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1 Examples of perturbation theory in physics problems

This course is about using perturbation theory, broadly defined, to solve com-

plicated mathematical problems, and I would like to explain why I consider

this subject useful. The main point is that in theoretical physics meaningful

problems that can be solved exactly do not exist, at the first approximation.

Yet, when we teach physics, we often discuss problems that can be solved

exactly (recall hydrogen atom, harmonic oscillator, two-body problem in me-

chanics etc.) The reason we do that is that we believe that exactly solvable

problems often allow us to start a sequence of approximations that brings us

closer to the real-world problems for which exact solutions are impossible. We

can call this approach a “perturbation theory”.

However, at variance with what we refer to as perturbation theory in

e.g. course on quantum mechanics, we can understand perturbation theory

broader – as a way to construct approximate, but high-quality, solutions to

problems of interest in situations when exact solution is impossible. Under-

standing how to do this in various circumstances is the main theme of this

course.

During the course we will deal with mathematical examples without con-

necting them to physics most of the time. For this reason it is perhaps useful

to begin with a few simple physics examples where the need to develop per-

turbation theory in the above sense arises. This is what we will do in this

lecture. At the end of the lecture we will also discuss if perturbation theory

is a good idea, in general.

Expansion of integrals

Consider a particle moving in an arbitrary potential U(x) in one dimension,

see Fig.1. We imagine that this potential has a local maximum at a point

x = 0. The height of the maximum is U0. The energy of the particle E is

such that E − U0 = ∆≪ U0.

There are two turning points to the left and to the right of x = 0; we will

call them a and b. The particle moves back and forth between a and b; we

would like to find out how the period of oscillations depends on ∆.

To find this dependence, we write the standard formula for the period of

oscillations

T =
√
2m

b∫
a

dx√
E − U(x)

. (1)
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Figure 1: A particle in the potential U(x); the energy of the particle E is

slightly larger than the local maximum of the potential energy U0.

In general, if we want to proceed further, we need to know what U(x) is.

However, when ∆ is small this is not necessary because the particle spends

significant amount of time close to x = 0. Since x = 0 is the local maximum

of the potential, its Taylor expansion at around x = 0 reads U(x) ≈ U0 −
|U ′′0 |x2/2 + U ′′′0 x3/6 +O(x4). Since the above approximation is only valid at
small x , it is convenient to split the integral in Eq.(1) into three integrals that

describe two regions away from x = 0 and the neighborhood of x = 0. Then

T =
√
2m

−ϵ∫
a

dx√
E − U(x)

+
√
2m

ϵ∫
−ϵ

dx√
E − U(x)

+
√
2m

b∫
ϵ

dx√
E − U(x)

.

(2)

We can choose ϵ to satisfy the following inequalities√
∆

|U ′′0 |
≪ ϵ≪

|U ′′0 |
|U ′′′0 |

. (3)

One of these inequalities allows us to approximate the potential U(x) by a

quadratic polynomial in the interval −ϵ < x < ϵ. The other inequality will

be important for connecting the three x-intervals in Eq. (2). Note that the

above equation can only be satisfied if√
∆

|U ′′0 |
≪
|U ′′0 |
|U ′′′0 |

, (4)

and it is important to emphasize that this equation is always satisfied provided

that ∆ is sufficiently small.
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Focusing on the contribution of the region −ϵ < x < ϵ, we write

ϵ∫
−ϵ

√
2m dx√
E − U(x)

≈
ϵ∫

−ϵ

√
2m dx√

∆ + |U ′′0 |x2/2
=

√
4m

|U ′′0 |

√
ϵ2|U′′

0
|

2∆∫
−

√
ϵ2|U′′

0
|

2∆

dξ√
1 + ξ2

≈

√
4m

|U ′′0 |
ln

[
2ϵ2|U ′′0 |
∆

](
1 +O

(
∆

|U ′′0 |ϵ2

))
.

(5)

The fact that corrections to the above formula really scale as ∆/(|U ′′0 |ϵ2), i.e.
that there is no O(∆0) term, is not obvious; one has to compute the integral
over ξ explicitly and take the limit ∆→ 0.
In principle, the above result can already be used to estimate the period of

oscillations since as ∆ becomes smaller and smaller the ln∆ terms dominates

and the above formula gives a better and better approximation to the actual

T . However, the logarithm is a slow-growing function so that in practice, it

is important to compute T accounting for both ln ∆ and O(∆0) terms and
neglect terms of order ∆ and higher.

To this end, we need to use the result in Eq.(5) and add to it contributions

of the two outer regions

T ≈

√
4m

|U ′′0 |
ln

[
2ϵ2U ′′

∆

]
+
√
2m

−ϵ∫
a

dx√
E − U(x)

+
√
2m

b∫
ϵ

dx√
E − U(x)

. (6)

As the next step, we will try to get rid of the parameter ϵ. The key observation

is that since we have chosen |U ′′0 |ϵ2 ≫ ∆, we can set E = U0 in the remaining
integrals in Eq.(6). Then, we find

T ≈
√

m

|U ′′0 |
ln

[
2ϵ2|U ′′0 |
∆

]
+
√
2m

−ϵ∫
a

dx√
U0 − U(x)

+
√
2m

b∫
ϵ

dx√
U0 − U(x)

,

(7)

where, in comparison to Eq.(2), we took the limit E → U0 where appropriate.

In principle, Eq.(7) provides the desired result. However, it does not look

satisfactory since Eq.(7) contains the auxiliary parameter ϵ. To get rid of it,
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we write

b∫
ϵ

dx√
U0 − U(x)

=

b∫
ϵ

dx

[
1√

U0 − U(x)
−

1√
|U ′′0 |x2/2

]
+

b∫
ϵ

dx√
|U ′′0 |x2
2

=

b∫
0

dx

[
1√

U0 − U(x)
−

1√
|U ′′0 |x2/2

]
+

√
2

|U ′′0 |
ln
b

ϵ
+O(ϵ).

(8)

Repeating the calculation to describe the contribution of the region a <

x < −ϵ, we obtain our final result

T ≈

√
4m

|U ′′0 |
ln

[
2|ab||U ′′0 |
∆

]
+

b∫
a

dx

[
1√

U0 − U(x)
−

1√
|U ′′0 |x2/2

]
+O(∆).

(9)

Note, that the dependence on the auxiliary parameter ϵ is gone.

To summarize, we have found an approximate expression for the period of

oscillations of a particle in an arbitrary potential under the assumption that

the energy of the particle is close to the local maximum of the potential.

The leading term in this expansion
√
4m
|U ′′0 |
ln
2|U ′′0 ||ab|
∆

depends on the second

derivative of the potential at the local maximum and the length of the x

interval available to a particle with the energy E ∼ U0. The ∆-independent
term depends on the global properties of the potential; to compute it the

exact formula of the potential is needed.

This example shows one of the many ways of how perturbative expansion

can appear – we begin with an exact expression, identify a small parameter

and simplify the computation setting the small parameter to zero where ap-

propriate. An important trick that we used here to compute an integral that

depends on a small parameter is the splitting of the integration region into

different intervals chosen in such a way that in each of the intervals we could

simplify integrands, albeit for different reasons.

Differential equations

Another class of problems where perturbation theory is often used refers to dif-

ferential equations that depend on a small parameter. Sometimes the choice

of the small parameter is obvious and sometimes it is less so, and sometimes

even if the small parameter is obvious, it is not clear how a perturbative

expansion can be set up.
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A good example is the quasi-classical limit in quantum mechanics. Con-

sider a Schrödinger equation(
−
ℏ2d2

2mdx2
+ V (x)− E

)
Ψ = 0. (10)

It is well known that ℏ is small.1 How can the smallness of ℏ be exploited?
A systematic approximation that allows us to solve any Schrödinger equation

in a closed form assuming of course that ℏ can be considered to be small is
known as the WKB approximation. To see that this approximation is non-

trivial, we can just take the limit ℏ → 0 in Eq.(10). The result then looks as
follows

(V (x)− E)Ψ(x) = 0, (11)

which implies Ψ(x) ∼ δ(V (x)− E). This solution, obviously, has nothing to
do with the expected behavior of the wave function. We will discuss how to

construct a proper perturbation theory for the Schrödinger equation using ℏ
as a parameter later in the course; for now let us just say that the reason

for this pathological behavior in the limit ℏ → 0 is related to the fact that
ℏ multiplies the differential operator in the differential equation. By naively
setting ℏ to zero, we completely change the nature of the equation since we
turn the differential equation into an algebraic equation.

