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Preface

The following notes are based on the lecture course Cosmology
These notes are still under development and will continuously be improved. If anything
is unclear, or if you spot a typo, please send me an email to felix.kahlhoefer@kit.edu.
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1 INTRODUCTION

1 Introduction
1.1 Units and Conventions
Will use natural units : c=h=kg =1
= [mass| = [momentum| = [temperature] = [energy| = GeV
Conversion: 1 GeV =1.8-10"* g=1.2-108 K
time] = [distance] = [energy '] = GeV ™"
Conversion: 1 GeV™ ' =2.0-10"" cm =6.6-10"% s

= Newton’s constant of gravity:

3
G = 6.67- 107 = 6.71- 107 GeV ™2
g9

Convenient to write G = MI;Q with

M,

p

1 =1.22-10" GeV  (Planck mass)

Will sometimes need astrophysical units

Ipc=31-10%cm 1 M, =199 10% kg

1.2 The present universe

Observations: e At sufficiently large scales, universe is homogenous (same every-
where) & isotropic (same in every direction)

e The universe expands

L galaxies “move away” from us

= Doppler effect: Aoy > Aem
—~— —~—

absorption emission

)\ab

—1
/\em

Define redshift z =

L Hubble’s law:

21
z' = Hy-r

km

with Hubble constant Hy ~ 67 £ 1
s - Mpc
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1 INTRODUCTION

Convenient to define

H
h=-——0 " =067£001 =h*~05
100
s-Mpc
Note: [Ho) = [rate] = [time™]

= Hy' ~ 1.4-10' yrs defines typical time scale (age of the universe)

1.3 Content of the universe

Universe filled with photons following (almost perfect) blackbody spectrum of temper-
ature Ty = 2.7255 £ 0.0006 K
L, Cosmic Microwave Background (CMB)
= Confirms isotropy of universe at < 10~*

= Contains huge wealth of information about early universe

Expect also Cosmic Neutrino Background (not yet detected).

Dominant contribution to total energy budget:

« Visible matter: 5%
— Baryons (i.e. nuclei) but no anti-baryons
— Electrons ensures charge neutrality
— Dominant form: Diffuse gas of H and He

— Heavier elements very rare

o Dark matter: 25%
— Accounts for “missing mass” needed to stabilise galaxies and galaxy clusters
— Must be non-baryonic, non-relativistic and very weakly interacting

— Unknown elementary particle?

o Dark energy: 70%
— Uniformly fills space (“vacuum energy”)
— Accounts for (accelerated) expansion

— Fundamental theory completely unknown

Karlsruhe Institute of Technology
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1 INTRODUCTION

1.4 Universe in the past

Early universe was denser and hotter.

For T2 1eV : No bound atoms — free electrons & nuclei
T 2 100 keV : No bound nuclei — free protons & neutrons
T 2 100 MeV : No bound baryons — free quarks & gluons

Even higher temperatures: Speculative
L Electroweak phase transition ?
L Dark matter production ?

L Generation of baryon-antibaryon asymmetry 7

Inflation: Sets initial conditions for evolution

Karlsruhe Institute of Technology
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2 BRIEF INTRODUCTION TO GENERAL RELATIVITY

2 Brief Introduction to General Relativity
Recap: Special relativity

Define ds? = 2 dt? — daz? — dy? — d2?
= N dot dz” (summation convention)
1

—1

1 and p,v=0,1,2,3

with 1, =
—1

= ds? is invariant under Lorentz transformation
oy

v = Mot = dy = 50" = Ma”, where ANl = 1y

Quantities that transform like dz* are called contravariant vectors

Example: Consider world line X*(7) of a particle
%
= U! = is contravariant vector
T
Covariant vectors transform in the opposite way:
ox” 1\
dy, = dyt = g dx, = (A )# dzx,
Generalization to tensors:
oy* 0x° o
TH(y) = =———T°(z) = A* (A1)’ T (x
I/(y) axpay,/ o‘( ) p( ),/ O’( )

= N is a rank-2 covariant tensor.
Convenient to define inverse metric n*":

NN, = 04 = diag (1,1,1,1)
L Can be used to “pull” indices up and down:

™ =0Ty T = nudy

Karlsruhe Institute of Technology
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2 BRIEF INTRODUCTION TO GENERAL RELATIVITY

2.1 Non-inertial reference frames
Lorentz transformation do not introduce fictitious forces. Consider instead general trans-

formation y* = y*(z")

dy* dy”

Y 9Y ). qzPda?
T e 8x") Aot de

= ds* = N dyt dy” = (

= (po - da” da”
l

may depend on x

Consider motion of inertial particle y*(7):

d%y

T 0 (no acceleration)
-

New coordinate system:

>y ddy"  d [ oy" da”
dr2  dr dr  dr | 9zv dr
——

=Uv
o d oyt oyrdur
=U (Eaxl’)—i_@x” dr =0
o d oy* , 0%y" oyt da”
— — — §H
Using dr dxv drrdzr T Duv dyr p
dur 0%y Ox*
= nprv bl R
I U (EM“@JE” 8y”)
EE’Z’Y
#0 in‘general
— non-inertial frame
Usin po _ 0 (0y" oy"
&9~ " ox \ ur 0ao
0%yt Oy” 0%y Oyt oy oz"
- v s N = = ko~
v \ 9 oze 9o " 9 0x” OP v gpr =9 OyH

= gl‘{o'l—‘ip + gmprig

Karlsruhe Institute of Technology
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2 BRIEF INTRODUCTION TO GENERAL RELATIVITY

1 00ue  O9ve O :
we obtain [T, = —g””( In + Jvo _ Hu ) “Christoffel symbols”

2 ox? oxH 0x°

Convenient to define covariant derivative:

Scalars:

Vector:

Tensor:

Note:

V,X =09.X

V, X" =8,X" +T% X

V,.X, =0,X, I, X,

=V, (X"X,) = 0, (X"X,)

V,IY = 0,TY +T0,T —T9 T = Vg, =0

ppto

dU?r oUP dz#
e gy = 2T
* Ozt dr

re urgr
dr o
= U (9,07 +T7,U")
=U"vV,U" =0 “geodesic equation”

Can also write geodesic eq. in terms of
Pt =mU" = P'V ,P, =0 — valid also for massless particles

2.2 Curved spacetime

Metric g, can describe not only non-inertial frames but also general curved spacetime.

