E_B = 2.2 MeV$) \Rightarrow thus it is most strongly affected by parameter η
- for increasing values of η we have more p, n relative to $\gamma's$ from heat bath \Rightarrow more baryons due to **higher density** $\rho_B \Rightarrow$ **less deuterium** dit ends up more efficiently in primordial ${}^{4}He$

Impact of baryon asymmetry η on abundance of primordial deuterium d

- deuterium is THE bottleneck of light element synthesis (small $E_B = 2.2 MeV$) \Rightarrow thus it is best suited to deduce baryon density Ω_B

G. Drexlin – Cosmo #7 10 Dec 5, 2023

Exp. Teilchenphysik - ETP

a) for smaller values of η the EC reaction pathway $^{7}Be + e^{-} \rightarrow ^{7}Li + \nu_{e}$ is dominant

b) for *larger values* of η the (t, γ) – capture process

- with the abundance of ^{7}Li arises due to two reaction pathways:

 ${}^{4}He + {}^{3}H \rightarrow {}^{7}Li + \gamma$ is dominant

- lithium has a very small primoridal abundance & mass fraction < 10⁻⁷ - major challenge in measuring baryon density Ω_{R}
- Impact of baryon asymmetry η on abundance of primordial lithium ⁷Li

Impact of baryon asymmetry η on abundance of primordial lithium ⁷*Li*

- lithium has a very small primoridal abundance & mass fraction < 10⁻⁷
- major challenge in measuring baryon density Ω_B

Light element yields & future *e* – mobility

- Impact of baryon asymmetry η on abundance of primordial lithium ⁷Li
 - lithium: a very small primordial abundance & mass fraction < 10⁻⁷
 - lithium: very important for the powered by BBN E-BIKE 'Li

Light element yields: spectroscopic results

We want to determine the light element yields of BBN in the universe today!

- each element is identified by its characteristic emission / absorption lines

Light element yields: spectroscopic results

How can we determine the light element yields of BBN in the universe today?

- each element abundance is **modified** by $13.8 \cdot 10^9$ yrs of stellar processes!

*see ATP - II (summer term 2024)

Light element yields: atomic physics as basis

Spectroscopy of the three light BBN elements d, ${}^{4}He$, ${}^{7}Li$

Не

d

Li

⁴*He*: emission lines from recombination processes of He^+ – ions in galactic $H - II - regions^*$ and in *B*lue *C*ompact *D*warf (*BCD*) galaxies

²*H*: **absorption** lines of ²*H*(*Ly* – α line) in extragalactic clouds along the line–of–sight of distant quasars (which provide a 'back–illumination')

⁷*Li*: absorption lines of ⁷*Li* in atmospheres of stars in halo (Spite plateau)

Measuring the ${}^{4}He$ – abundance with the *VLT*

Using high-precision spectroscopy to measure the primordial ⁴He yield

- transition $3d \rightarrow 2p$: strongest **optical** transition ideally suited for high-precision spectrographs

 $1s \ 3d \ (23.07 \ eV) \rightarrow 1s \ 2p \ (20.96 \ eV)$

 $\Delta E = 2.11 \ eV \ (\lambda = 587.6 \ nm, \text{ yellow line})$

Не

Measuring the ${}^{4}He$ – abundance with the *VLT*

Observing Blue Compact Dwarf (BCD)—galaxies with the VLT spectrograph

BCDs: rich in gas ⇒ large star-forming
 regions ⇒ gas is ionised (He⁺) by
 UV - light of very massive stars

BCDs: small galaxies – poor in 'metals'
 ⇒ small previous reaction rates of stellar fusion