Next, we will discuss yet another example of a perturbative expansion

where the small parameter is not obvious. Consider a pendulum of length l

with the mass m attached to its end point; pendulum’s pivot moves up and

down with an amplitude a cos γt. Suppose that the frequency γ is very large.

We would like to describe the pendulum’s motion. We choose angle ϕ to

describe the position of the pendulum and construct the Lagrange function2

L =
ml2ϕ̇2

2
−maγ2l cos(γt) cos(ϕ) +mgl cos(ϕ). (12)

The Euler-Lagrange equation of motion then easily follows

ml2ϕ̈ = maγ2l cos(γt) sin(ϕ)−mgl sin(ϕ). (13)

We would like to understand how this equation can be solved in the limit when

γ is very large. To simplify the discussion we also assume that a/l is small.

1Of course ℏ is a dimensionfull quantity, so in order to say that it is small we need to
compare it to something. But we still know that it is small...

2To arrive at the Lagrange function shown below, we discard certain total time-derivatives.
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To set up a perturbative expansion, we write ϕ(t) = s(t) + r(t) where

the two functions s(t) and r(t) describe slow and rapid oscillations. Working

in an approximation of small ϕ, we expand the above equation through terms

that are linear in ϕ and find

ml2 (s̈ + r̈) = maγ2l cos(γt) (s + r)−mgl (s + r). (14)

We recognize that in this equation there are terms that oscillate fast and

there are terms that oscillate slow; of course, these terms should satisfy the

equation separately. Since rapid oscillations are driven by the pivot’s motion

with the amplitude a, we expect r(t) ∼ a/l ≪ 1 whereas s(t) ∼ 1. Hence,
the equation for the leading fast term reads

ml2r̈ = maγ2l cos(γt) s(t). (15)

To solve this equation, we can neglect the time dependence of the function

s(t) since it does not change much on the time scale at which the function

r(t) changes. Hence, the solution of Eq. (15) reads

r(t) = −
a

l
cos(γt)s(t). (16)

We now substitute the solution Eq.(16) back into Eq.(14) and average the

resulting equation over the period of fast oscillations 2π/γ. We then obtain

an equation for s(t)

ml2 s̈ = −
ma2γ2

2
s −mgls. (17)

This equation describes small oscillations of a pendulum with the frequency

ω2 =
g

l
+
a2γ2

2l2
. (18)

The full solution is then described by the modulated oscillations

ϕ(t) = A
(
1−

a

l
cos (γt)

)
cos(ωt + θ0) (19)

We note that since γ is very large, it can compensate smallness of a/l and

lead to significant differences between g/l and ω2.

To summarize, the small parameter in this example is the ratio of frequen-

cies of slow and fast oscillations. As we have seen, developing the perturbation

theory in this parameter is not trivial.
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Validity of perturbation theory

Having discussed how to set up a calculation of a particular quantity using

a perturbation theory, it is interesting to ask if perturbative expansions are

helpful. You may think that this is a strange question since we know of plenty

of examples in physics were predictions based on perturbation theory are,

actually, very important and, apparently, not too wrong.

However, it is instructive to contrast this practical knowledge with the

following classic example. We are interested in computing ground state energy

of anharmonic oscillator described by the Hamiltonian

H =
p2

2
+
ω2x2

2
+ λx4. (20)

We would like to solve the Schrödinger equation

HΨ(x) = E0Ψ, (21)

subject to the boundary condition Ψ(x) → 0 as |x | → ∞ and determine the
energy of the ground state E0 as a function of ω and λ.

It is well-known that we can not solve the Schrödinger equation Eq.(21)

exactly but, assuming that λ is sufficiently small, we can use perturbation

theory. To this end, we write

E0 =
ω

2
+ ω

∞∑
k=1

Ck

(
λ

ω3

)k
(22)

We can compute coefficients Ck using perturbation theory for non-degenerate

levels. The coefficient C1 is given by the following formula

C1
ω2
= ⟨0|x4|0⟩, (23)

whereas the coefficient C2 reads

C2
ω5
=

∞∑
k ̸=0

⟨0|x4|k⟩⟨k |x4|0⟩
ω
2
− Ek

, (24)

where Ek are energy eigenvalues of the Hamiltonian Eq.(20) at λ = 0.

Both C1 and C2 can be computed with some effort using available results

for energy eigenvalues and wave functions for the quantum oscillator problem.
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However, there is a much more efficient way to compute these coefficients

Ck .
3 The result of the computation reads

C1 =
3

4
, C2 = −

21

8
, C3 =

333

16
, C4 = −

30 885

128
,

C5 =
916 731

256
, C6 = −

65 518 401

1 024
, · · · C9 =

54 626 982 511 455

65 536
.

(25)

We note that these results imply an impressive growth in the expansion

coefficients! Indeed, we start with C1 = 0.75 and by the time we get to

the ninth term in the expansion, we find C9 ∼ 108! It can be shown that the
explosive growth of perturbative coefficients can be described by the following

formula

Ck ∼ 3k(−1)k+1
√
6

π3
Γ

(
k +
1

2

)(
1−

95

72k
+O(k−2)

)
. (26)

Since Γ(k+1/2) ∼ k!, the perturbative expansion of the ground state energy
experiences factorial growth. It is then obvious that this series has vanishing

radius of convergence which implies that no matter how small λ actually is,

the series fails to converge to the right answer!

There are several immediate questions that arise:

• why does this happen?

• is the perturbative expansion as we teach it in quantum mechanics (and
in quantum field theory etc.) useful after all?

• how can we use this strange series to learn anything about the true
energy of the ground state of the anharmonic oscillator?

Lets first discuss the answer to the first question – why does it happen.4

The answer to this question is that the point λ = 0 is peculiar. Indeed, an

existence of the series expansion of the ground state energy in λ in Eq.(21)

tacitly implies that the energy of the ground state E is an analytic function

of the coupling constant λ meaning that things do not change much between

small negative and small positive values of λ. However, it is quite obvious that

this can not be the case since the potential at arbitrary small but negative

3C. Bender and T.T. Wu, 1969.
4The first argument that perturbative series in QED can not be convergent was given by

F.Dyson in 1952.
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λ’s is unbounded from below so that the ground state located around x = 0

becomes a metastable state. Hence, the perturbative expansion of the ground

state in powers of λ should have zero radius of convergence and this is what

we see in an explicit computation.

Apart from having the vanishing radius of convergence, the perturbative

expansion of the ground state energy has another interesting feature. Indeed,

by using perturbative series, we can improve the prediction for the ground

state energy up to values of k that are of the order of ω3/(3λ) but after that

series starts to diverge. If λ is small, we can still use quite a large number of

terms in the series to get a good estimate of the ground state energy. In fact,

the error that we make by truncating series at k ∼ ω3/(3λ) is controlled by
exp(−ω3/(3λ)); so the smaller λ is, the smaller the inevitable error will be.
Moreover, it turns out that these divergent perturbative series can be summed

up to obtain an estimate of the exact value of the ground state energy even

for large values of λ.

To summarize, sometimes the perturbative expansion leads to pathologi-

cal, divergent series. However, these series can still be used and worked with

and, if treated properly, they can give us fairly accurate answers to questions

that we try to address to begin with, so not everything is lost.
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2 Local analysis of linear differential equations

We begin with discussing approximate solutions of differential equations that

can be constructed locally; i.e. they provide approximations to solutions of

differential equations close to particular points. To make this more precise,

consider a homogeneous linear differential equation

y (n)(x) + pn−1(x)y
(n−1)(x) · · ·+ p1(x)y (1)(x) + p0(x)y(x) = 0, (27)

where we used the notation y (n)(x) = dny/dxn.

Suppose we pick a point on the x-axis; we will refer to this point x0.

We are interested in understanding how solutions to the differential equation

Eq.(27) behave in the immediate vicinity of the point x0. Not surprisingly,

this behavior is controlled by the behavior of the functions pn(x) at x = x0. In

fact, we distinguish three types of points that one refers to as i) regular points

of a differential equation or ii) singular regular points of a differential equation

or iii) irregular singular points. This nomenclature is explained below.

Regular points. A point x = x0 is a regular point of a differential equation

Eq.(27) if all coefficient functions pk(x) in Eq.(27) are analytic in the neigh-

borhood of x = x0. All n solutions of Eq.(27) can be represented as Taylor

series at x = x0

y(x) =

∞∑
n=0

an(x − x0)n. (28)

The coefficients an of these solutions are determined recursively from the

differential equation. The series converge for |x−x0| smaller than the distance
between x0 and the closest singularity of any of the functions pk(x) in the

complex x-plane.