In such a spacetime, covariant derivatives do not commute:

with | R}, = 0,175 — 9,1, +T% r —rr “Riemann tensor”

V.V, A% —V,V,A° = R, AP

wvp

AV pp Ap™ pv

uvp

Interpretation:  Consider two particles with separation B* traveling with the same

velocity U*

D2B* —
D2 = —Ry,U'U°B*
D ) .
L>D— = U"V, # 0 in curved spacetime
-

Karlsruhe Institute of Technology
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2 BRIEF INTRODUCTION TO GENERAL RELATIVITY

Convenient to define

R, = RZ v “Ricei tensor”
R=g¢"R,, “Ricci scalar”
1
G =Ry — §gWR “Einstein tensor”
Comment: Can show that V*G,, =0

2.3 Equivalence principle

Gravity is locally indistinguishable from acceleration (i.e. coordinate transformation to
non-inertial frame)

= Effect of gravity fully captured by metric g,
How does metric depend on gravitating matter?

Consider a perfect fluid with density p and pressure p assumed to be homogeneous and
isotropic in its rest frame (U* = (1,0,0,0))

Define energy-momentum tensor

T,, = diag(p, p, p, p)

in rest frame. In general frame with velocity U*,

energy density ‘ energy flux
momentum density ‘ stress tensor

Ty = (p+ p)UU, — g = (
E — p conservation imply V#T,,, = 0 for all v.
Both G, and T, are covariantly conserved.
Tempting to write G, = k*T},, where £ is unknown.
To determine x? consider metric

20(x )
ds* = ¢* dt? (1 + (2:10)) —da? — dy? — d2? <—2 < 1)
c c

Karlsruhe Institute of Technology
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2 BRIEF INTRODUCTION TO GENERAL RELATIVITY

Find
; r 990 090 Ogoo
FZ — _ 10 —
09 g (8950 + 0%  Ox°
=07 \ T e
10 1 0P

T 20290 T 2o
= Geodesic eq. for non-relativistic particle

0D
ox’

L ¢ acts like Newtonian potential

it =T, UV = —

Now calculate
9" G, = —R=2V’®
g/.u/T'uV —p— 3p no%rel 0 - 2v2q) — li2p

Compare to Poisson eq. V2® = 47Gp where G is Newton’s constant.

= k% = 87G

= |G = 8nGT,, “Einstein equation”

Karlsruhe Institute of Technology
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3 THE FLRW METRIC

3 The FLRW metric

Recap: Geometry of space-time described by metric g, (10 independent func-

tions of (¢, %))

Important simplification: Universe observed to be homogenous & isotropic

L g, independent of &

L g, invariant under rotation

Example: Static flat space
ds? = dt* — dx® — dy* — d2*
= dt* — dr® —r? (d92 +sin? 6 d¢2)

—d02
More general: Allow expansion/contraction of spacial part with time

ds* = dt* — a(t)? [dr® + r*dQ?]  where a(t) is the “scale factor”

a(t) is dimensionless = only ratio meaningful.

(T
Define | H(t) = alt) (“Hubble rate”)

Most general : Allow constant spatial curvature

+1 pos. curvature
+ r%mﬂ with k=14 0 flat

—1 neg. curvature

2

1 —kr?

ds* = dt* — a(t)? [

(3-sphere)
(3-plane)
(3-hyperboloid)

“Friedmann-Lemaitre-Robertson-Walker (FLRW) metric”

Notes: — For k # 0, r must be dimensionless and a(t) has dimension of

length.
L Interpretation: a(t) = radius of curvature

— Sometimes convenient to define

d _ 9 d _ 4
Ay T a(t)

L, “coordinate distance” L “conformal time”

Karlsruhe Institute of Technology
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3 THE FLRW METRIC

siny k=1
= ds* = a(n)? [dn® — (dx* + S;(x)d?)] with Sp(x) =4 X k=
sinhy k=-1
Consider particle at rest: =" = (7, zo, Yo, 20), u* = (1,0,0,0)
Geodesic equation:
du? Y 0 |
0=——+I" u"v" =TG5 = 59" | do goo +00go0 — sgoo | =0
dr 2 Nigl”
\:6-/ :500

= Particles at rest are free (no forces)

But: Physical distance to origin changes with time ¢:

dr?
ds* = a(t)?
®) 1 — kr?
N dr arcsinr k=1
=d(rt)=a(t) | ——==a(t)x{ r k=0
/T — jor2
e o V1I—kr arcsinhr k= —1
distance
L coordinate distance
aft)>al(t)
alt) 1
1
-
0 0
0 1 0 1
z’ . “comoving coordinate”
X' =a(t)s": “physical coordinate”
- dXe da? ,
V= = a(t HX'
@ OF + X
“Hubble flow”

peculiar velocity

Karlsruhe Institute of Technology
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3 THE FLRW METRIC

Now consider particle with momentum P*

0= P*0,P" +Th,P*P°

For p =10
1 1
19, =2 ¢ [ gsn +0 e, =29
aB B o 9B 8 Jax AdapB 9 09as
~— ~—~ ~—
=§0X =80 =da0

1 1 -
=Ty =T5=0, I}= —5809@‘ = §5ta(t)2 Yij = a(t) -a(t) - i
~—
spatial
metric

= 0= P*0,P° + aay;; P' P’

Homogeneity of space : ;P =0

Use PO =E, —g;;P'P7 = a?v;;P'P’ = p* where p is physical 3-momentum.

dE a
= E—=——p"=-Hp’
dt ap p

E2—p2:m2:>EdE:pdp:>§:—g

1

Form=0: p=FE~ -
a

L Energy of massless particles decreases with increasing scale factor.

