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Exercise 1: Integration using the residue theorem

Calculate the following integrals using the residue theorem.

(a)

∫ 2π

0

sin2 ϕ

5 + 4 cosϕ
dϕ , (1.1)

(b)

∫ +∞

−∞

x6

(1 + x4)2
dx , (1.2)

(c)

∫ +∞

−∞

sinx

x2 + 2x+ 2
dx . (1.3)

Exercise 2: Power series solutions to differential equations

Find a power series solution to the differential equation

y′(x) + 2xy(x) = 0 (2.1)

around x = 0.

(a) Proceed by making the ansatz

y(x) =
∞∑
n=0

anx
n , (2.2)

inserting it into the differential equation and then deriving a recurrence
relation for the coefficients an by comparing coefficients in x.

(b) Try to derive a solution to the recurrence and sum up the series. Verify that
the solution satisfies the differential equation.

https://ilias.studium.kit.edu/goto.php?target=crs_1791861 page 1 of 11

https://ilias.studium.kit.edu/goto.php?target=crs_1791861


Exercise 3: Multiplication of power series

Given two (formal) power series

A(x) =
∞∑
n=0

anx
n , B(x) =

∞∑
n=0

bnx
n , (3.1)

find an expression for cn so that the product can be written as

A(x)B(x) =
∞∑
n=0

cnx
n . (3.2)

Exercise 4: Equating coefficients

Consider the function

f(x) =
e−cx

a+ bx
. (4.1)

Calculate the power series expansion of f(x) around x = 0 and fix the coefficients
a, b and c such that the expansion starts as

f(x) = 4 + 2x+ x2 +
x3

6
+O(x4) . (4.2)

What is the next term in the expansion?
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Solution of exercise 1

In this exercise we will use the residue theorem to calculate integrals,∮
C
f(z)dz = (2πi)

∑
k

Resf(zk) , (1.4)

where f(z) is some function of complex variable z and zk are represent poles of the
function f(z) that lie inside the closed contour C.

The residue Resf(zk) can be calculated using the formula

Resf(zk) =
1

(m− 1)!
lim
z→zk

dm−1

dzm−1

[
(z − zk)mf(z)

]
, (1.5)

where m is such that the limit is well-defined.

We now apply the residue theorem to a few examples.

(a) We want to calculate the integral

Ia =

∫ 2π

0

sin2 ϕ

5 + 4 cosϕ
dϕ . (1.6)

To this end we change the integration variable ϕ→ z = eiϕ. This implies

dϕ = − i dz

z
, (1.7)

sinϕ =
e+iϕ − e−iϕ

2i
=

1

2i

(
z − 1

z

)
, (1.8)

cosϕ =
e+iϕ + e−iϕ

2
=

1

2

(
z +

1

z

)
. (1.9)

The integration contour is the following

-1.5 -1.0 -0.5 0.5 1.0 1.5

Re[z]

-1.5

-1.0

-0.5

0.5

1.0

1.5

Im[z]

and the integral is written as

Ia = − i
∮

dz

z

−1
4
(z2 − 2 + 1/z2)

5 + 2z + 2/z

= +
i

4

∮
(z4 − 2z2 + 1)dz

z2(2 + z)(1 + 2z)
. (1.10)
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This integral has three residues

z1 = 0 , z2 = − 1/2 , z3 = − 2 . (1.11)

Two of them, z1 and z2, lie inside the integration contour.
Using the prescription given in Eq. (1.5) we have

Resf(z1) = lim
z→0

d

dz

[
z2f(z)

]
= lim

z→0

d

dz

[ z4 − 2z2 + 1

(2 + z)(1 + 2z)

]
= −5

4
, (1.12)

Resf(z2) = lim
z→−1

2

[ (
z − 1

2

)
f(z)

]
= lim

z→−1
2

[z4 − 2z2 + 1

2z2(2 + z)