Measuring the ${}^{4}He$ – abundance

Measuring the ${}^{4}He$ – abundance: systematics

Abundance of ⁴He in the universe continually increases due to fusion

- hydrogen burning: fusion cycles generate non-negligible amounts of ⁴He

19 Dec 5, 2023 G. Drexlin – Cosmo #7 * metallicity in astrophysics defined as ratio O/H Exp. Teilchenphysik - ETP

Measuring the ${}^{4}He$ – abundance: systematics

Abundance of ⁴He in the universe continually increases due to fusion

1503.08146.pdf (arxiv.org)

deuterium–abundance: $Ly - \alpha$ absorption lines

• We use the Lyman- α transition at $\lambda = 121.55$ nm to observe $d({}^{2}H)$

deuterium–abundance: $Ly - \alpha$ absorption line

- Spectroscopic challenges to separate hydrogen isotope ²H from ¹H
- spectroscopic challenge #1: the $Ly - \alpha$ - lines of ${}^{2}H \otimes {}^{1}H$ lie very close together (only reduced mass $\mu = (m_1 \cdot m_2)/(m_1 + m_2)$ differs \Rightarrow need resolution $\Delta E/E \approx 2.7 \cdot 10^{-4}$
- spectroscopic challenge #2: the $Ly - \alpha$ - lines of ${}^{2}H \& {}^{1}H$ differ by a huge amount in their intensity (flux ratio ~ 10^{-5}) $\Rightarrow {}^{1}H$ - line is often saturated

deuterium–abundance: $Ly - \alpha$ forest

Observing the absorption lines of gas clouds illuminated by quasars

 quasar (supermassive black hole) at center of a galaxy acts as very bright beacon located far away, illuminating gaseous clouds with ²*H* and ¹*H* at the line–of–sight

 $Ly - \alpha$ absorption lines λ_i of extragalactic clouds

deuterium–abundance: $Ly - \alpha$ forest

Observing the absorption lines of gas clouds illuminated by quasars

- each gas cloud absorbs quasar light at its specific, individual cosmological distance z_i \Rightarrow the Lyman- α -forest

flux

deuterium–abundance: $Ly - \alpha$ forest

G. Drexlin – Cosmo #7

25

Dec 5, 2023

Observing the absorption lines of gas clouds illuminated by quasars

- identify all lines that belong to a specific cloud at smaller redshifts* z_i

 $z = (\lambda_{obs}/\lambda_{emit}) - 1$

Exp. Teilchenphysik - ETP

deuterium–abundance: $Ly - \alpha$ forest systematics

Deuterium is destroyed by fusion (pp-, CNO - chains) inside sellar cores

- identify the largest value of ${}^{2}H/{}^{1}H$ along the line-of-sight

deuterium-abundance: results

- Analysis of line profiles and intensity ratios: challenges
 - extragalactic clouds can be rotating ⇒ lines are Doppler-broadened
 - saturation of main ${}^{1}H$ line \Rightarrow rely on other (weaker) lines
 - present (2023) PDG value* :

$$\frac{D}{H} = (25.47 \pm 0.25) \cdot 10^{-6}$$

stat. + syst.

abundance of ^{7}Li – the Spite plateau

Karlsruhe Institute of Technology

Observation of absorption line from ⁷Li: select old, metal-poor stars

- absorption (doublet–) line of ⁷*Li* at deep red wavelength $\lambda = 670.7 nm$
- primordial ⁷Li located in the atmosphere of old, metal-poor stars

abundance of ^{7}Li – the Spite plateau

Observation of absorption line from ⁷Li: select old, metal-poor stars

- low-mass $(m \sim 0.1 M_{\odot})$ stars in our galactic halo: small fusion rates
- stars with high surface temperature T: minimum of surface convection

abundance of ^{7}Li – the Spite plateau

Observation of absorption line from ⁷Li: select old, metal-poor stars

 stars with high surface temperature *T*: minimum surface convection
 ⇒ reduces dangerous burning of ⁷Li which decreases the primordial yield

abundance of ^{7}Li – the 'anomaly'

Karlsruhe Institute of Technology

Observation of absorption line from ⁷Li: a systematic effect unexplained

observed values of ⁷Li is below the BBN expectation: the ⁷Li – anomaly manifests even in stars with high surface temperature ('Spite plateau') ⇒ missing lithium

$$\frac{Li}{H} = (1.6 \pm 0.3) \cdot 10^{-10}$$

- (wild?) speculations:
 is this due to time-varying
 natural constants or even
 due to decaying dark matter??