%

. , dX® dt | mu muv 1
F 0: P =mU=m—=m—0v' = ~ =
or m # T T E T e Vi a

L Peculiar velocity decreases

L Particle converges onto Hubble flow

3.1 Redshift

Photons have A\ = h ~ a(t)
p

Classical Interpretation: Expansion of space stretches wavelength

Karlsruhe Institute of Technology

11



3 THE FLRW METRIC

Consider photon emitted at time t; with \;

Qo

a(t;)

Present universe: Ao = \; =N (14 2(t)) with |z2(t) = ——1| “redshift”

If \; is known (e.g. spectral line), we can infer z(¢;) from \g

= Infer time since emission
= Infer distance of source

Useful relations: — dz = —a—g da=—"Hdt = —(1+2)Hdt
a a

For nearby sources

a(t;) = ao(1+ (t; —to) - Ho+...), Hy = 4 (“Hubble constant”)

t=to

= Z(t1> ~ HO . (to — tz)

—
~d
(distance to
emitter)
2<KL1
=z =~ Hyd “Hubble’s law”

L redshift proportional to distance

L, can be used to measure Hy (inaccurate)

Hubble Diagram for Cepheids (flow—corrected)

2000 [
< 1500 [
o -
S [
E 1000 |-
< "
> :
T 500 [
k] [
= :
0Ff ]
~500 - e
0 10 20 30
Distance (Mpc)
Note: H="=[Hy =[time] ", [d] = [distance] = [z] = [velocity]
a
Convention: [Ho] = kms 'Mpc™!, [d] =Mpc = [z] =kms™!

Karlsruhe Institute of Technology

12



4 DYNAMICS OF COSMOLOGICAL EXPANSION

4 Dynamics of Cosmological Expansion

dr?
1 — kr?
= goo =1, g5 = —a(t)’
What determines a(t)?

Recap: ds* = dt* — a(t)? [ + TZdQQ]

Einstein equation: G, = 87 G T},
Let’s calculate G, = R, — %g,wR
g =0 for u=20

Loy = EQW (09uj + 9390, — Opgoi) gou =0 for p#0
goi =0

= Salt) 0y (alt)7,)

_ yi“yﬂj%a(t)_2 “2a(t)a(t)

.
= 5].5

Roo = Oy — 0Ty + Tool% — Ton TS0 Iy, =0for A=0, T}, =0

a

L Q Qs
e
a a a

i a\’ a\’ i
_ _3_+3(_) _3(_) _ 5t
a a a a
Analogous calculations: Ry, =0, R;; = (da + 2a° + 2k) vij
= R = g#VR”V = gOOROO + ginij

=32 42 SRL (da +2a* + Qk)
a ——

—5i=3
a a® k
— 6|2+ 4+
(a N a? * a2)
1 a® k
:>Goo=Roo—§gooR=3 -+
a
What about 7),,7

Consider universe filled with homogeneous fluid with energy density p(¢) and pressure

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

p(t) (good approximation on large scales)

Consider “cosmic rest frame”: Centre-of mass of fluid at rest = U* = (1,0,0,0)

P 2
a~p
T,uzz = (p + p)uuuu — 9D = (J,Qp

a’p

WV
ISee note at the end of next sectionl

= For u = v = 0, Einstein equation becomes

a\® 8 k
<_> =—Gp—— (Friedmann equation)

L, Relates two unknown functions of ¢ : a(t), p(t)
Need additional equation to determine p(t)
E — p conservation: V,T" =0
= 0,T" + W, 17 + T}, T" =0
Consider v =0

0= 0T + T}, T% + Tgy T% + Ty; T 4 Ty T 4T3 TV
M ~ M ik il Tkl
=0 =0 =0 g*tgl'T
_ a . ik gl
=p+3-p+aa;9" ¢ (—9gu D)
a ——

_a—28k
a5j

= |p+ 32 (p+p)=0 (E — p conservation)
a

Note: p(t) and p(t) related by equation of state (eos) of the fluid:

p=p(p)

= For given eos, evolution of universe fully determined by Fried-
mann eq. + F — p conservation

17- component of Einstein equation gives
a a?

k
2-+ — = -81Gp— — (automatically satisfied)
a a a

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

4.1 Simple cosmological solutions (k = 0)

Example 1: Non-relativistic matter (Einstein- de Sitter Universe)
) a const
EOS: p ~ mr? =0 :>£:3_:>p: .
p a a

Interpretation: = Conservation of particle number N

N
I_) = — ~ -3 = — . ~ -3
n=qr~va p=m-n~a

Friedmann eq. :

N2
a const
<_> =—= Vada = const dt
a a

= a7 = const. (t —ts)

wln

= a(t) = const. (t — t)

a(t) 2

HO =20 = 36-0)

For t — t,: a— 0, H— o
L singularity (“Big bang”)

L convention: t; = 0
For t — oo: a— 0o, H—0

L Universe keeps expanding forever, but expansion slows down

The age of a matter-dominated universe is

2
to= —— ~ 10%yr (Hy inferred from Hubble’s law)
3H,

3 g
P t day density: = " H2a~107P S
resen ay €11S1 y PO 87TG 0 CHl3

Example 2: Relativistic matter (radiation)

Tl'=0<=p—-3p=0

|
RS
I

1 . .
:>EOS:p:§p:>g:4Z:> =

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

1
Interpretation:  Energy of each particle redshifts ~ —

a
1 1 1
bp—F ome—. — — —
P "L @
a\®  const 1 1
Fried . - = = a(t) = t-(1)2 = H(t) = —
riedmann eq (a) " a(t) = const - (t) (t) 5
Note: If the radiation has a thermal (black-body) spectrum, we can define
its temperature
2
p=—gT* (g: degrees of freedom)

30

1
=T~-—n~(142)
a

83

Useful relation: | H = 4/ —
90

T? T> 1/2
— ~ 1.66\/g— ith My, =G~

Example 3: Vacuum energy
Assume that vacuum has non-vanishing energy density 7, = pg,.
=p=—p (negative pressure)

=p=0

Interpretation: ~ Vacuum energy does not dilute as space expands

Friedmann eq.: Z = const = a = const - "' with H = %G p
Very different from examples 1 + 2 :

— All quantities finite for t - —oo = No singularity

— d > 0 = Accelerated expansion

Example 4: General component with p = wp (w > —1)

Decelerated expansion for w > —1/3

2
= a = const - {30+w) — .
Accelerated expansion for w < —1/3

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

Comment: Possible to generalize Einstein eq. to
G — Ngpw = 87GT), (A : cosmological constant)

L First introduced by Einstein to guarantee stationary universe
(H = 0)

L Hubble’s law: H # 0
Einstein: “Grofite Eselei meines Lebens”
Modern interpretation: A contributes to vacuum energy

vac —7 Pvac o
P Prac + 81

But: So far no successful prediction of py,. from first principles
— “Cosmological constant problem”

Conventions: Pvac = PA
vacuum energy = dark energy

k =1 & closed universe
k = 0 < flat universe

k = —1 < open universe
Note:
P
T: = (p+ p)uyu” — (5Z'p = P ) = same as in Minskowski space
But
P
a’p . ) .
T = gupTh aZp = different from Minskowski space
a’p

4.2 The ACDM model

In general, the energy density of the Universe is a sum of different components

N\ 2
a & k
Ptot = PM + Prad + Pa :H2=<a> :?G(pM‘f'prad‘f’pA)_?

