Problem set 1

Submission deadline: 1 May, 09:45 Discussion of solutions: 4 May, 11:30

Problem 1: Symmetries of the Riemann tensor

- a) Using the explicit form of the Christoffel symbol in terms of the metric, show that $\Gamma^{\mu}_{\nu\rho}$ is symmetric in the two lower indices: $\Gamma^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\rho\nu}$.
- b) Using the explicit form of $R_{\nu\rho\sigma}^{\lambda}$ in terms of Christoffel symbols, show that

$$R_{\mu\nu\rho\sigma} = -R_{\mu\nu\sigma\rho} \ . \tag{1}$$

Let us define the fully covariant Riemann tensor

$$R_{\mu\nu\rho\sigma} = g_{\mu\lambda} R^{\lambda}_{\nu\rho\sigma} \ . \tag{2}$$

Using a so-called *locally inertial frame*, it can be shown that this tensor satisfies the block interchange symmetry $R_{\mu\nu\rho\sigma} = R_{\rho\sigma\mu\nu}$.

- c) Show that $R_{\mu\nu\rho\sigma} = -R_{\nu\mu\rho\sigma}$.
- d) Conclude that in two dimensions (i.e. for $\mu, \nu, \rho, \sigma \in \{0, 1\}$) the Riemann tensor is fully determined by the component R_{1010} .
- e) How many independent components are there in three dimensions?

Problem 2: Examples of curvature

Consider flat three-dimensional space. In cartesian coordinates $(y_1, y_2, y_3) = (x, y, z)$, the metric is simply given by

$$\eta_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} , \qquad (3)$$

for which all Christoffel symbols vanish. Let us instead consider spherical coordinates $(x_1, x_2, x_3) = (r, \theta, \phi)$ with

$$x = r\sin\theta\cos\phi\,, (4)$$

$$y = r\sin\theta\sin\phi\,, (5)$$

$$z = r\cos\theta \ . \tag{6}$$

a) Use the relation $g_{\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\mu\nu} dy^{\mu} dy^{\nu}$ to show that the metric in spherical coordinates is given by

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix} . \tag{7}$$

b) Calculate all non-vanishing Christoffel symbols. Show that $R_{\theta\phi\theta\phi} = 0$.

In fact, all components of the Riemann tensor vanish, as expected in flat space.

Let us now instead consider the two-dimensional surface of a sphere with constant radius R, i.e. $(x_1, x_2) = (\theta, \phi)$. By setting dr = 0 in the calculation above we obtain the metric as

$$g_{\mu\nu} = \begin{pmatrix} R^2 & 0\\ 0 & R^2 \sin^2 \theta \end{pmatrix} . \tag{8}$$

- c) Show that in this case $R_{\theta\phi\theta\phi} \neq 0$, representing the fact that the surface of the sphere is not flat.
- d) Calculate the resulting Ricci tensor and Ricci scalar.

Problem 3: Geodesics

Consider a particle moving along a path from $X_{\rm start}^{\mu}$ to $X_{\rm end}^{\mu}$. The path can be parametrised by a function $X^{\mu}(\lambda)$ with $0 \le \lambda \le 1$ such that $X^{\mu}(0) = X_{\rm start}^{\mu}$ and $X^{\mu}(1) = X_{\rm end}^{\mu}$. The length of the path (i.e. the proper time that passes for the particle) is given by

$$\tau = \int_0^1 \mathrm{d}\lambda \sqrt{g_{\mu\nu} \dot{X}^{\mu} \dot{X}^{\nu}} \equiv \int_0^1 \mathrm{d}\lambda L[X^{\mu}, \dot{X}^{\nu}] \tag{9}$$

with $\dot{X}^{\mu} = dX^{\mu}/d\lambda$.

a) Make use of the relation $d\tau/d\lambda = L$ to show that

$$g_{\mu\nu}U^{\mu}U^{\nu} = 1$$
, (10)

where $U^{\mu} = dX^{\mu}/d\tau$.

Out of all possible paths, the one that requires the shortest proper time must satisfy the Euler-Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{\partial L}{\partial \dot{X}^{\mu}} \right) - \frac{\partial L}{\partial X^{\mu}} = 0. . \tag{11}$$

b) Show that the Euler-Lagrange equation expressed in terms of U^{μ} is just the geodesic equation.