We will consider a few examples, to illustrate how this works. We begin

with the following equation

y ′ − 2xy = 0. (29)

The point x = 0 is a regular point; therefore, we write

y(x) =

∞∑
n=0

anx
n. (30)

Substituting the series into the above equation, we find

∞∑
n=0

annx
n−1 = 2

∞∑
n=0

anx
n+1. (31)
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Requiring that coefficients of same powers of x coincide, we find the recur-

rence relation

an+2(n + 2) = 2an, a1 = 0. (32)

It follows that a3, a5, .., a2k+1 = 0 and

an+2 =
2an
n + 2

, (33)

for even n. Writing n = 2k , we find

a2k+2 =
a2k
k + 1

, (34)

so that

a2k =
a0
k!
. (35)

The function y(x) becomes

y(x) =

∞∑
k=0

a0
k!
x2k = a0e

x2. (36)

One can check that this function is indeed the solution of the differential

equation Eq.(29). We also observe that the solution is determined up to an

unknown constant a0; this is indeed what should be expected since we have

to specify one boundary condition to fully determine a solution of a first-order

differential equation.

Regular singular points. A more involved case is that of a regular singular

point. A point x = x0 is called a regular singular point of the differential

equation Eq.(27) if some of the functions pk(x) are not analytic at x = x0
but all functions (x − x0)n−kpk(x) are analytic at x = x0. The general theory
of differential equations states that in the vicinity of a regular singular point

there is at least one solution of the differential equation Eq.(27) that has the

so-called Frobenius form

y(x) = (x − x0)α
∞∑
n=0

an(x − x0)n. (37)

The quantity α is called indicial exponent. Of course, one solution is insuf-

ficient to fully describe solutions of an n-th order differential equation. We

will discuss how other solutions can be obtained after discussing solutions in

Frobenius form.
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As an example, consider the second-order differential equation

d2y

dx2
+

y

4x2
= 0. (38)

The polynomials p1,0(x) that appear in this equation are p1 = 0 and p0 =

1/(4x2). Since xp1 = 0 and x
2p0 = 1/4 are both analytic functions in the

entire complex plane, x = 0 is a regular singular point. To find solutions at

small x , we make an Ansatz for y(x) in the Frobenius form y(x) = xα
∞∑
n=0

anx
n,

substitute it into the differential equation Eq.(38) and obtain

∞∑
n=0

an

(
(n + α)(n − 1 + α) +

1

4

)
xn+α−2 = 0. (39)

Suppose a0 ̸= 0; this is only possible if

α(α− 1) +
1

4
=

(
α−

1

2

)2
= 0. (40)

It follows that α = 1/2. Since for α = 1/2,(
(n + α)(n − 1 + α) +

1

4

)
̸= 0, n > 0, (41)

we conclude from Eq.(39) that an>0 = 0. Hence, y(x) = a0
√
x is a solution

in the Frobenius form.

As was stated above, the existence of only one solution in the Frobenius

form is, in general, guaranteed. However, any second order differential equa-

tion must have two independent solutions. We have found one of them and

we would like to understand how to find the second one. To this end, we

modify the differential equation Eq.(38) as follows

d2y

dx2
+
1− 4ϵ2

4x2
y(x) = 0, (42)

where ϵ is a small parameter. The point x = 0 remains a regular singular

point.

Repeating the above computation, we find an equation for indicial expo-

nent (
α−

1

2

)2
= ϵ2, (43)
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so that two Frobenius solutions appear

α± =
1

2
± ϵ. (44)

Therefore,

y(x) = y+(x) + y−(x) = a+x
1/2+ϵ + a−x

1/2−ϵ. (45)

If the limit ϵ→ 0 is taken, the two solutions become degenerate. Hence, two
solutions that remain independent also in the ϵ→ 0 limit can be constructed
as follows

y(x) = a0 lim
ϵ→0

y+(x) + a1 lim
ϵ→0

y+(x)− y−(x)
2ϵ

= a0
√
x + a1

√
x ln(x). (46)

We note that the second solution y(x) ∼
√
x ln x does not have the Frobenius

form, cf. Eq. (37).

To discuss this issue from a more general perspective, consider a differen-

tial equation with a regular singular point at x = x0

y ′′(x) +
p(x)

(x − x0)
y ′(x) +

q(x)

(x − x0)2
y(x) = 0. (47)

The two functions p(x) and q(x) are analytic at x = x0. To construct

solutions of the differential equation Eq. (47), we expand these functions in

a series around x = x0

p(x) =
∑

pn(x − x0)n, q(x) =
∑

qn(x − x0)n. (48)

We will look for the solution in the Frobenius form

y(x) = (x − x0)α
∞∑
n=0

an(x − x0)n. (49)

Substituting these expansions in Eq.(47), we find the following recursion

relation for the coefficients an

an(n + α)(n − 1 + α) +
n∑

m=0

(pm(n −m + α) + qm) an−m = 0. (50)

We take n = 0 and find

a0P (α) = 0, (51)
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where

P (α) = α(α− 1) + p0α+ q0. (52)

This function is called indicial polynomial. Assuming a0 ̸= 0, we find possible
values of α by solving the equation

P (α) = 0. (53)

The solutions read

α± =
1− p0 ±

√
(p0 − 1)2 − 4q0
2

. (54)

Then,

a1 = −
(p1α+ q1)a0
P (1 + α)

, . . . , an = −
((p1(n − 1 + α) + q1) an−1 + · · ·

P (n + α)
. (55)

It follows from the above discussion that if Eq.(53) admits two solutions α±
such that α+−α− is not an integer number, then both independent solutions
of the differential equation have Frobenius form.

We will now discuss what happens in two special cases: α+ = α− and

α+ − α− = N, where N is integer. We will start with the case α+ = α−
and explain how to construct the second solution starting from the Frobenius

solution. To this end, consider Eq.(47), use the ansatz Eq.(49) there and

solve the recurrence relation ignoring Eq.(53). We will denote the solution

obtained following this procedure y(x, α).

It is easy to check that this function satisfies the following differential

equation

L̂ y(α, x) = a0(x − x0)α−2P (α), (56)

where the differential operator L is defined as

L̂ =
d2

dx2
+

p(x)

x − x0
d

dx
+

q(x)

(x − x0)2
. (57)

In case when the two solutions of Eq.(53) are degenerate, the indicial

polynomial reads P (α) = (α − α1)2. Hence, it follows from Eq.(56) that
y(x, α1) is the solution of the original differential equation since the right

hand side of Eq.(56) vanishes if we use α = α1 there. This is the solution in

the Frobenius form that we have already found.

To construct the second solution, we note that a derivative of Eq.(56)

w.r.t. α also has a vanishing right hand side at α = α1 since dP (α)/dα = 0
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for α = α1. Hence, to construct the second solution, we take a derivative of

Eq.(56) w.r.t α and, once the derivative is computed, set α = α1. We find

L̂
∂y(x, α)

∂α
|α=α1 = 0, (58)

which implies that ∂y(x, α)/∂α|α=α1 is also a solution of the original differ-
ential equation.

We can expose the form of the second solution by taking the derivative

of y(x, α) = (x − x0)α
∞∑
n=0

an(α)(x − x0)n with respect to α. It becomes clear

that the second independent solution can be written in the following way

y2(x) = ln(x − x0)y1(x) + (x − x0)α
∞∑
n=0

bn(x − x0)n, (59)

where y1(x) is the Frobenius solution. To find the coefficients bn, we make use

of the fact that y1(x) is known, insert Eq.(59) into the differential equation

Eq.(47) and obtain recurrence relations for coefficients bn. We do not show

these relations here since it is fairly straightforward to obtain them.

The second special case that we need to consider is α1 = α2 + N, where

N is a positive integer. We assume that we constructed a Frobenius solution

for α = α1. Note that if we attempted to construct a Frobenius solution for

α2, we would have run into a problem because for computing aN we need to

divide by P (α2 + N) = P (α1) = 0. Nevertheless, we can can make use of

Eq.(56) by doing the following. Writing

L̂(α− α2)y(x, α) = a0(x − x0)α−2(α− α2)2(α− α1) (60)

and taking derivative of both sides w.r.t α and evaluating the result at α = α2,

we find

L̂
∂

∂α
[(α− α2)y(x, α)]α=α2 = 0. (61)

Hence, the second independent solution is

y2(x) = lim
α→α2

∂

∂α
[(α− α2)y(x, α)] . (62)

We will consider an example to illustrate the construction of the second

independent solution. Consider the Bessel equation

y ′′(x) +
1

x
y ′(x) +

x2 − 4
x2

y(x) = 0. (63)
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The point x = 0 is a regular singular point. Hence, we look for a Frobenius

solution

y(x) = a0x
α

∞∑
n=0

rnx
n. (64)

Without loss of generality, we assume that r0 = 1. We then find

r0(α
2 − 4) = 0, rn+2 = −

rn
(α+ n + 2)2 − 4 . (65)

It follows r1, r3, r5, .., r2n+1 = 0, α1 = 2 and α2 = −2. Since α1 −α2 = 4, we
need to take α1 = 2 to construct a Frobenius-like solution. It reads

y1(x) = a0x
2

(
1−

x2

12
+
x4

384
+ . . .