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

3
Define p, = mHg (critical density)
T
Q, = Pio (present-day abundance)
Pc
k
chrv = _CLQ—]'Ig

= O+ Qrad + Q5+ chrv =1

Note:  Qum + Qaa + Q4 =1 S proy = pe <= k=0 (flat universe)
Observations yield Qy + Qa &~ 1 = Qpag, Qewry K 1

Lower bound on €2,,q from CMB:

2 0 GeV I
Prad,0 = Pr,0 = Q%TOZL =26-10"" e (Th ~ 2.726 K)
GeV
per 51070 2 Vpd = 51075
cIm

. -3 —4 )
Using pym ~ a2, prag ~ a~ ", pp ~ const:

&) el cnal) e )

Vv Vv
dominate for small a dominate for large a

log p

radiation ~ a~*

matter ~ a3

\erature ~ a2

S

ag l;)g a

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

For a =~ ag, we can neglect Q2.4, Qcurv
=a =—Gp. | — +MNa
3 a
4 3
d:a—ﬂGpc <QQA—QM (@> )
3 a
Transition from decelerated (4 < 0) to accelerated (& > 0) expansion at
Qo 3 . ZQA
Qqc - QM
Realistic values (2 = 0.3, Q) = 0.7)
20) 1/3
Zae = (—A> —1=0.76 (pretty recent!)
Qwm
For a < ag, we can neglect Qx, Qcury

() =50 (%) o+ 2

a
= Matter-radiation equality: = =
Qeq Qrad

Om

~ 10%

More accurate estimate: praq = py + p,, = 1.7 p, (will derive this later!)
a
= 14 Zeg = — ~3-10°
(eq

Toq = (14 zeq) To = 0.75eV

For a < a4, universe is radiation dominated

= toq & ~T-10%yr

2H,

eq

For a > aeq :
Qar\Y? 3
a(t) =ag | — sinh?3 [ =1/Qu Hyt
Qa 2
t2/3 for %\/QAHOt <1

eVOnHot  fop %\/QlHOt > 1

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

3
Qo QQA
= = tae ~ 7.3 Gyr
( )) Ou Y

=1=1y~13.5Gyr

Because of recent accelerated expansion, age of Universe is larger than for {2y = 1

L Consistent with observation of ancient stars requiring to > 13 Gyr
= Evidence for Q4 >0

How to obtain more accurate estimates of 2,7

4.3 Brightness-redshift relation

To measure expansion history, need far-away objects of known absolute luminosity
(“standard candles”)

Example: Type la supernovae (SNe Ia)
L Thermonuclear explosion of a white dwarf in a binary system

L Known relation between peak luminosity and time-dependence

of emission
emitted energy

Need to relate absolute luminosity L = P

to observed brightness J

7= # photons - observed energy

time - area

Consider photons emitted at ¢; and observed at .

a(t;)

Observed energy = emitted energy -

Qg
# photons  # emitted photons a(t;) a(t;) »
. = . : : redshift
time time ap ap
To calculate the area, use
siny k=1

ds* = dt* — a(t)? [dx2 + S,f(x)dQQ} =0 Se(x) =< x k=

sinhy k=-1

Karlsruhe Institute of Technology
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

2(t) = WE) —1 = dz= —a(t0)2d(t)dt =~ H()dt

X(z)—/z dz' N/z dz' 1
o @H () Jo aH \/QM (2 +1)° + Qa4+ Qeury (27 + 1)

At t =ty the photons pass through a sphere of size S(z) = 4nd*(z) = 4may®S; (x(2))

L L
= |J = 15 2725()  dmnn? with 7, = (14 2) ap Sk (x(2))  (“luminosity distance”)
Comment:
e For 2« 1:(Z+1)=1= x(2) =~ e =d(z) ~ Hio (Hubble’s law)

e Consider Quyry = 0= Qu+ Q1 =1

Z/

— - d
@—/0 \/QM(Z'+1)3+(1—QM)

= H,

dz’

N /0 \/QM (3z’ +32% + 2’3) +1

_[2(1- ) u=1a0=0
z QMZO,QA:1

= d(z) increases with decreasing

= J decreases with decreasing
L vacuum energy makes standard candles less bright

Qm Qa
4 0.32 0.68
1.00 0.00

| I

P

Loy

m = 5log ryu(z) + const

distance (apparent magnitude)

<— bright faint —>

P

<—— near far ——

" 1 1 " "
0.6 0.8 1.0 1.2 1.4

redshift =z

Exactly what is observed! — Nobel prize 2011
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4 DYNAMICS OF COSMOLOGICAL EXPANSION

o For Qcyy >0 (k= —1) we obtain

( >z<<1 /Z dz' 1
Z) =
X o oo \/(1432") QO + O + (1 +22') Qewry

Zody 1
%/ A (1‘§<3QM”QCW')
0

1 22 3
= aHy (z — 7 3+ 20) + 0 (2 ))
1

22
S P

L, Non-linear correction to Hubble’s law

Data clearly requires {2y — 2, >0

= Present universe experiences accelerated expansion!

3

very old data!

- Riess et al. 1998 ‘ .
— = Perlmutter et al. 1999 modern constraints

much tighter!

gxpands to 1nfinty

Karlsruhe Institute of Technology
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5 EARLY UNIVERSE THERMODYNAMICS

5 Early Universe Thermodynamics
So far: Treated matter and radiation as non-interacting perfect fluids

More realistic: Ensembles of interacting particles

L Sufficiently strong interactions = local thermal equilibrium (LTE)
(will quantify this next lecture!)

Each particle species ¢ characterised by distribution function

fi(p) = 1 1 —:  boson
= (2m)3 e(Bimm)/T F 1 + : fermion

with E; = y/p? + m?

