

Exercise 3.1: SO(N) and SU(N)

10P

Consider the Lie group SO(N) of orthogonal (i.e. $M^{T}M = \mathbb{I}$) matrices with unit determinant and the Lie group SU(N) of unitary (i.e. $M^{\dagger}M = \mathbb{I}$) matrices with unit determinant.¹

- (a) Determine the dimension (i.e. the number of different matrices whose *real* linear combinations span the whole group) of SO(N) and of SU(N) for a generic $N \in \mathbb{N}$.
- (b) Derive the conditions fullfilled by the corresponding Lie algebras $\mathfrak{so}(N)$ and $\mathfrak{su}(N)$. Remember that any element of a Lie group around the identity can be obtained through the exponentiation of an element of the corresponding Lie algebra: $G \ni M(\alpha) = \exp(\alpha N)$, $N \in \mathfrak{g}$.

Hint: Remember that $\det A = \exp \operatorname{Tr} A$.

Focus now on the $\mathfrak{so}(3)$ and $\mathfrak{su}(2)$ Lie algebras. In the fundamental representation, a basis for $\mathfrak{su}(2)$ is given by $T_F^a = \sigma^a/2$, where σ^a are the Pauli matrices, while a basis for $\mathfrak{so}(3)$ is given by $(T_F^i)_{jk} = \epsilon_{ikj}$, where ϵ_{ijk} is the three-dimensional Levi-Civita symbol, with $\epsilon_{123} = +1$.

- (c) Calculate all the structure constants $f^{ab}_{\ c}$ for both Lie algebras.
- (d) The Cartan-Killing form of a Lie algebra is defined as

$$K^{ab} = -f^{am}{}_l f^{bl}{}_m \tag{1.1}$$

Prove that the Cartan–Killing form is symmetric. Calculate it explicitly for $\mathfrak{so}(3)$ and $\mathfrak{su}(2)$.

The *adjoint representation* of a Lie algebra is given by the structure constants themselves:

$$(T_A^a)_{\ c}^b = -if_{\ c}^{ab}.$$
 (1.2)

(e) Prove the Jacobi identity by using the definition of the structure constants, working in the adjoint representation:

$$f^{ab}_{\ e}f^{ec}_{\ d} + f^{bc}_{\ e}f^{ea}_{\ d} + f^{ca}_{\ e}f^{eb}_{\ d} = 0$$
(1.3)

Operators that commute with every element of a Lie algebra are called *invariant Casimir* operators. It can be proved that there exist (N-1)/2 linearly-independent invariant Casimir operators for $\mathfrak{so}(N)$ if N is odd, N/2 if N is even, and N-1 for $\mathfrak{su}(N)$.

(f) For $\mathfrak{so}(3)$ and $\mathfrak{su}(2)$ compute the quadratic Casimir operator, defined as

$$C_2 = K_{ab} T^a T^b \,, \tag{1.4}$$

where K_{ab} is the inverse of K^{ab} (i.e. $K_{ab}K^{bc} = \delta^c_a$). Prove that it indeed commutes with every element of the corresponding Lie algebra.

¹In this exercise a superscript can only be contracted with a subscript, therefore we will pay great attention to the position of the indices. Superscripts and subscripts can be treated as equal for all practical purposes.

Exercise 3.2: Covariant derivative

In general, the covariant derivative

$$D^{\mu} = \partial^{\mu} - igA^{\mu} = \partial^{\mu} - igA^{\mu}_{a}T^{a}$$
(2.1)

explicitly depends on the choice of the representation of the gauge group generators T^a . You know that in the fundamental representation

$$D^{\prime \mu} = U D^{\mu} U^{-1}$$
 and $A^{\prime \mu} = U A^{\mu} U^{-1} - \frac{1}{g} (\partial^{\mu} U) U^{-1}$, (2.2)

with $U = \exp(ig\vartheta_a T_F^a)$.

(a) Prove that the form of the transformations above is vaild in any representation:

$$D^{\prime\mu} = V D^{\mu} V^{-1}$$
 and $A^{\prime\mu} = V A^{\mu} V^{-1} - \frac{1}{g} (\partial^{\mu} V) V^{-1}$, (2.3)

where $V = \exp(ig\vartheta_a T^a)$, T being the generators in an arbitrary representation.

Hint: Start from the transformation law for A^{μ} in the fundamental representation and extract the exact form of the gauge transformation for A^{μ}_{a} , independent of the representation of the generators. To this end, make use of the Baker–Campbell–Hausdorff formula:

$$\exp(B) A \exp(-B) = \sum_{n=0}^{+\infty} \frac{1}{n!} A_n,$$
 (2.4)

with $A_n = [B, A_{n-1}], A_0 = A$, and remember that $f^{ab}_{\ c} = i(T^a_A)^b_{\ c}$.

(b) Show that

$$F^{\mu\nu} = \frac{i}{g} [D^{\mu}, D^{\nu}], \qquad (2.5)$$

and is, therefore, representation-independent. Find how $F^{\mu\nu}$ transforms under a gauge transformation.

Exercise 3.3: Lorentz transformations

Taking $x \to x'^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$ and the orthogonality condition, $\Lambda^{\mu}{}_{\nu}\Lambda^{\rho}{}_{\sigma}g_{\mu\rho} = g_{\nu\sigma}$,

(a) Show that $a^{\mu}b_{\mu}$ is invariant under Lorentz transformations.

Let $(\Lambda^{-1})^{\mu}{}_{\nu}$ be the inverse of $\Lambda^{\mu}{}^{\mu}$, meaning that

$$(\Lambda^{-1})^{\mu}{}_{\nu}\Lambda^{\nu}{}_{\rho} = \delta^{\mu}_{\rho} = g^{\mu}_{\rho}.$$
(3.1)

- (b) Show that $(\Lambda^{-1})^{\mu}{}_{\nu} = \Lambda_{\nu}{}^{\mu}$.
- (c) Show that $\partial'_{\mu} = (\Lambda^{-1})^{\nu}_{\ \mu} \partial_{\nu}$ where $\partial'_{\mu} = \partial/\partial x'^{\mu}$.
- (d) Does $M_{\nu\mu} = \pm M_{\mu\nu}$ imply $M_{\nu}^{\ \mu} = \pm M_{\mu}^{\ \nu}$, $M_{\nu}^{\ \mu} = \pm M^{\mu}_{\ \nu}$, or $M^{\nu\mu} = \pm M^{\mu\nu}$? If not, how should the metric tensor be modified to allow this?

5P

 $5\mathbf{P}$