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Exercise A.1: Scalar symmetry breaking 8 P

Consider a theory with N real scalar fields governed by a Lagrangian

L =
1

2
(∂µΦ)T (∂µΦ)− V (ΦTΦ) , (1.1)

where Φ is a vector, Φ = (ϕ1, . . . , ϕN). Let the potential be

V (ΦTΦ) = − µ2

2
(ΦTΦ) +

λ

4
(ΦTΦ)2 , (1.2)

where µ and λ are positive constants. This potential is manifestly symmetric under the SO(N)
group.

(a) Let R = (ΦTΦ). Find the minimum, Rvac, of the potential in Eq. (1.2).

Consider a possible pattern of symmetry breaking where one of the scalar fields obtains a
non-zero expectation value. In this case one can write

ϕ1 = v + χ1 , ϕi = χi for i ∈ {2, . . . , N} . (1.3)

where v is a constant and χi describe small excitations around the minimum of the potential.

(b) Express v in terms of Rvac.

(c) Rewrite the Lagrangian in terms of the fields χi. What is the symmetry of the Lagrangian
after the symmetry breaking? How many Goldstone bosons do you expect? How many
massive scalar fields are present?

Now think of a different pattern of symmetry breaking, where two fields obtain a non-zero
expectation value. In this case one can write

ϕ1,2 = v1,2 + χ1,2 , ϕi = χi for i ∈ {3, . . . , N} (1.4)

where v1 and v2 are constants and, again, χi describe small excitations around the minimum of
the potential.

(d) Express v1 and v2 in terms of Rvac and a mixing angle ϑ.

(e) Explain why, despite the fact that two fields obtain a non-zero expectation value, the
above symmetry breaking pattern is equivalent to the previous one. Confirm this by
rewriting the Lagrangian in terms of the fields χi and by diagonalising the mass matrix.
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Exercise A.2: Singlet Higgs Model 12 P

A common way to extend the Standard Model (SM) of particle physics consists in adding
more Higgs bosons. The simplest way to do this is to add an additional scalar boson to the SM
SU(2) Higgs doublet. In this exercise, the interactions of the SM Higgs boson are investigated.
Then the effect of an additional scalar boson will be studied. Since we are adding a single scalar
(a singlet), this extension of the SM is called the singlet Higgs model.

Consider the part of the SM Lagrangian responsible for symmetry breaking,

LEWSB = −λ
4

(
ϕ†ϕ− v2

2

)2

, (2.1)

where the Higgs field ϕ(x) is an SU(2) doublet. After spontaneous symmetry breaking took
place, the Higgs field is expanded around its vacuum expectation value (vev) v:

ϕ(x) =

(
0
v+h(x)√

2

)
, (2.2)

where h(x) is a real scalar.

(a) Use Eq. (2.2) to expand the potential in Eq. (2.1) in terms of the Higgs boson h. Determine
the mass of the Higgs boson in terms of λ and v.

(b) After symmetry breaking the terms in Eq. (2.1) with cubic or higher powers of h describe
self-interactions of the Higgs boson. List the different interactions given by Eq. (2.1)
after expanding in h and determine the respective coupling in terms of λ and v.

We now extend the SM by adding a real scalar S. The new scalar couples to the SM Higgs
boson through a modified potential V (ϕ, S). The remaining SM Lagrangian stays unchanged.
In particular, the new scalar S does not couple to the fermions and gauge bosons of the SM.
The new Lagrangian term is given by

Lextended = −V (ϕ, S) = −λ
4

(
ϕ†ϕ− v2

2

)2

− a1
2

(
ϕ†ϕ− v2

2

)
S − a2

2
S2 , (2.3)

where ϕ is the SM SU(2) Higgs doublet, S is a scalar boson and a1 and a2 are coupling constants.

(c) The vev’s of ϕ and S are required to be extrema of the potential V (ϕ, S). Writing
ϕ†ϕ = r2ϕ, this yields the conditions

∂V (rϕ, S)

∂rϕ

∣∣∣∣ rϕ = rϕ,vac

S = Svac

!
= 0 , (2.4)

∂V (rϕ, S)

∂S

∣∣∣∣ rϕ = rϕ,vac

S = Svac

!
= 0 . (2.5)

Show that

r2ϕ,vac =
v2

2
, Svac = 0 , (2.6)

is a solution to these conditions.
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(d) After expanding the potential Eq. (2.3) around the vev’s of ϕ and S as

ϕ(x) =

(
0
v+h(x)√

2

)
, S(x) = Svac + s(x) = s(x) , (2.7)

the mass terms for the field excitations h(x) and s(x) can be written as

Lmass = −1

2

(
M2

Hh
2 +M2

Ss
2 +M2

HShs
)
. (2.8)

Calculate the masses M2
H , M2

S and M2
HS using Eq. (2.3).

(e) Which additional vertices do you find now compared to exercise b)? List them and their
coupling strength in terms of the introduced constants.

(f) In order to get rid of the mixed term ∝ hs in Lmass, we introduce linear combinations of
h(x) and s(x) which depend on a mixing angle ϑ:

h1(x) = cos(ϑ)h(x) + sin(ϑ)s(x) , (2.9)

h2(x) = − sin(ϑ)h(x) + cos(ϑ)s(x) . (2.10)

Determine the angle ϑ0 as a function of λ, v, a1 and a2 such that the mixed term in
Lmass vanishes.

(g) Compare the vertices you find after reparametrizing Lextended in terms of h1(x) and h2(x)
with your results of exercise e). You need not specify the coupling constants. Are there
more or less vertices?
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