T : temperature (common for all species)

f; - chemical potential (may depend on T')

For process A1 + Ay + ... <— By + By + ... in chemical equilibrium:

A, +fa, + ... =pp, + U, + ...
Examples: e +e —e +e +7v
=y =0
e +et =2y
= :ueJr - _/Jde* ot y
1 p?
FOI' m1>>T,,uZ E-le_}___
2ml
~ (i—m3) /T —p2/2m;T
= Jilp) = e e
Ji(?) (27r)3

For given f;(p), we can calculate

o number density

:gi/fi(ﬁ)dgp E(]F::Wp /fz —m ?EdE

Karlsruhe Institute of Technology
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5 EARLY UNIVERSE THERMODYNAMICS

e energy density

pi = g,;/fi(ﬁ)Ei(ﬁ)d?’p = 47Tgv:/fi(E)\/ E? —m? E*dE

e pressure
bi=g | W P~ 73 i ;
Gi : degrees of freedom
T = e et Z W Wt v v h g
SM:
g9i = 2 2 3 3 3 1 1 1 16

SToi=> g+ Y g=0C+3x3+1+16)+(Bx2x (2+1+0+0))

i bosons fermions

=28+90 =118

5.1 Relativistic species

Assume T' > m;, p; =0

gi E?
Pi= o / eB/T 11

2
gi- 5T boson

2 .
%gi . §—0T4 fermion

For several relativistic species

2
/):Zpi:g*g—OT4 with g, = Z gri—% Z gi

rel. bosons rel.fermions

(effective number of rel. degrees of freedom)

Karlsruhe Institute of Technology
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5 EARLY UNIVERSE THERMODYNAMICS

7
Examples: e T'>my: g, =28+ 3 90 = 106.75

7
» o> T>me: go=2+5(2x2+3x2x1)=1075

i L’ i
pi = J / dE = % (as expected)

672 eB/T 11
<) 3
Yi E? gi->zT boson L ‘
T o / B 10E = {s ()73 . ((3) ~ 1.2
T 19i - =217 fermion
= (B) = pi _ )2.70T boson
~n;  |3.15T fermion

5.2 Non-relativistic species

gi mizm 2 /2m;T, 2 m; T 3/2 pi—m;
n; = 26T/e_p/m1pdp:gi e T
2T —_——— 27

Maxwell-
Boltzmann
distribution

For p; = 0, density of non-rel particles is exponentially suppressed (Boltzmann suppres-

sion)
Interpretation: ~ Annihilation process h + h — [ + [ always possible
heavy light
Production process [ + [ — h + h requires E > 2my,

L Exponentially unlikely for T" < my,

L Heavy particles “annihilate away”

L Energy density dominated by light species (unless u; # 0 )

3
T—0 .
pi=Tn; ~ 0 (Note: pV = NT ideal gas law for kg = 1)

5.3 Entropy

First law of thermodynamics: dF = TdS — pdV + Z widN;

Define s = (entropy density)

<l®n

Karlsruhe Institute of Technology
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5 EARLY UNIVERSE THERMODYNAMICS

ids—ﬁ—sd—v (analogous for _ b n—ﬂ)

= (Ts—p—p—l—Zuini) dV + (Tds — dp + pdn)V =0

Consider V =const. = dV =0= Tds —dp+ udn =0

For arbitrary volume = Ts—p—p+>_, wn; =0

gt imin
T
Example: e Rel. species with p; =0
N pi+pi 4p; gi%T?’ boson
Si et = —— =
T 3T Tg;Z2T%  fermion

2 2
:S:Z‘Si:g*zl_?;Tg

(]

« Non-rel species

g = P + Di — i
' T
~omang + 50T 4 0T —
B T

5 my — m; — [ g; [ m;T 3/2
" (2 + T ) T O [n,' 2w

= Similar Boltzmann suppression as for n;

Second law of thermodynamics: dS = 0 for equilibrium evolution

Proof (assuming ) . j;dn; = 0):

TdS = pdV +d(p-V) = (p+ p)dV + Vdp

Karlsruhe Institute of Technology
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5 EARLY UNIVERSE THERMODYNAMICS

d
Remember: V ~ a® = dV = 3a%da = 3v_a
a
ds a
=T—=V1{3 — 47
i ( (p+p)-+ p)
=0(E—-p (;)Tlservation)
= 5-a® = const

= entropy density convenient measure of expansion

Define V; = % ~p; -V = N,

S

If no particles are produced/destroyed = Y; = const

Examples: Baryon number conservation: Ngp — Nz = const
np ng

= Agp = — — — = const
s s

Particle thresholds
Shown before that T~ a~! during RD

Implicitly assumed g, = const

More accurate: g, 73a® = const = T ~ g[”gq*l

If T drops below m;
= species becomes non-relativistic
= ¢, decreases
= T decreases more slowly

Interpretation:  As non-relativistic particles annihilate away, entropy transferred to
relativistic species

Karlsruhe Institute of Technology
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6 BOLTZMANN EQUATION