)
. (66)

To find the second independent solution, we determine y(x, α). It reads

y(x, α) = ã0x
α

[
1−

x2

α(α+ 4)
+

x4

α(α+ 2)(α+ 4)(α+ 6)

−
x6

α(α+ 2)(α+ 4)2(α+ 6)(α+ 8)
+ . . .

]
.

(67)

We see that the above expression has poles at α = −2 so that we can not
immediately set α to −2 in that expression.
However, following the above discussion, we multiply y(x, α) with (α+2)

and find

(α+ 2)y(x, α) = ã0x
α

[
(α+ 2)− (α+ 2)

x2

α(α+ 4)
+

x4

α(α+ 4)(α+ 6)

−
x6

α(α+ 4)2(α+ 6)(α+ 8)
+ · · ·

]
.

(68)

This expression is free of singularities at α = −2 as expected.
The derivative of Eq. (68) with respect to α at α = −2 can be easily

computed. We find

y2 = lim
α→−2

∂

∂α
[(α+ 2)y(x, α)] = ã0 ln x x

−2
[

x4

(−16) −
x6

(−16)(2)(6) + . . .
]

+ ã0x
−2
[
1 +

x2

4
+
x4

64
+ · · ·

]
= −

1

16
ln x y1(x)|a0→ã0 + ã0x−2

[
1 +

x2

4
+
x4

64
+ · · ·

]
.

(69)
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This is the second independent solution of the Bessel equation.

Irregular singular points. We will move to the discussion of irregular sin-

gular points of differential equations. Irregular singular points are all singular

points that are not regular. Note that these points can also occur at x =∞;
we can access such points by doing a transformation x → 1/ξ and then

studying properties of the differential equation at ξ = 0.

To give a simple example of calculations at irregular singular point, con-

sider the following equation

y ′ =
√
xy . (70)

The point x = 0 is an irregular singular point since x
√
x is not analytic at

x = 0. It is straightforward to solve Eq.(70). We find

y(x) = a0 exp

[
2

3
x3/2

]
= a0

∞∑
n=0

1

n!

(
2

3
x3/2

)n
. (71)

In this case the solution is represented by absolutely convergent series but

these series are not of a Taylor or Frobenius form.

We note, however, that the solution Eq.(71) reads y(x) = eS(x) where

S(x) is an algebraic function. We will try to make use of this observation in

what follows. For definiteness, consider the following second order equation

y ′′ = x−3y . (72)

The point x = 0 is an irregular singular point. Motivated by the above

observation, we make the ansatz y(x) = eS(x). Then

y ′ = S′y(x), y ′′ = (S′)2y(x) + S′′y(x). (73)

It follows that

(S′)2 + S′′ =
1

x3
. (74)

If we define W (x) = S′(x), we find

W 2 +W ′ −
1

x3
= 0, (75)

which is the (non-linear) first-order Riccati equation. The Riccati equation is

known to be equivalent to a linear second order differential equation so that,

from a formal viewpoint, we made no progress.

However, progress can be made if we realise that close to x = 0 the

two terms on the left hand side of Eq.(74) have very different magnitude.
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Indeed, assume that S(x) is a generic algebraic function S(x) = axβ. Then

S′ = aβxβ−1 and S′′ = aβ(β − 1)xβ−2. Then

(S′)2 ∼ a2β2x2β−2, S′′ ∼ aβ(β − 1)xβ−2. (76)

This implies that

lim
x→0

S′′

(S′)2
∼ lim

x→0
x−β → 0, (77)

where in the last step we assumed that β < 0. The need to have negative β

follows from Eq.(74) where either (S′)2 or S′′ has to match the right hand

side of the equation x−3. Hence, there are two options, β = −1/2 or β = −1.
However, in both case (S′)2 dominates over S′′ in the x → 0 limit since the
required β is negative.

To proceed further, we will introduce the concept of asymptotic equiva-

lence of two functions. Given two functions f (x) and g(x) we will say that

f (x) is much smaller than g(x), f (x)≪ g(x), at the point x = x0 if

lim
x→x0

f (x)

g(x)
→ 0. (78)

We will also say that f (x) is asymptotic to g(x) at x = x0 (the notation is

f (x) ∼ g(x)) if
f (x)− g(x)≪ g(x). (79)

This implies that

lim
x→x0

f (x)− g(x)
g(x)

→ 0, and lim
x→x0

f (x)

g(x)
→ 1. (80)

We note that a function can not be asymptotic to 0 (i.e. asymptotic relations

probe and compare behaviors of functions around the singular point, not at

the singular point).

To analyse Eq.(74) we note that, according to our analysis, S′′ ≪ (S′)2
at x = 0. Therefore,

S′2 ∼
1

x3
. (81)

Taking the square root and solving the differential equation, we find

dS

dx
∼ ±

1

x3/2
, ⇒ S(x) ∼ ±

2√
x
. (82)

It is tempting to say that

y(x) ∼ e±
2√
x , (83)

19



i.e. that y(x) is asymptotic to e±
2√
x . However, this statement is wrong, as

we will see in a second.

Let us refine our ansatz by writing

S(x) = ±
2√
x
+ c(x). (84)

We assume that at around x ∼ 0,

c(x)≪
1√
x
. (85)

This implies that

c ′ ≪
1

x3/2
, c ′′ ≪

1

x5/2
. (86)

We re-compute Eq.(74) using the new representation of S(x) in Eq.(84)

and find (
∓
1

x3/2
+ c ′(x)

)2
+

(
±
3

2x5/2
+ c ′′

)
=
1

x3
,

∓
2

x3/2
c ′(x) + (c ′(x))2 ±

3

2x5/2
+ c ′′ = 0.

(87)

We rewrite the last equation as follows

c ′
(
∓
2

x3/2
+ c ′(x)

)
±
3

2x5/2
+ c ′′ = 0, (88)

and use Eq.(86) to discard c ′ relative to x−3/2 in brackets and c ′′ relative to

x−5/2. The above equation simplifies to

c ′(x) ∼
3

4x
. (89)

It’s solution reads

c(x) ∼
3

4
ln(x). (90)

Hence, the approximate solution reads

y(x) ∼ x3/4e±
2√
x . (91)

The reason that we could not have said y(x) is asymptotic to e±
2√
x at x → 0,

is that the prefactor x3/4 goes to zero at x = 0 and, hence, changes the

asymptotic behavior.
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To prove that Eq.(91) actually provides a valid asymptotic relation be-

tween two functions, we need to check that only terms that do not grow in

the limit x → 0 arise if we try to improve the ansatz Eq.(84). We write

S(x) = ±
2√
x
+
3

4
ln(x) +D(x), (92)

where D(x) should be small compared to both ln(x) and 1/
√
x . Hence,

D(x)≪ ln(x), D′(x)≪
1

x
, D′′(x)≪

1

x2
. (93)

Substituting Eq.(92) into the differential equation Eq.(84), we obtain

−
3

16x2
+
3

2x
D′ ∓

2

x3/2
D′ + (D′)2 +D′′ = 0. (94)

We make use of the relations in Eq.(93) and replace Eq.(94) with

−
3

16x2
∼ ±

2

x3/2
D′. (95)

The solution is

D(x) ∼ ln c1 ∓
3

16

√
x, (96)

where ln c1 is a constant of integration. It follows that

y(x) ∼ c1 x3/4e±
2√
x
−∓ 3

16

√
x , (97)

where all terms neglected in the function D(x) vanish as x → 0. The question
of how to construct these series and how they behave is an important one;

we will return to this question later.

The method that we have used to work out the asymptotic solution of a

differential equation close to an irregular singular point is known as “method

of dominant balance”. Let us summarize it.

1. We drop all terms in the differential equation that appear to be small and

replace an exact equation with an asymptotic relation between functions

that appear there;

2. We turn the asymptotic relation into an equation by replacing the

asymptotic sign ∼ with the equal sign; we integrate the resulting differ-
ential equation to find a solution that satisfies the asymptotic relation;
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3. We check that the obtained solution is consistent with assumptions in

point 1). We then refine approximations made in point 1) to account

for smaller contributions to original differential equation and refine the

solution.