]
= +

3

4
, (1.13)

which by application of the residue theorem of Eq. (1.4) leads us to

Ia = +
i

4
(2πi) [Resf(z1) + Resf(z2)] , (1.14)

and to the final result

Ia = +
π

4
. (1.15)

You can check the result, for example, in Mathematica by executing:

Integrate[Sin[x]^2/(5+4* Cos[x]),{x,0,2Pi}]

(b) Our second integral to calculate is

Ib =

∫ +∞

−∞

x6 dx

(1 + x4)2
. (1.16)

In order to use the residue theorem to calculate this integral we perform
simply use x = z and consider the following integration contour

-R +R
Re[z]

Im[z]

where we distinguish two parts of this contour C1, which is a line along real
axis from −R to +R, and C2 which is a semicircle with radius R and origin
at z = 0.

We now need to find poles of the function f(z) = z6/(1 + z4)2. These are

z1 = e+i(π/4) , z2 = e+i(3π/4) , z3 = e+i(5π/4) , z4 = e+i(7π/4) . (1.17)
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Only z1 and z2 lie within of the integration contour. Therefore, using residue
theorem of Eq. (1.4) we have∫

C1

z6 dz

(1 + z4)2
+

∫
C2

z6 dz

(1 + z4)2
= (2πi)

[
Resf(z1) + Resf(z2)

]
. (1.18)

We first look at the contour integrals. We immediately write∫
C1

z6 dz

(1 + z4)2
=

∫ +R

−R

x6 dx

(1 + x4)2
, (1.19)∫

C2

z6 dz

(1 + z4)2
=

∫ π

0

R6e6iα

(1 +R4e4iα)2
Reiαidα , (1.20)

where we have parametrised the second integral using z = Reiα. If we take
the limit R→∞ we obtain

lim
R→∞

∫
C1

z6 dz

(1 + z4)2
= Ib , (1.21)

lim
R→∞

∫
C2

z6 dz

(1 + z4)2
= lim

R→∞

i

R

∫ π

0

e−iαdα = 0 . (1.22)

We calculate the residues

Resf(z1) = lim
z→z1

d

dz

[
(z − z1)2

z6

(1 + z4)2

]
= +

3

16
√

2
(1− i) , (1.23)

Resf(z2) = lim
z→z2

d

dz

[
(z − z2)2

z6

(1 + z4)2

]
= − 3

16
√

2
(1 + i) . (1.24)

Finally, we obtain

Ib + 0 = (2πi)
[ 3

16
√

2
(1− i)− 3

16
√

2
(1 + i)

]
, (1.25)

which gives

Ib =
3π

4
√

2
. (1.26)

You can check the result, for example, in Mathematica by executing:

Integrate[x^6/(1+x^4)^2 ,{x,-Infinity ,+ Infinity }]

(c) The last example is to calculate the following integral

Ic =

∫ +∞

−∞

sinx

x2 + 2x+ 2
dx . (1.27)
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We again set x = z and use sin z = (e+iz − e−iz)/(2i). This leads us to the
following integral

Ic =
1

2i

∫ +∞

−∞

e+iz − e−iz

(z + 1)2 + 1
dz . (1.28)

We can immediately identify that the poles of the integrand are

z1 = − 1 + i , z2 = − 1− i . (1.29)

In order to apply the residue theorem to calculate the integral Ic, we need to
discuss what contour of integration is suitable for our task. We would like
part of the contour to lie along the real axis, which will be directly related
to integral Ic, and closed in such a way that the integral over the additional
part either vanishes or is easy to calculate. In this case, a somewhat natural
choice is

-R +R
Re[z]

Im[z]

or

-R +R
Re[z]

Im[z]

Before deciding which of the two is best for us, let us analyse the situation
in a more general setup.