6 Boltzmann equation
Last time: Assumed all species to be in equilibrium
L Not always satisfied

L Departure from equilibrium essential for cosmology

Today: General evolution of f(p,t) - homogeneous and isotropic
L[f] = C[f]
~~~ S~~~
Liouville operator Collision operator
— phase space evolution — effect of interactions

For C|[f] = 0: Particle number conserved

= Phase space volume conserved

df(p.t)  of dpdf

BT 9= 2L
dt ot | dt op

Consider particle 4-momentum P* = (E, p)

pdp = EdE = P°aP°

dp _ o dPY

= - _70 papb_ _ 2
:>pdt =F dt gCC;C;?Sic FO‘BP P H(t)p
:>L[f]—a H(t)pap_at (t)EaE

Often convenient to consider integral

ooy [ #rin =5 (et [ #07) -5 [0

N

-

=n(t) =—4r [ 3p? fdp
, 1d :
=n+3Hn = P (na )
L Liouville operator describes change in n(t) due to expansion

To find explicit form for C[f] consider interaction 142 <> 3+4

L Decrease in f; proportional to

2
E (Mgl - fafs - (T fi) (T£f)
spins reaction density of boson: + (Bose enhancement)
probability initial states fermion: - (Pauli blocking)

Karlsruhe Institute of Technology
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6 BOLTZMANN EQUATION

L Increase in f; proportional to

D IMaasan* frfa (1 f5) (1£ fu)

spins
Simplifications:
+ Often possible to assume f < 1= (1£ f)~1

« For most processes |Miyzs)® = [Masoo|” = M|

o Need to integrate over all possible momenta

Clfi] = 221 / dIlydIIzdIl, (277)45 (p1 + P2 — p3 — pa) ¥ Z ‘M| (fsfa = fif2)

3p
arl — d spins
(271-)32E

Additional assumption: f3 and f; given by equil. dist.

= f3 f4 Cq fiq — 6—(E3+E4)/T

Econs. _(E1+E3)/T __ req peq
= ¢ = fi'fa

Clhl = X /dﬂ2 (1 = fife) % /dH3dH4(27T)454 (pr4+ps—ps—ps) Y M

[\

spins

J/

(2i)3 /d3pC[f1] = /dHIdHZ( Vet = fufa) ov
Now assume = /
ned feq
g 1 .
(27‘(‘) /dng[fl] = (TL TL2 —nlng) X —niqngq/dnldHQfququ-v
= (o)

“thermally averaged cross section”

= |ny+3Hny = (ov) (n{"ns* —niny)| (Boltzmann equation)

Karlsruhe Institute of Technology
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6 BOLTZMANN EQUATION

Example: Consider ete™ <> vy  with ng+ =n.- =n
= n+3Hn = (ov) [(neq)2 —n?

Using ¥ =2 and 3Hs+$=0
S

= n=Ys+Yé=Ys—3HsY
=Y = —(ov)s (V2 -Y2)

) _m ds . dt dt
Define x:Ti%_s%_ 3H3%
ay 1 ds
- - Y2_Y2
~ de  3H da:<av>( GQ)

For g, = const : s~ T
ds sdl"  3s

S
dx T dx x
dy S
= |— =—= Y2 Y2
dx H x<m}> ( BQ)
Interpretation: o- v-n =1 “interaction rate”
~~

particle
flux

L determines how rapid an interaction happens

x dy
Yoq dx

rel. change interaction

A r departure from equil.
in density

o [fY <Y: %>O:> increase
} evolution towards equilibrium

o IfY > Y, Y ()= decrease

dx

e For I' > H : Quick evolution Y — Y., = thermal equilibrium
efor 'K H: % — 0 = no thermal equilibrium
= comoving number density constant

2 2
For efe™ <» vy and E > m,: O’N%, <0v>~% and neg ~T° =T ~ T

Karlsruhe Institute of Technology
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6 BOLTZMANN EQUATION

r M, 1015 GeV
ENanN Te > 1 for all relevant T

= e, e, in thermal equilibrium
L Also true for other particles with EM charge

Next: Consider viv <+ ete™
v et
Z w
v e 5 o
Form, < £ < mw,z . 0~ G%E2 (G’F =1.17-107° GP\;—Q)
= (ov) ~ G3T?
= '~ G3T°
= £NGQT?’M ~10°GeV 3 T3 ~ Ty
H " v 1 MeV

r
= ﬁ>1<:)T>1MeV

= Neutrinos decouple from thermal equilibrium when 7" drops below 1 MeV
More detailed calculation: 79 =2 —3MeV (depends on flavour)
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7 RELIC NEUTRINOS

7 Relic neutrinos

Neutrinos decouple from thermal bath at Tye. ~ 2 — 3 MeV. What happens then?

Without interactions, the coordinate momentum k£ = a - p of each neutrinos is time
independent
= [, t) = (k) = facc <@p
Qdec
1 1
(2m)3 eP/Taec + 1

) (aqec : scale factor at decoupling)

with fdec(p) =

1 . Qdec
= f (p7 t) - (27’(’)3 o0/ Tere(®) 4 1 with Tog (t) - CL_

L, Neutrinos maintain thermal distribution even without interactions
L Effective temperature decreases as Tog ~ a~ ' = n, ~ a3

L True even for Tog < m,
= Neutrinos have rel. distribution even in present universe (“hot relic”)

= Very different from equilibrium distribution (i.e. Maxwell-Boltzmann)
Since Tyee > me, there are still many e™, e~ in thermal bath when neutrinos decouple
L, Annihilate away for T << m, : eTe™ — vy

L Energy and entropy transferred to photons, but not to neutrinos
= T, does not decrease as a(t)~*

= For T, <me : T, # T, et
Make use of entropy conservation in electron-photon system:

g3 (1) a3Tf;’ = const

7 11
For Tuee > Ty >me: g0 =2+2(2+2) =+
For T, < m, : e =
11 ) 11 1/3 N
= 7Q§ECT§GC =2a° Tf? =T, = <Z) TdecadT

1\ 3
= T’,y - (Z) Tu,eff
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7 RELIC NEUTRINOS

neutrino decoupling
1
Me
T 1L electron-positron
MeV 10 E annihilation
102 T, xa S
n 1 Lol 1 Lol
1071 1077 107°

7.1 Neutrinos in the present Universe

TCZIB = Ty,efﬂo ~ 195K

3 3
énl/’O:Z-Q.%

So far not detected. = Promising idea: PTOLEMY

ve+°H — *He+ e~

L Tiny energy release, very challenging!

What about indirect effects?

L Contribution of p, modifies expansion rate

Pro = E my - Nyo

L Require Ql,:m<1:>2ml,<5()e\/

Pe

Require €, < Qu = Zm,, <15 eV

Use CMB temperature T, o = 2.73 K to predict present-day temperature of cosmic neu-