This method and its minor modifications can be used in very different cir-

cumstances, from computing integrals to solving algebraic equations. We will

discuss such applications later in this course.

We return to the discussion of the equation Eq. (72) and complete the

analysis that we started. Specifically, we would like to improve on the solution

to this equation given in Eq.(97). We therefore write

y(x) = c1x
3/4e±

2√
x w(x). (98)

From our earlier analysis we know that lim
x→0

w(x) = 1. Using the ansatz

Eq.(98) in the differential equation Eq.(72), we find the equation for w(x)

w ′′(x) +

(
3

2x
∓
2

x3/2

)
w ′(x)−

3

16x2
w(x) = 0. (99)

This equation again shows that x = 0 is an irregular point but now we are

armed with the knowledge that the solution that we would like to find has a

particular limit, w(x)→ 1 as x → 0.
Therefore, to solve Eq.(99), we write w(x) = 1+ ϵ(x), assume ϵ(x)≪ 1,

consider leading contributions to Eq.(99) and obtain

∓
2

x3/2
dϵ

dx
∼
3

16x2
, (100)

where we have used ϵ′′ ∼ ϵ′/x ∼ ϵ/x2 ≪ ϵ′/x3/2. Hence, we find

ϵ(x) ∼ ∓
3

16

√
x. (101)

Having obtained ϵ(x), we can check that all the approximations that we have

done earlier are valid. We then write

w(x) = 1∓
3

16

√
x + ϵ(x) (102)

and repeat the calculation. We find the equation

2ϵ′ ∼ −
15

256
. (103)
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It follows that

ϵ(x) ∼ −
15

512
x, (104)

and, as the result,

w(x) = 1∓
3

16

√
x −

15

512
x + ϵ(x). (105)

We can continue to improve the approximation for the function w(x) but

we can also solve the problem in full generality if we realize that w(x) admits

an expansion in
√
x . We then write

w(x) =

∞∑
n=0

anx
n/2, (106)

with a0 = 1, substitute this expression into Eq.(99) and obtain

∞∑
n=1

an
n

2

(n
2
− 1
)
xn/2−2 +

3

2

∞∑
n=1

n

2
anx

n/2−2 ∓ 2
∞∑
n=1

an
n

2
xn/2−5/2

−
3

16

∞∑
n=0

anx
n/2−2 = 0.

(107)

The recurrence relation follows

an+1 = ±
4n2 + 4n − 3
16(n + 1)

an = ±
(2n − 1)(2n + 3)
16(n + 1)

an. (108)

The recursion starts with a0 = 1. It is easy to write down the general solution

using properties of the so-called Γ-function, defined through

zΓ(z) = Γ(z + 1), Γ(1) = 1, Γ(1/2) =
√
π. (109)

We find

an = −(±1)n
Γ(n − 1/2)Γ(n + 3/2)

π4nn!
. (110)

The solutions become

y(x) ∼ −
c1
π
x4/3 e±2/

√
x

∞∑
n=0

(±1)n
Γ(n − 1/2)Γ(n + 3/2)

4nn!
xn/2. (111)

Note that we insist on writing an asymptotic relation between the solution

y(x) and the r.h.s. of Eq.(111). This is so because the series that appear on

the r.h.s. of Eq.(111) are, actually, divergent and, moreover, their radius of
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convergence is zero. So eventually we will have to explain what we do with

these series or, in other words, we will have to explain the relation between

series shown in Eq. (111) and the true solutions of the differential equation

Eq. (72).

Finally, we will make a remark concerning the Schrödinger equation. We

write it in the following way

y ′′ = Q(x)y . (112)

Without loss of generality, we will assume that x = 0 is an irregular point of

this equation. We then write y(x) = eS(x) and find

(S′)2 + S′′ = Q(x). (113)

Assuming S′′ ≪ (S′)2, we obtain

S(x) ∼ ±
x∫
dt (Q(t))1/2 . (114)

We then write

S(x) = ±
x∫
dt (Q(t))1/2 + c(x), (115)

where it is assumed that

c(x)≪
x∫
dt (Q(t))1/2 . (116)

This equation implies

c ′(x)≪ (Q(x))1/2 , c ′′(x)≪
Q′√
Q(x)

. (117)

We then substitute the new ansatz Eq.(115) into the differential equation

Eq.(112) and obtain

±2
√
Q(x)c ′ + (c ′)2 ±

Q′

2
√
Q(x)

+ c ′′ = 0. (118)

Using Eq.(117), we simplify the above equation and find

±2
√
Qc ′ ∼ ∓

1

2

Q′√
Q
, ⇒ c ′ ∼

Q′

4Q
, c ∼ lnQ1/4. (119)
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Hence, we obtain the asymptotic form of the solution of the Schrödinger

equation in the vicinity of an irregular singular point that we have chosen to

be x = 0. It reads

y(x) ∼ (Q(x))1/4e
±

x∫
dt (Q(t))1/2

. (120)
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3 Irregular singular points at infinity

In the previous lecture we talked about irregular singular points of linear differ-

ential equations. However, we mostly discussed singularities at x = 0 which,

of course, is equivalent to any other finite point on the x-axis. However, there

are many cases when differential equations have irregular singular points at

x =∞ and we would like to discuss such cases.

The simplest example is that of a Schrödinger equation. We will consider

the Schrödinger equation that describes the harmonic oscillator

d2

dx2
Ψ+

2m

ℏ2

(
E −

mω2x2

2

)
Ψ = 0. (121)

Clearly, any finite point x is a regular point of this differential equation. To

analyze what happens at x =∞, we change variables x = 1/ξ and write

d

dx
= −ξ2

d

dξ
. (122)

This implies
d2

dx2
= ξ2

d

dξ
ξ2
d

dξ
= ξ4

d2

dξ2
+ 2ξ3

d

dξ
. (123)

We substitute this differential operator into Eq.(121), divide both sides of

Eq.(121) by ξ4 and obtain

d2Ψ

dξ2
+
2

ξ

dΨ

dξ
+
2m

ℏ2

(
E

ξ4
−
mω2

2ξ6

)
Ψ = 0. (124)

Clearly, ξ = 0 or, equivalently, x =∞ is an irregular singular point.
To analyze the behavior of the wave function at ξ = 0, we write Ψ = eS(ξ),

substitute this ansatz into Eq.(124) and obtain

(S′)2 + S′′ +
2

ξ
S′ +

2m

ℏ2

(
E

ξ4
−
mω2

2ξ6

)
= 0. (125)

Picking up two terms responsible for the most singular behavior at ξ→ 0, we
find the simplified equation

(S′)
2
=
m2ω2

ℏ2ξ6
. (126)

It follows

S′ = ±
mω

ℏξ3
→ S = ±

mω

2ℏξ2
= ±

mωx2

2ℏ
. (127)
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If we require that the wave function satisfies the standard boundary condition

at infinity, we have to select the solution that decreases in the limit |x | → ∞.
To improve the approximation, we write

Ψ(x) ∼ exp
[
−
mωx2

2ℏ
+ c(ξ)

]
, (128)

substitute this ansatz into Eq.(124) and find

c ′′ + c ′
(
c ′ +

2

ξ
+
2mω

ℏξ3

)
+
2Em

ℏ2ξ4
−
mω

ℏξ4
= 0. (129)

Since c(ξ) should be a small correction to mω/(ℏξ2), it follows that

c ′(ξ)≪
1

ξ3
, c ′′(ξ)≪

1

ξ4
. (130)

Also,

c ′′ ∼
c ′

ξ
≪

c ′

ξ3
. (131)

Therefore, Eq.(129) simplifies to

c ′
2mω

ℏξ3
+
2Em

ℏ2ξ4
−
mω

ℏξ4
= 0 ⇒ ξc ′ = −

(
E

ℏω
−
1

2

)
, (132)

and the solution reads

c(ξ) = −
(
E

ℏω
−
1

2

)
ln(ξ). (133)

Substituting this result back into Eq.(128) and writing the result in terms of

x = 1/ξ, we find

Ψ(x) ∼ xE/(ℏω)−
1
2 e−

mωx2

2ℏ . (134)

Although this asymptotic behavior may look strange, it all falls into place if

we recall that stationary normalizable states are only possible for E = En =

ℏω(n + 1/2). Hence,

Ψn(x) ∼ xne−
mωx2

2ℏ , x →∞. (135)

An interesting aspect of this analysis is that it allows us to look at the

anharmonic oscillator problem from a slightly different perspective. Indeed,

let us add an additional term λx4 to the potential energy in Eq.(121) and
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study the behavior of the wave function at infinity. We find the leading order

equation

(S′)2 =
2mλ

ℏ2
1

ξ8
, (136)

so that

S = ±
√
2mλ

ℏ2
1

3ξ3
(137)

Computing the sub-leading term we find

Ψx→+∞ ∼ exp

[
−
√
2mλ

ℏ2
x3

3
−

m2ω2

2ℏ
√
2λm

x + ...