Jordan’s lemma: Let us consider an integral

J =

∫
C+
f(z)eikzdz , (1.30)

where C+ is the upper semicircle with radius R and origin at z = 0, i.e. the
first choice from above, parameter k is positive and f(z) is some function.
We would like to estimate the value of integral J . For this purpose, we
parametrise

z = Reiα = R cosα + iR sinα , (1.31)

dz = iReiα dα . (1.32)

We can then estimate the modulus of the integral J as

|J | =
∣∣∣∣∫
C+
f(z)eikzdz

∣∣∣∣ 6 ∫
C+
|f(z)| · e−kR sinα · |dz| . (1.33)
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Further, we can put a bound by taking the maximal value of the function
|f(z)| on the semicircle C+,

fmax = max
z∈C+
|f(z)| . (1.34)

This leads us to a bound

|J | 6 fmax ·R
∫ π

0

e−kR sinαdα

= 2fmax ·R
∫ π/2

0

e−kR sinαdα , (1.35)

where in the second step we have used the symmetry α→ π − α.
Moreover, on the interval α ∈ [0, π

2
] we have

sinα > 2
π
α . (1.36)

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

x

f
(x
)

and this inequality allows us to estimate∫ π/2

0

e−kR sinαdα 6
∫ π/2

0

e−2kRα/πdα =
π

2kR

[
1− e−kR

]
. (1.37)

We finally obtain

|J | 6 π

k
fmax(1− e−kR)

R→∞−→ π

k
fmax , (1.38)

which means that integral

J =

∫
C+
f(z)eikzdz (1.39)

vanishes as soon as the maximum of function f(z) vanishes on the semicircle
C+.
Note that our analysis featured k > 0. In case we need to deal with negative
values of k, we can perform the same analysis but closing the contour with
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lower semicircle C−, i.e. like the choice of the contour on the right in picture
above.

Being equipped with the Jordan’s lemma, we can now get back to our integral
Ic,

Ic =
1

2i

∫ +∞

−∞

e+iz − e−iz

(z + 1)2 + 1
dz

=
1

2i

∫ +∞

−∞

e+iz

(z + 1)2 + 1
dz − 1

2i

∫ +∞

−∞

e−iz

(z + 1)2 + 1
dz , (1.40)

where we have split our integral into two parts and, based on the Jordan’s
lemma, we will close the integration contour of the first one using upper
semicircle and the contour of the second integral using lower semicircle.
The residue theorem then leads us to∫ +∞

−∞

e+iz

(z + 1)2 + 1
dz = + (2πi)Resf(z1) = +πe−1−i , (1.41)∫ +∞

−∞

e−iz

(z + 1)2 + 1
dz = − (2πi)Resf(z2) = +πe−1+i , (1.42)

as z1 = (−1 + i) lies in the upper plane and z2 = (−1− i) in the lower plane.
Note: When using residue theorem for the second integral we inserted a
minus sign since the contour was not positively oriented, i.e. when travelling
along a positively oriented contour one always has the contour interior to
the left, otherwise one needs to change the orientation of the contour which
in our case amounts to a minus sign.
Putting all ingredients together we obtain

Ic =
1

2i

∫ +∞

−∞

e+iz

(z + 1)2 + 1
dz − 1

2i

∫ +∞

−∞

e−iz

(z + 1)2 + 1
dz

=
1

2i

π

e

[
e−i − e+i

]
= − π

e
sin(1) (1.43)

You can check the result, for example, in Mathematica by executing:

Integrate[Sin[x]/(x^2+2x+2),{x,-Infinity ,+ Infinity }]

Solution of exercise 2

(a) Inserting the ansatz into the differential equation yields

∞∑
n=1

nanx
n−1 + 2x

∞∑
n=0

anx
n = 0 . (2.3)
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Expanding out the first terms yields

0 = x0a1 + x1(2a2 + 2a0) + x2(3a3 + 2a1) + . . . , (2.4)

which immediately tells us that a1 = 0 (and of course a2 = −a0, a3 =
−2

3
a1 = 0). Next, we return to the general n expression. We want to rewrite

Eq. (2.3) such that we can immediately read off the recurrence. Therefore,
we shift the first series by i = n− 1 and the second series by j = n+ 1 and
find

0 =
∞∑
i=0

(i+ 1)ai+1x
i +

∞∑
j=1

2aj−1x
j = a1 +

∞∑
k=1

xk((k + 1)ak+1 + 2ak−1) .