trino background (CvB)

T 5 =~ 112 ecm™ per species

Karlsruhe Institute of Technology
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7 RELIC NEUTRINOS

KATRIN experiment: m,, < 0.8 eV =Y m, < 2.4 eV = Q, < 0.05

Neutrinos cannot be all of dark matter!

Neutrino oscillation experiments: Z m, > 0.06 eV = Q, > 1073 > Qg

7.2 Neutrinos during radiation domination

General treatment: Consider non-interacting rel.species with T,,, # T,

P = Peq + Pni;
7 w2 7 2
b%;mg * 8femzi;nsg 3007 © (8)9 307 m
in eq. in eq.
2
m
=q,—T*
T30
7 7 7 (T, \*
ith g, = i+ = (<) g, — (2
" ! bglsg 8 fe%ﬂsg (8) I 30 (T”/)
in eq. in eq.
272
A 1 N = *S_TB
nalogous S Gx, 15 1
7 7 ™ (T \°
wih .= 3% ot g S e () (7)
bosons 8 fermions 8 30 T7
n eq. i eq.

g« # s in general

AN\ 13
In our case: Th, =T, = (ﬁ) T,

- 40\ Y3
= For T, < m, : g*:2+6-§-(ﬁ) = 3.36

9.6 L. 2 _301
Gus = s 11

Convenient to define

“effective number of neutrino species”
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7 RELIC NEUTRINOS

L Assumes instant decoupling

L, More realistic: Neutrinos benefit slightly from e*e™ annihilation

g, = 3.38

L Detailed calculation: N.g = 3.0440 =
Gis = 3.94

| T | T | T T T
— tt ”"LAZn\H(l —
B bb ce.
106.75 .
100 = 9625 " ggo5 ¥
[ EW
.(]*(T)
10
- 3.38
] | — | | | ] | I | | | ] | |
10° 10* 10% 102 10 1 0.1

T [MeV]

T2
Hubble rate during RD: H = 1.66,/ v — highly sensitive to contribution from vs
pl

7.3 Dark radiation
Consider particle N that decouples form thermal bath at T gec

= Hot relic for my < Ty dec

p 1/3
TN,eﬂ" - < - ) Tfy

Gx,dec
4/3
g Jx . 1 bosons
PN = _N( > P~y Wlth£:{7 )
2\ Gxdec 3 fermions
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7 RELIC NEUTRINOS

Contribution to Neff = Neff, SM ‘|‘ANeff

3.0440

4 1 g \
ANefpr—N:§§9N<Z' g >
= Y Gx,dec

(before neutrino decoupling)

Consider a Majorana fermion (right-handed neutrino)

7
with € = 2. gx = 2, Taee > 100 GV (9. gec ~ 100)

= ANeff ~ 0.05

Important target for cosmology
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8 BIG BANG NUCLEOSYNTHESIS (BBN)

8 Big Bang Nucleosynthesis (BBN)

— Formation of bound nuclei from protons and neutrons
— Happens shortly after v decoupling

50keV < T < 1MeV =2 15 < ¢ < 400

— Earliest time probed by observations

8.1 Qualitative picture
— At T > 1 MeV reactions like p + e <— n + 1, are in equilibrium
— At T ~ 1 MeV, neutrons freeze out, so the only relevant process isn — p + e+ 7,

— At T < 0.1 MeV it becomes favourable to form bound states such as n+p <> D+~
(binding energy: By = 2.2MeV)

Only light elements (H, He, Li, Be) can be formed
= Almost all neutrinos end up in ‘He (Big, = 28.3 MeV)

8.2 Step 1: Neutron freeze-out
Equilibrium at T" ~ 1 MeV:

3

T\:2 _

na = ga (ZA ) ea=ma)/T — ona/Tpi=0 where A = p,n
T

e*, v, U relativistic = p negligible

= Hp = Hn
%
Ny mMn _ _ .
— = (—) e AT g o= AMT  with Am =m, —mp, = 1.3MeV
np mp

Neutrons freeze out when I'po, < H

Dimensional analysis: H~— T ~G3T°

Full calculation: T, = 0.75MeV
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8 BIG BANG NUCLEOSYNTHESIS (BBN)

Comment: T, ~ Am  great coincidence!

L, Present universe would look very different for T, > Am or T, < Am

8.3 Step 2: Neutron decay

Shortly after neutron freeze-out: ete™ annihilation

= g5 = 3.94 = const

Ty

(baryon-photon ratio, typically ng ~ 1071°)

But X, = changes because of neutron decays:

Np + Ny

T<T,

X.(T) e V™X,(T,)  with 7, = 880s

8.4 Step 3: Deuterium bottleneck
Direct production of *He from 2p + 2n strongly suppressed
= Need to produce D first

Consider reaction p+n+—D+~v = pp+ ptn = pup (1, =0)

=0 3
np e ne 9 2rmp \ 2 Pt
= D =
Np Ny efretr nb="nk IpGn \ MumpT
=1
. mp
Using gp =3, Gp=0n =2, My m, = BN My +mp — mp = Bp
3
2
no 3 (AT N pyr
Np-nn 4 \mpT’
. Np * Np
Using X, (1 - X,) = an and np = npn,
B

3
3 4 2 T \?2
:> n_D — 1 S(n (1 _ )Lfn) an,y ( ™ ) eBD/T ~ 10—10 (_) 6BD/T

mp T’ mp
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8 BIG BANG NUCLEOSYNTHESIS (BBN)

For T 2 100keV :

"™ <1
np

n
D production efficient < D1

LBy, [o (1)
T mp

np

wleo

] ~ 30 = Tp ~ 80keV = tp ~ 150s

8.5 Step 4: Deuterium burning

ForT <1p:

Chain of nuclear reactions
- l.p+—n
Be 2. p(n,v)d
12 3. d(p,v)*He
4. d(d,n)*H
10 TLi 5. d(d,p)t
11 6. f((l n)'H
9 7. t(a, “,)7L1
3He e 4He 8. *He(n, p)t
8 7 9. 3He(d, p)"He
3ﬁ 4 ?6 10. *He(a, )" Be
L2 2 |3y 11 "Li(p. a)'He
5 12. "'Be(n, p)‘'Li
n
Primordial nuclear reactions
D+D — 3H+p
D+D — 3He+n D+3He — “He+p
D+n — 3H+xv D+3H — “He+n
D+p — 3He+rn
= Almost all neutrons end up in *He
e _ Ly op gy = Lewimx, (= 1) = 0.063 ~
_— — n = g —6 n n = n = . ~ —
ng 2 b 16
Y, = Pl g e _ 95
PB np
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8 BIG BANG NUCLEOSYNTHESIS (BBN)

Fraction of “He remains constant until star formation starts, which produces heavier
elements (e.g. He + 1He + *He — '2C)

In some regions with low star formation rates Y, (today) ~ Y, (BBN)
= Possible to directly measure Y},

Result: Y, = 0.245 £ 0.003 — Spectacular success!

8.6 Determining np
Y, depends on np only logarithmically through T — insufficient for measuring 7p
Instead: Consider end of D burning

FD:nD~<av)D < H