]
(138)

This asymptotic behavior shows that at large x the term λx4 is not a small

perturbation compared to mω2x2 and that, in fact, the large x asymptotic

is controlled by the term λx4. When we treat λx4 as a perturbation, we

bypass this problem but the theory knows that we do something that is not

fully legitimate and tells us about it through perturbative series with vanishing

radius of convergence.

In fact, both perturbative series for the ground state energy of an anhar-

monic oscillator and series that often describe the behavior of the solutions of

differential equations close to singular irregular points are so-called asymptotic

series.

Asymptotic series are defined as follows: a power series
∑
an(x − x0)n is

said to be asymptotic to the function f (x) at the point x = x0 if

f (x)−
N∑
an(x − x0)n ≪ (x − x0)N, (139)

for every N, as x → x0. Some variations on this definition exist. For example,

if x0 =∞, the definition of asymptotic series changes. The series
∑
anx

−αn,

α > 0 is asymptotic to the function f (x) at x =∞ if

f (x)−
N∑
n

anx
−nα ≪ x−Nα, (140)

for every N. The expansion of a function into asymptotic series is unique.

However, an asymptotic series does not define a unique function nor does it

need to be a convergent series. We will talk more about asymptotic series later

in this course. For now, we will continue with other examples of differential

equations and irregular singular points at infinity.
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We will now compute the asymptotic series of two special functions at x =

∞. We begin with the modified Bessel function. It satisfies the differential
equation

x2y ′′ + xy ′ − (x2 + ν2)y = 0. (141)

The point x = 0 is a regular singular point. The point x =∞ is an irregular
singular point; one can see this using the x → 1/ξ transformation as discussed
at the beginning of this lecture.

If we accept that the point x = ∞ is an irregular singular point, we can
try to analyze the differential equation using the x-variable directly, without

changing first to the ξ-variable. To this end, we write y(x) = eS(x) and find

x2
(
(S′)2 + S′′

)
+ xS′ − (x2 + ν2) = 0. (142)

We rewrite it as

(xS′)2 + xS′ + x2S′′ = (x2 + ν2). (143)

Assuming that (xS′)2 ≫ xS′ ∼ x2S′′, we find a simplified version of Eq.(143)
and solve it

(xS′)2 ∼ x2 ⇒ xS′ ∼ ±x ⇒ S(x) ∼ ±x. (144)

We can check that the assumptions that we made above are consistent with

the above solution, for large values of x . We now improve the ansatz for the

function S(x) and write

S(x) = ±x + C(x). (145)

The function C(x) is supposed to be much smaller than x , for large x .

We substitute Eq. (145) into the differential equation Eq. (142) and find

x2C ′′ + (xC ′)2 + (x ± 2x2)C ′ ± x − ν2 = 0. (146)

Using asymptotic relations for the function C(x), e.g. xC ′ ≪ x , we rewrite

the above equation as

2x2C ′ ∼ −x ⇒ C(x) ∼ −
1

2
ln x. (147)

The above solution for S(x) gives us all the terms that go to infinity as

x →∞; therefore, we write a new Ansatz for the solution

y(x) ∼ c1x−1/2e±xw(x), (148)
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and derive an equation for the function w(x). It reads

x2w ′′(x)± 2x2w ′(x) +
(
1

4
− ν2

)
w(x) = 0. (149)

The point x = ∞ is an irregular singular point of this differential equation.
However, we look for the solution with the property w(x) → 1 for x → ∞.
It follows from the differential equation Eq.(149) that the function w(x) can

be expanded in powers of 1/x . We write

w(x) =

∞∑
n=0

anx
−n, (150)

with a0 = 1. We substitute this ansatz into Eq.(149) and find the recursion

relation

an+1 = ±
(n(n + 1) + 1

4
− ν2)

2(n + 1)
an. (151)

To determine whether or not the series converges, we do the ratio test.

We find

lim
n→∞

an+1x
−n−1

anx−n
∼ lim

n→∞

n

x
→∞, (152)

for all x . Hence, radius of convergence of our asymptotic series is zero.

Another example is that of an Airy function. We will need the Airy func-

tion when discussing the WKB approximation later in the course. The Airy

equation reads

y ′′ = xy . (153)

Again, x = ∞ is an irregular singular point. To construct an asymptotic
expansion of the solution, we proceed with the, by now, standard method and

write y(x) = eS(x). The equation becomes

(S′)2 + S′′ = x. (154)

Since (S′)2 ≪ S′′, it follows that

S ∼ ±
2

3
x3/2. (155)

We then write an “improved” approximation

S(x) = ±
2

3
x3/2 + c(x), (156)
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and obtain the differential equation for c(x)

c ′′ + (c ′)2 ± 2
√
xc ′ ±

1

2
√
x
= 0. (157)

Since c ≪ x3/2, c ′ ≪
√
x, c ′′ ≪ x−1/2, we find a simplified equation

2
√
xc ′ ∼ −

1

2
√
x
⇒ c ∼ −

1

4
ln(x). (158)

Hence, in order to factor out the leading asymptotic, we make the following

ansatz for the solution of the Airy equation

y(x) = c0 x
−1/4 e±

2
3
x3/2 w(x), (159)

where w(x)→ 1 as x →∞.
There are two solutions to the Airy equation, usually denoted as Ai(x)

and Bi(x). The function Ai(x) decreases and the function Bi(x) increases as

x →∞; their asymptotic behaviors correspond to the two asymptotic shown
in Eq.(159).

In what follows we will only consider the function Ai(x); it corresponds to

y(x) ∼ e−2/3x3/2 in Eq.(159). We substitute Eq.(159) into the Airy equation
Eq.(153) and find

x2w ′′ −
(
2x5/2 +

1

2
x

)
w ′ +

5

16
w = 0. (160)

The function w(x) is given by an expansion in powers of x−3/2. Hence,

we write

w(x) ∼
∞∑
n=0

anx
−3/2n, (161)

with a0 = 1. The recursion relation for the coefficients an reads

an+1 = −
3

4

(
n + 5

6

) (
n + 1

6

)
(n + 1)

an. (162)

It is straightforward to write the result for the coefficient an using properties

of the Gamma function. We obtain

an = (−1)n
3n

4n
Γ
(
n + 5

6

)
Γ
(
n + 1

6

)
2πΓ(n + 1)

, (163)

where we used the fact that

Γ

(
5

6

)
Γ

(
1

6

)
= 2π. (164)
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Figure 2: Ratios of asymptotic series to the Airy function. Blue – zero terms

are included in the sum, orange – one term, green – ten terms and red – fifty

terms.

Hence, we find a representation of the Airy function Ai(x) through asymptotic

series

Ai(x) ∼ c0x−1/4e−2/3x
3/2

∞∑
n=0

(−1)n3n

4n
Γ
(
n + 5

6

)
Γ
(
n + 1

6

)
2πΓ(n + 1)

x−3/2n. (165)

For the Airy function Ai the normalization coefficient is chosen to be 1/(2
√
π).

To check the convergence of this series, we do the ratio check

lim
n→∞

an+1x
−3/2(n+1)

anx−3/2n
∼ lim

n→∞

3

4
nx−3/2 →∞. (166)

Again, similar to the Bessel function, the radius of convergence of these series

is zero.

The asymptotic nature of the series is illustrated in Fig. 1 where the ratios

of asymptotic approximations to the Airy function obtained by truncating the

sum in Eq.(165) at various values of n and the exact Airy function are shown.

Naively, we would expect that the more terms we account for in the series

in Eq.(165), the better. Whether this statement is true or not depends on

the values of x ; at lower values of x , e.g. for x < 5, including 50 terms in

the expansion gives a significantly worse approximation to the correct result

than by including just one term. If even more terms are included, series just

explodes. Obviously, there is a correlation between values of x that are being

studied and the number of terms N that should be kept in the series to achieve

best (or even reliable!) results. We will discuss this correlation in the next

lecture.
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4 Asymptotic series and their properties

In the previous lecture we talked about asymptotic series and explained how

they arise when we try to solve differential equations at irregular singular

points. The goal of this lecture is to discuss asymptotic series in more detail.

