

Mathematical Methods of Theoretical Physics

Lecture: Prof. Dr. K. Melnikov Exercises: Dr. C. Brønnum-Hansen

Exercise Sheet 5

Issue: 25.5.2022 - Submission: 1.6.2022 - Discussion: 15.6.2022

Exercise 1: Integrand expansion (4 points)

Calculate the following integrals by expanding their integrands and then integrating term by term. Sum the resulting series if possible.

(a) $I_1 = \int_0^1 \frac{dx}{x} \ln\left(\frac{1+x}{1-x}\right)$ (*Hint:* expand around $x \to 0$) (b) $I_2 = \int_0^\infty \frac{dx}{\cosh x}$ (*Hint:* rewrite and expand around $x \to \infty$)

For the next two integrals, find the first two terms of the leading behaviour in the limit $x \to 0$ (with x > 0).

(c)
$$I_3(x) = \int_x^1 dt \cos(xt)$$

(d) $I_4(x) = \int_0^1 dt \sqrt{\sinh(xt)}$

Exercise 2: The Fresnel integrals (6 points)

In this exercise we will consider the Fresnel integrals defined as

$$C(x) = \int_{x}^{\infty} \cos(t^2) dt, \qquad S(x) = \int_{x}^{\infty} \sin(t^2) dt, \qquad (2.1)$$

for x > 0. Our goal is to study these integrals in various limits.

(a) Show that

$$S(0) = \frac{1}{2}\sqrt{\frac{\pi}{2}}, \qquad C(0) = \frac{1}{2}\sqrt{\frac{\pi}{2}}. \qquad (2.2)$$

Hint: Calculate the integral $\int_0^\infty e^{it^2} dt$. Use Cauchy's theorem with a particular contour on the complex plane and the Gaussian integral.

(b) Find the full expansions for S(x) and C(x) as x → 0. After how many terms for x = 10 does the next term in the series drop below 10⁻¹⁰? *Hint:* Use the result of question (a) and study the integrals over [0, x].

(c) Find the asymptotic expansion for S(x) and C(x) as $x \to \infty$ using the integration-by-parts technique. After how many terms for x = 10 does the next term in the series drop below 10^{-10} ?

Exercise 3: The Laplace method (5 points)

The goal of this exercise is to use Laplace's method to find asymptotic expressions for given integrals.

Consider the following integral

$$I(x) = \int_0^{10} (1+t)^{-1} e^{-xt} dt.$$
 (3.1)

- (a) Find the leading behaviour of I(x) for $x \to \infty$. Why does the result not depend on the parameter ϵ (see section 5 of the lecture notes)?
- (b) Find the full asymptotic expansion of I(x) for $x \to \infty$. Explain why it is possible to replace the parameter ϵ by ∞ .
- (c) Determine the leading behaviour of the following integrals as $x \to \infty$

$$I_1(x) = \int_{-\pi/2}^{\pi/2} (t+2) e^{-x\cos t} dt, \qquad (3.2)$$

$$I_2(x) = \int_0^\infty \frac{e^{-x \cosh t}}{\sqrt{\sinh t}} \mathrm{d}t \,. \tag{3.3}$$