L Complicated nuclear physics — can be measured

Freeze-out happens for Tt, ~ 65 keV

H(Tfo) 14 -3
= np (Ty) = ———~— ~ 10" cm
o) = G @)
. 3 3
Using n, = np — 4nage = ZnB = Zanv

D 1 4 T 1
_no 14 o (Th) -~ .16-10"
H Np nB 3 nv(ﬂo) B

D
Observations: — =(2.55+0.03)-107°

T

= np = (6.2+0.2)-107"
mp -NB Ny

pe/h?

L, Baryons only constitute ~ 4% of the energy density of the present universe!

np remains constant until today = Qgh? = = 0.022 £ 0.001

7 1i
Comment: Also possible to predict ﬁl

L Inferred value of np too small

L Theory uncertainty? Measurement error? New physics?
Note: BBN powerful probe of physics beyond Standard Model
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8 BIG BANG NUCLEOSYNTHESIS (BBN)

baryon density parameter Qph?

10-2
o 109K 10%K 1085k 0.27 l ]
. 5 0.26f E
— 'H 8 i
—————— 2H i 0-25¢ ’/
v 4
- ———— 3{ 2 0.24F 3
-3 i
He T a3f ]
______ *He 1073
. — %z
Ll I " A s A S 7|_| A
- ST 104
> -——— 8
10-14 —— "Be %
______ 9Be L 10
s g 107°
19 =ae TEs
107 8
P oE
1OB E
11B
10724 Iy 2 :jB 10-10
10 100 1000 10% B 10-10 ' ‘ - T 100
t(s) baryon-to-photon ratio n = ny/n,
(a) Dependence on t (b) Dependence on np
Example: Y, very sensitive to Hubble rate at T ~ 1 MeV

= Confirms SM prediction Nqg = 3.0440
= Upper bound: ANy < 0.4(95% C.L.)

= Excludes additional light particles in thermal equilibrium
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9 RECOMBINATION

9 Recombination

L, Formation of neutral hydrogen (neglect He for today)

Universe at T'= 1eV:
— p,e”, v tightly coupled:

pe”
Y Y
pe pe .

— Equilibrium between free particles and bound H:

pe

pe”

e +p+— H+~

3
m; T\ 2 e .
e ( o ) W= with iy + pre =

3
n my 27?2
= ( 1 ) IH ( 1 —) elmptme=mu)/T (ne = np from charge neutrality)
~———
eq

De T g " 9p \ ety T exp(Bys /)
— = with By = 13.6 eV
ny/n? =4 ~1/me

2:2

3
(e (2T s
n? ) o meT

Convenient to define

X = _fe (free electron fraction)
np + nyg
Note:
2¢(3
ot =075 s (n7 _ %G )T3>
7r
approximate fraction of H (rest is He)
= 1 — Xe :w
np + Ny
1-— Xe np
> Txz Tzt
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9 RECOMBINATION

3
1-X. 2C(3) (27T \2
= ( e ) = (2)(—) eBH/T-O.75-77b
e eq

(Saha equation)

T Me

For T 2 By:

For T' <« By:

rhs tiny (remember: np ~ 1071%) = X, ~ 1

rhs increases = X, decreases

Recombination happens when

r 3
B 2(3 27T\ 2
B g | 2L )0.75%(% )]
Vs m
3
2

T 2

263) 5 750, ( 27:5 H)

2

3100 B

= —log

N

can be neglected

= Trec = 0.38eV
Tree = To (1 4 zZrec) = Zree = 1600

T=04eV:
T=03eV:

Xe =0.999
X.=0.15

Numerical solution:

Trec < By because n, > n.,n,

= FEnough high-energy photons in tail of distribution to keep H ionized

= Recombination happened after M-R equality

2 2

= lrec = 3 H(Tree) ' = ~ 2.6 - 10° years
3H() QM (1 —|— Zrec)3

9.1 Photon decoupling
As long as X, ~ 1, photons experience frequent interactions:
e +y<—e +7v

8 2
op =2 0671072 cm?
3 m?2

e

I, =ne.or = Xeor(n, + np)

With decreasing X., Iy decreases as well

= Photons decouple for I'(Tgec) = H(Tgec)

(Thomson cross section)
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9 RECOMBINATION

3
TBC 2
MD:  H (Tyee) = Hor/Qn ( ; )
0

7T2 Ho\/ QM

= X, (Thee) T3? =
2¢(3) 0.75n 50T

dec

2

Can be estimated from Saha eq.
= Thee = 0.27eV = Zgee = 1100 = tgee = 380000 yrs
Many refinements needed:

— Electrons not in perfect equilibrium at Ty
= Need to solve Boltzmann equation to get X,

— Need to include excited hydrogen (2s,2p) in calculation

But final result robust, because X, drops exponentially = photon decoupling very sud-
den

7

7

. Universe ionized
Universe neutral

observer
(e
Vot
&y
. 2

surface of last scatter

frequent scattering
77

We see the surface of last scatter in every direction at a distance of ~ 13.5 Glyr
Beyond it, the Universe is intransparent

The photons emitted from this surface form the CMB
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9 RECOMBINATION

9.2 Cosmic Microwave Background

L First discovered in 1965 by accident

Cosmic microwave background spectrum (from COBE)

400 T T T T T T T T
COBE data —+—

350 | Black body spectrum —— |

300 |+ -

Error bars invisible
— perfect agreement between

250
data and predictions

200

150

Intensity [MJy/sr]

100

50

I I I I I
2 4 6 8 10 12 14 16 18 20 22

Frequency [1/cm]

Tems = 2.7255 £ 0.0006 K

When seen from the Earth, Toyg is not the same in every direction

L Doppler effect due to relative motion Cold Hot
between Earth and CMB

T
vector

6T<ﬁ) _ pobs(ﬁ> - P
T p

Fit to data gives v = 368 km/s
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9 RECOMBINATION

— Subtract dipole to reveal primordial anisotropy

T = 2.728 K AT = 3.353 mK

(a) CMB monopole (b) CMB dipole (c) Primordial anisotropy

AT = 18 uK

Removing galactic backgrounds:

(a) Mollweide projection (b) without projection
Conclusion: Universe is not perfectly homogeneous at T' = Tyec
= need to study perturbations
Summary:
T [eV]
1 recombination 0.1
1 T T T \i T B L T T
;del}coup]jng

— CMB

107! F =
F ' E
Xe : b :
1072 ¢ v E
E ' i 3
C S J
L . ]
i Boltzmann
107°% £ n -
E \ E
- plasma “ neutral hydrogen -
L :‘ a i
10° 10
z
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