First, as we already know, series
∑
an(x − x0)n are said to be asymptotic

to the function f (x) at x ∼ x0 if the remainder function ϵN(x) defined as

the difference between f (x) and the first N + 1 terms of the series is much

smaller than (x − x0)N. Mathematically, this condition reads

ϵN(x) = f (x)−
N∑
n

an(x − x0)n ≪ (x − x0)N. (167)

It is important to understand the difference between convergent and asymp-

totic series. A series is said to be convergent if the remainder function vanishes

ϵN(x) =

∞∑
n=N+1

an(x − x0)n → 0, (168)

in the limit N → ∞, for all |x − x0| < R, where R is independent of N. On

the other hand, the series is said to be asymptotic if

ϵN(x)≪ (x − x0)N, (169)

in the limit x → x0 at fixed N. In another words, we fix N and then find x−x0
for which Eq.(169) holds; if such an x exists, the series is asymptotic.

Let us consider a few examples to make these points clear. First, we

discuss the Taylor series of a function f (x) at the point x = x0. We assume

that the Taylor expansion has radius of convergence R. Then for all x such

that |x − x0| < R,

f (x)−
N∑
n=0

an(x − x0)n = aN+1(x − x0)N+1 + · · · .... (170)

Therefore, for all x such that |x − x0| < R,

f (x)−
N∑
n=0

an(x − x0)n ∼ aN+1(x − x0)N+1 ≪ (x − x0)N, (171)

which implies that Taylor series are asymptotic to the original function f (x)

within its radius of convergence.
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However, asymptotic series do not need to be convergent. We will illus-

trate this point by considering solutions of the following differential equation

x2y ′′ + (1 + 3x)y ′ + y = 0. (172)

It is easy to see that the point x = 0 is an irregular singular point of Eq.(172).

However, solutions to Eq.(172) admit a power series expansion at x = 0. To

find this series, we write

y(x) =

∞∑
n=0

anx
n, (173)

substitute it into Eq.(172) and obtain the following recurrence relation

an+1 = (−1)(n + 1)an. (174)

The solution of this recurrence relation subject to the boundary condition

a0 = 1 reads

an = (−1)nn!. (175)

Hence, the solution to Eq.(172) is given by the following series5

y(x) = S(x) =

∞∑
n=0

(−1)nn! xn. (176)

Because the coefficients an grow factorially, series S(x) is not a convergent

one; in fact is has vanishing radius of convergence.

We would like to find a function to which S(x) is asymptotic in the sense

of Eq.(167). To this end, we use the following representation of the factorial

n! = Γ(n + 1) =

∞∫
0

dt

t
tn+1 e−t . (177)

We use this representation in Eq.(176), change the order of summation and

integration and find

S(x)→
∞∫
0

dt e−t
∞∑
n=0

(−1)n (tx)n =
∞∫
0

dt e−t

1 + tx
. (178)

Although these manipulations are dubious since the sum is not convergent, we

hypothesize that the last integral in Eq.(178) is the solution of the differential

equation Eq.(172), i.e.

y(x) =

∞∫
0

dt e−t

1 + tx
. (179)

5This series is known as the Stieltjes series.
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To prove this assertion, we substitute Eq.(179) into Eq.(172), compute

derivatives and simplify the result. We require the following derivatives(
1

1 + tx

)′′
=

2t2

(1 + tx)3
,

(
1

1 + tx

)′
= −

t

(1 + tx)2
. (180)

Using them in Eq.(172), we find

x2y ′′ + (1 + 3x)y ′ + y =

∞∫
0

dt e−t
[
2(tx)2

(1 + tx)3
−
t(1 + 3x)

(1 + tx)2
+

1

(1 + tx)

]
(181)

To simplify the r.h.s. one can do partial fractioning with respect to t to obtain

2(tx)2

(1 + tx)3
−
t(1 + 3x)

(1 + tx)2
+

1

(1 + tx)
=

2

(1 + tx)3
+
1− x
x

1

(1 + tx)2
−
1

x

1

1 + tx
.

(182)

It is then convenient to integrate by parts so that all denominators in Eq.(182)

become 1/(1 + tx)3. For example, we can write

−
1

x

1

1 + tx
e−t =

1

x

1

1 + tx

d

dt

[
e−t
]
=
1

x

d

dt

[
1

1 + tx
e−t
]
−
1

x

d

dt

[
1

1 + tx

]
e−t

=
1

x

d

dt

[
1

1 + tx
e−t
]
+

1

(1 + tx)2
e−t ,

(183)

integrate the total derivative right away and combine the last term in Eq.(183)

with the second term on the right hand side of Eq.(182). Proceeding itera-

tively, it is easy to show that the integral on the right hand side of Eq.(181)

vanishes. This implies that the function y(x) defined in Eq.(179) satisfies the

differential equation Eq.(172).

As the next step, we show that the power series in Eq.(176) is asymptotic

to the function y(x) defined in Eq.(179). To this end, we will need a formula

that describes integration by parts
∞∫
0

dt (1 + tx)−ne−t = 1− nx
∞∫
0

dt (1 + tx)−n−1e−t . (184)

This result implies that starting from the function y(x) and integrating by

part N + 1 times, we obtain

y(x) = 1−x+2!x2+ · · ·+(−1)NN! xN+(−1)N+1(N+1)! xN+1
∞∫
0

dt (1+tx)−N−2e−t .

(185)
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It follows that

ϵN(x) = (−1)N+1(N + 1)! xN+1
∞∫
0

dt (1 + tx)−N−2e−t

< (−1)N+1(N + 1)! xN+1
∞∫
0

dte−t = (−1)N+1(N + 1)! xN+1 ≪ xN,

(186)

where we used the fact that (1 + tx)−N−2 > 1 and where for the last step x

should be chosen appropriately, to beat N!. Hence, Eq.(186) proves that the

series S(x) is asymptotic to the solution of the differential equation y(x).

There is another application of the above estimate of the remainder ϵN.

Suppose we would like to obtain a numerical result for the function y(x) from

the series S(x). How many terms should we include in the series to obtain

the best possible approximation? To find out, we can compute the value of

N for which the upper bound of the remainder ϵupperN (x) is minimal for a given

x . We use Eq.(186) and write∣∣∣∣ϵupperN+1 (x)

ϵupperN (x)

∣∣∣∣ = (N + 2)x. (187)

Hence, for a given x , ϵupperN (x) decreases as long as (N + 2)x < 1 and starts

increasing after that. Therefore, asymptotic series S(x) should be truncated

at

Nopt ∼ 1/x, (188)

to achieve the best approximation to the true value of the function y(x). It

follows that the best approximation that series S(x) can ever provide to the

exact function y(x) is estimated to be

ϵupperopt ∼
√
2πxe−1/x . (189)

To derive this result, we used the Stirling formula for the factorial n! ∼√
2πn(n/e)n.

Since an upper bound on ϵN(x) in case of Stieltjes series corresponds to

the first neglected term in the series, the best possible approximation for

such asymptotic series is obtained if one keeps including additional terms into

S(x) as long as the new terms are smaller than the previously included one.

Once this is not the case anymore, no new terms need to be included because
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accuracy does not improve and, in fact, deteriorates. Although one can prove

this result for Stieltjes series, this also appears to be an accepted procedure

to obtain “best” numerical values starting from arbitrary asymptotic series.

Asymptotic series have a number of properties that we will now discuss.

The first important point is that different functions can have identical asymp-

totic series. Indeed, let us assume that

f (x) ∼
∑
n

an(x − x0)n. (190)

However, the function g(x)

g(x) = f (x) + be−1/(x−x0)
2

(191)

can be represented by the same asymptotic series as the function f (x). This

is true because

e−1/(x−x0)
2 ≪ (x − x0)n, (192)

for any n, as long as x → x0. Functions that are much smaller than any power

(in a sense of asymptotic relations) are called sub-dominant function. Hence,

a given asymptotic series can be asymptotic to a whole class of functions that

differ from each other by sub-dominant functions.

Nevertheless, for each function, there is just one representation in terms of

asymptotic series at a given point. This implies that if we have two series that

are asymptotic to the same function at the same point, then their coefficients

should be the same

f (x) ∼
∑

an(x − x0)n ∼
∑

bn(x − x0)n, ⇒ an = bn. (193)

One can perform all arithmetic operations with asymptotic series, working

with them as if they were convergent. So, if

f (x) ∼
∞∑
n

an(x − x0)n and g(x) ∼
∞∑
n

bn(x − x0)n, (194)

the following holds

αf (x) + βg(x) ∼
∞∑
n

(αan + βbn)(x − x0)n,

f (x)g(x) ∼
∞∑
n

cn(x − x0)n,
(195)
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where cn =
n∑

m=0

ambn−m.