Observed light element yields & baryon density

Combining results for ${}^{4}He$, ${}^{2}H$, ${}^{7}Li$ and comparison with Ω_{B} from the *CMB*

*see next chapter

Observed light element yields & baryon density

- deriving Ω_B from

- deriving Ω_B from

Schramm plot for BBN

Comparison of *BBN* & *CMB*

- observed *BBN* light element
 yields are broadly consistent
 with precise *CMB* results,
 but systematics remains
- with $N(\gamma)$ from *CMB* we have*

5.8 $\leq \eta_{10} \leq 6.5 (95\% CL)$

and thus $(h^2 \cong 0.5)$

 $0.021 \leq \Omega_B h^2 \leq 0.024 \ (95\% \ CL)$

34 Dec 5, 2023 G. Drexlin – Cosmo #7

* η_{10} = baryon-asymmetry in units of 10^{-10}

Schramm plot for BBN

Comparison of *BBN* & *CMB*

- observed *BBN* light element
 yields are broadly consistent
 with precise *CMB* results,
 but systematics remains
- keywords for observations: accuracy, trueness, precision

BBN & missing baryons

- Case of 'missing baryons'
- observed, luminous baryons (galaxies & stars, cold gas, plasma, intergalactic medium)
 30% less than expected from the BBN value

n,p

d

where have the baryons gone...?

d

Schramm's idea: BBN as tool for particle physics Freeze-out temperature T_{fr} of $\nu's$ may be changed by novel physics! T = 1 MeV- **RECAP**: an important **10¹⁰** time stamp for **BBN** is (eV)when $\nu's$ decouple at **10**⁶ *t* = 1 *s* and *T* = 1 *MeV* energy **10**² $\Gamma_{\nu}(t) = H(t)$ radiation-dominated 10^{-2} niverse 10^{-3} 10^{-7} **10**⁵ **10**¹ **10⁹** 10^{13} idea: the number N_{ν} of ν – generations impacts H(t)time t(s)1 sec

Freeze-out temperature T_{fr} depends on the # of relativistic degrees-of-freedom! $H^2(t) = \left(\frac{\dot{a}(t)}{a(t)}\right)^2$ - relativistic particles **10¹⁰** $\sim 1 + rac{7 \cdot \Delta N_{
u}}{43}$ normalized to $\rho_{\nu}(t)$ (eV) **10**⁶ $\rho_{rel}(t) = \frac{43}{8} \cdot \rho_{\gamma}(t)$ energy (**10**² T 10^{-2} - each additional ν – generation would lead to an increase of H(t) & thus 10^{-3} **10**⁵ **10**⁹ **10**¹³ 10^{-7} **10¹** modify T_{fr} via $\rho_{rel}(t)$ time t(s)

BBN results can be combined with CMB data

Primordial ⁴*He* mass yield Y_P combined with baryon density Ω_B from *CMB*

BBN results can be combined with CMB data

Primordial ⁴*He* mass yield Y_P combined with baryon density Ω_B from *CMB*

- detailed calculation gives SM expectation of $N_{\nu} = 3.045$ for 3ν generations (non–integer value due to finite time interval for ν decoupling)
- should observations provide conclusive values of $N_{\nu} \gg 3.045$: evidence for $eV \dots keV$ – scale extra $-\nu's$ or other forms of socalled dark radiation (*MeV*)

THE STANDARD MODEL $N_{
u}=3.045$

BBN results can be combined with CMB data

- **Primordial** ⁴*He* mass yield Y_P combined with baryon density Ω_B from *CMB*
- latest data from *BBN* & *CMB* (*Planck* 2018) give a result of

 $N_{\nu} = 2.92 \pm 0.36$

no evidence of light v_s or other dark radiation
 (gravitinos,...)
 or metastable (Z⁰)'

Let's compare N_{ν} to older measurements at *LEP*

How do these results relate to the much earlier results at CERN's LEP?

Large Electron Positron Collider *LEP* experiments performed
 a precision measurement of the
 invisible width Γ_{inv} of the Z⁰

LEP: investigating the Z^0 invisible width

evaluation period – Dec. 4 – 16, 2023

Please evaluate the cosmo lectures & exercises/tutorials

lectures: QR – code & link

https://onlineumfrage.kit.edu/evasys/ online.php?p=34SFX exercises & tutorials: QR - code & link

https://onlineumfrage.kit.edu/evasys/ online.php?p=L45YG