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Exercise 4.1: Valid Lagrangians 5P

The typical recipe to construct a new model in particle physics is the following1:

1. Define a fundamental symmetry.

2. Define the particle and field content.

3. Construct a Lagrangian density L from all allowed combinations of particles and fields.

Any equations of motion can then be obtained via Hamilton’s principle from the action

S =

∫
d4xL. (1.1)

Consider now the QED Lagrangian

LQED = −1

4
Fµν(x)F µν(x) + iψ̄(x)γµDµ(x)ψ(x)−mψ̄(x)ψ(x), (1.2)

with the covariant derivative Dµ(x) = ∂µ + ieAµ(x) and the field-strength tensor Fµν(x) =
∂µAν(x)− ∂νAµ(x). Make use of natural units throughout the exercise, i.e. when we say that
something is dimensionless or of dimension q, we always refer to the dimension of energy.

(a) What are the requirements on LQED to achieve a consistent description of QED?

(b) Determine the dimension of the action S, of the integration element d4x and of the
Lagrangian density LQED. Derive also the dimension of ψ(x) and Fµν(x).

Imagine now adding a scalar field ϕ(x) to QED, which is a singlet under any gauge symmetry.

(c) Argue if the following terms would be allowed additions to LQED, and, if they are not,
point out all the reasons why they are not allowed:

1. L1 = gϕ(x) ψ̄(x)ψ(x);

2. L2 = mϕ(x)ψ(x)ψ(x);

3. L3 = iϕ(x)Aµ(x)Aν(x);

4. L4 =
1

m
Aµ(x)Aµ(x)ψ(x)ψ(x);

5. L5 =
g2

m
∂µA

µ(x)ϕ(x)
∂ϕ(x)

∂t
;

6. L6 =
1

4
g4m4.

1Once the model is done you can add some phenomenological results as topping.
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Exercise 4.2: Lorentz invariance of the Dirac Lagangian 8P

To show the invariance of the Lagrangian density of a Dirac field,

L = ψ(i/∂ −m)ψ, (2.1)

we can use the chiral representation, where the Dirac spinor and the γ-matrices are given by

ψ =

(
ψL
ψR

)
, γµ =

(
0 σµ

σµ 0

)
.

The Weyl spinors ψL and ψR transform under the (0, 1
2
) and (1

2
, 0) representation of the Lorentz

group, respectively, and we have σµ = (12, ~σ), σµ = (12,−~σ).

(a) Show that the Lagrangian density can be decomposed into spinor products of the form

ψ†Rσ
µψR, ψ†Lσ

µψL, ψ†RψL, ψ†LψR. (2.2)

(b) Consider the Lorentz transforms of the spinors,

ψL → ΛLψL = e(−i
~ϑ−~η)~σ

2ψL, ψR → ΛRψR = e(−i
~ϑ+~η)

~σ
2ψR,

to show that the terms in (a) either transform as a scalar or a vector

V µ → Λµ
νV

ν =

(
V0 + ηiVi

~V + ~η V0 + ~V × ~ϑ

)
. (2.3)

(c) Use the results of the previous parts to show that the Lagrangian density of Eq. (2.1) is
Lorentz invariant.

Exercise 4.3: Pauli-Lubanski pseudovector 7P

The Pauli-Lubanski pseudovector describes the spin state of a moving particle:

Wµ =
1

2
M̃µσP

σ =
1

2
εµνρσM

νρP σ, (3.1)

where Mµν = i (xµ∂ν − xν∂µ) denotes the relativistic angular momentum tensor operator2, and
P µ = i∂µ is the 4-momentum. Its commutation relation is given as:

[Wµ,Wν ] = −iεµνρσW ρP σ. (3.2)

The simultaneous eigenvalues of P 2 and W 2 can be used to classify particles according to their
mass and spin as irreducible representations of the Poincaré algebra.
We define the generalized Levi-Civita symbol in four dimensions as:

εµνρσ =


1 if {µ, ν, ρ, σ} is an odd permutation of {0, 1, 2, 3}
−1 if {µ, ν, ρ, σ} is an even permutation of {0, 1, 2, 3}
0 otherwise

, (3.3)

with ε0123 = gµ0gν1gρ2gσ3εµνρσ = −ε0123.
2This form of Mµν is a generalization of the form for the generators of the Lorentz group given in the lecture,

which is required once the operator acts on fields.
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(a) Show that the components of Wµ for a particle at rest are (0,−m~J)T , where ~J = ~x× ~P
is the total angular momentum operator in three dimensions.

(b) Prove the following identities:

1. [Mµν , Pρ] = i (gνρPµ − gµρPν),
2. WµP

µ = 0,

3. [Wµ, Pν ] = 0.

(c) Prove that

[P 2, Pµ] = 0 , [P 2,Mµν ] = 0 , and [W 2, Pµ] = 0 . (3.4)

These relations, together with [W 2,Mµν ] = 0 show that P 2 and W 2 are the Casimir
operators of the Poincaré group, since they commute with all its generators.
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