(2.5)

In the last step we simply renamed the summation indices in both series to
k and merged the sums. Since each power of xk is linearly independent, we
get the recurrence we are looking for (for k ≥ 1)

(k + 1)ak+1 + 2ak−1 = 0 , (2.6)

or after shifting once more l = k + 1 (with l ≥ 2)

lal + 2al−2 = 0 . (2.7)

(b) Combining the recurrence Eq. (2.7) with our previous finding that a1 = 0,
we immediately see that all odd coefficients vanish. To make working with
the recurrence a bit easier, we rewrite l = 2m and ãm = a2m to get

2mãm + 2ãm−1 = 0 . (2.8)

It is easy to check that

ãm = a0
(−1)m

m!
(2.9)

fulfils this recurrence. Therefore, we get

y(x) =
∞∑
l=0

alx
l =

∞∑
m=0

ãmx
2m = a0

∞∑
m=0

(−x2)m

m!
= a0 exp(−x2) , (2.10)

which we can easily verify fulfils the differential equation.

Solution of exercise 3

We start by realising that simply multiplying the two series term-wise, i.e.,

A(x)B(x) =
∞∑
n=0

∞∑
m=0

anx
nbmx

m =
∞∑
n=0

∞∑
m=0

anbmx
n+m (3.3)

corresponds to summing first over columns (m running from 0 to ∞ indexes the
columns) and then summing over rows (n running from 0 to∞ indexes the rows) in
the diagram shown on the left below. However we can also sum diagonally: Then
n running from 0 to ∞ indexes the diagonals while m running from 0 to n indexes
the element of the diagonal – as shown in the diagram on the right.
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m

n

Then we need to sum

∞∑
n=0

n∑
m=0

ambn−mx
n (3.4)

and therefore, the expression we are looking for is

cn =
n∑

m=0

ambn−m . (3.5)

Solution of exercise 4

We can easily calculate the expansion of

f(x) =
e−cx

a+ bx
=

1

a
e−cx

1

1− −bx
a

(4.3)

without calculating lots of derivatives by combining the expansions of the exponen-
tial function and the geometric series

e−cx =
∞∑
n=0

(−c)n

n!
xn ,

1

1− −bx
a

=
∞∑
n=0

(
− b
a

)n
xn . (4.4)

Combining this with the Cauchy product derived in the previous exercise yields

f(x) =
1

a

∞∑
n=0

xn
n∑

m=0

(−c)m

m!

(−b)n−m

an−m
=
∞∑
n=0

(−x)n
n∑

m=0

cmbn−m

m!an−m+1
(4.5)

Thus, expanding f(x) through O(x3) yields

f(x) =
1

a
− xac+ b

a2
+ x2

a2c2 + 2abc+ 2b2

2a3

− x3a
3c3 + 3a2bc2 + 6ab2c+ 6b3

6a4
+O(x4) . (4.6)
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Equating coefficients with the given expansion

f(x) = 4 + 2x+ x2 +
x3

6
+O(x4) (4.7)

yields

4 =
1

a
⇒ a =

1

4
(4.8)

2 = −16b− 4c ⇒ b = −1

8
− c

4
(4.9)

1 = 1 + 2c+ 2c2 ⇒ c =

{
−1

0
(4.10)

Inserting both solutions for c into the coefficient of x3 yields

c = 0 ⇒ [x3]f(x) =
1

2
, (4.11)

c = −1 ⇒ [x3]f(x) =
1

6
. (4.12)

Therefore, the solution is

a =
1

4
b =

1

8
c = −1 , (4.13)

which yields

f(x) = 4 + 2x+ x2 +
x3

6
+
x4

12
+O(x5) (4.14)
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