However, integration and differentiation of asymptotic series is slightly

more complex. As far as the integration goes, one can state that asymptotic

series f (x) ∼
∞∑
n

an(x − x0)n can be integrated term by term if f (x) itself is

integrable near x = x0. In this case,

g(x) =

x∫
x0

dt f (t) ∼
∞∑
n=0

an
n + 1

(x − x0)n+1 (196)

It is strictly speaking not true that if f (x) ∼
∞∑
n

an(x−x0)n, then
∞∑
n

ann(x−

x0)
n−1 ∼ f ′(x). One can construct examples with sub-dominant functions

where the derivative of an asymptotic series does not asymptote to the deriva-

tive of a function. Nevertheless, if f ′(x) exists and it is integrable at x = x0,

then f ′(x) is asymptotic to the derivative of the asymptotic series of f (x).

One important result that is useful to know and which, to a large extent,

justifies what we were doing when we were constructing solutions of differ-

ential equations is that if a function y(x) provides a solution of a differential

equation y ′′ + p(x)y ′ + q(x) = 0 and if the functions p(x) p′(x) and q(x)

can be expanded in asymptotic series around a singular point x = x0, then

the asymptotic expansion of the function y ′ is obtained by differentiating the

asymptotic expansion of y(x).

To illustrate how formal manipulations that we were doing before can be

more rigorously justified, we will consider an equation for the modified Bessel

function Kν(x) that we studied in the previous lecture. The modified Bessel

function Kν(x) satisfies the differential equation

x2K ′′ν + xK
′
ν − (x2 + ν2)Kν = 0. (197)

We have seen that x →∞ is an irregular singular point and that approximate
solutions at this point have the following asymptotic behavior

K±ν (x) ∼ c1x−1/2e±x . (198)

The function Kν(x) is defined to behave as y−(x) at x →∞ with the coeffi-
cient c1 chosen in a particular way. We write

Kν =
( π
2x

)1/2
e−x w(x), (199)
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where, according to our analysis in the previous lecture, the function w(x)

should have the limit w(x) → 1 as x → ∞. We use ansatz Eq.(199) in
Eq.(197) and obtain the following equation for the function w(x)

w ′′ − 2w ′ +
λ

x2
w = 0, (200)

where λ = 1/4− ν2.
Our goal is to find a solution w(x) to Eq.(200) represented by a series

in 1/x . However, we would also like to prove that such a series solution is,

actually, asymptotic to a true solution of the differential equation Eq.(200).

To achieve this, we derive an integral equation for the function w(x). To

this end, we re-write Eq.(200) as follows

w ′′ − 2w ′ = −
λ

x2
w, (201)

and we treat this equation as an inhomogeneous differential equation ignoring

the fact that its right hand side does depend on the w(x) itself. To “solve”

Eq.(201), we write w ′ = e2xg, substitute it into Eq.(201) and obtain

e2xg′ = −
λ

x2
w ⇒ g′ = −λe−2x

w

x2
⇒ g(x) = λ

∞∫
x

dt e−2t
w(t)

t2
.

(202)

Hence,

w ′(x) = λ

∞∫
x

dt e2(x−t)
w(t)

t2
. (203)

We have chosen the integration boundaries to ensure that the function w(x)

has an expansion in 1/x at infinity and that the first term can be a constant;

this requires that w ′(x) vanishes at x = ∞. The next step is to integrate
Eq.(203). We find

w(x) = 1− λ
∞∫
x

dξ

∞∫
ξ

dt e2(ξ−t)
w(t)

t2
. (204)

39



To simplify the right hand side, we change the order of integration and find

w(x) = 1− λ
∞∫
x

dt
w(t)

t2
e−2t

t∫
x

dξe2ξ = 1−
λ

2

∞∫
x

dt
w(t)

t2
e−2t

(
e2t − e2x

)

= 1 +
λ

2

∞∫
x

dt
(
e2(x−t) − 1

) w(t)
t2

.

(205)

We can use this integral representation to show that the function w(x) is

bounded from above. To this end, we write (x = t0)

w(t0) = 1 +
λ

2

∞∫
t0

dt1
K(t0, t1)

t21
w(t1), (206)

where K(ta, tb) = e
2(ta−tb) − 1. We can solve the above equation iteratively,

by repeatedly substituting w(t1)→ 1 +O(λ) there. We find

w(t0) = 1+

∞∑
n=1

(
λ

2

)n ∞∫
t0

dt1
K(t0, t1)

t21

∞∫
t1

dt2
K(t1, t2)

t22
· · ·

∞∫
tn−1

dtn
K(tn−1, tn)

t2n
.

(207)

Since 0 < |K(ta, tb)| < 1, it follows, that the n-th term in the above series
can be bounded from above∣∣∣∣∣

∞∫
t0

dt1
K(t0, t1)

t21

∞∫
t1

dt2
K(t1, t2)

t22
· · ·

∞∫
tn−1

dtn
K(tn−1, tn)

t2n

∣∣∣∣∣
<

∞∫
t0

dt1
t21

∞∫
t1

dt2
t22
· · ·

∞∫
tn−1

dtn
t2n
=
1

n!

1

tn0
.

(208)

Using this bound in Eq.

w(x) < eλ/2/x . (209)

Given this constraint, we can estimate the integral that appears on the r.h.s.

of Eq.(205) since we can claim that, for a given x > a, w(x) is bounded by

some x-dependent constant B. Then for x > a,∣∣∣∣∣λ2
∞∫
x

dt
(
e2(x−t) − 1

) w(t)
t2

∣∣∣∣∣ < λB

2

∞∫
x

dt
1

t2
=
λB

2x
. (210)
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To make use of this result, we write

w(x) = 1 + w1(x), (211)

with w1(x) < B/x . This proves that w(x) ∼ 1, x →∞.

To do better, we use Eq.(211) to write an integral equation for w1. It

reads

w1(x) =
λ

2

∞∫
x

dt
(
e2(x−t) − 1

) w(t)
t2

=
λ

2

∞∫
x

dt
(
e2(x−t) − 1

) 1
t2
+
λ

2

∞∫
x

dt
(
e2(x−t) − 1

) w1(t)
t2

.

(212)

We can integrate by parts the first term on the right hand side of the previous

equation. We find

w1(x) = −
λ

2x
+

λ

4x2
−
λ

2

∞∫
x

e2(x−t)

t3
dt+

λ

2

∞∫
x

dt
(
e2(x−t) − 1

) w1(t)
t2

. (213)

Since w1(t) < B/x , we find that all remaining integrals are bounded from

above by 1/x2. Hence,

w1(x) +
λ

2x
<
B2
x2
. (214)

Therefore,

w(x) ∼ 1−
λ

2x
, (215)

at x = ∞. One can continue to use the integral equation Eq.(205) for
the function w(x) to extract relevant powers of 1/x and bound remaining

integrals. By doing this we prove that the function w(x) is indeed asymptotic

to the series that we have already constructed in Lecture 2.
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5 Asymptotic expansion of integrals

There are plenty of examples in physics where the result of the a calculation

is expressed as an integral that involves a parameter which can be either large

or small. In such cases it is necessary to understand how to compute such

integrals by expanding them in small (or large) parameter. We will discuss how

such expansions can be constructed. However, before diving into a discussion

of how this can be done, we will briefly describe a few mathematical examples

where such knowledge may be useful.

Consider the function Γ(z). It is defined through the following equations

zΓ(z) = Γ(z + 1), Γ(1) = 1. (216)

Γ(z) function has the following integral representation

Γ(z) =

∞∫
0

dt tz−1e−t . (217)

We note that this representation is valid for z > 0 but, in fact, it can be used

as a starting point for an analytic continuation of Γ(z) to an entire complex

z-plane.

To prove that Eq.(217) is an integral representation of Γ(z), we write

zΓ(z) =

∞∫
0

dt ztz−1e−t =

∞∫
0

dt
d

dt
[tz ] e−t =

∞∫
0

dt tz e−t = Γ(z + 1),

(218)

where in the last step, we integrated by parts and discarded the surface terms.

A typical question that we will address in this lecture is – suppose we are

interested in the behavior of Γ(z) as very large values of z , z →∞. Can we
systematically derive it from the integral representation in Eq.(217)?

As another example, consider the Airy equation

y ′′ = xy . (219)

We have constructed its asymptotic solution at x → +∞ in the previous lec-
ture by solving the differential equation. However, suppose we do something

different and write

y(x) =

∞∫
−∞

dp

2π
e ipx f (p) (220)
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Substituting this ansatz into Eq.(219), using xe ipx = −i∂(e ipx)/∂p and in-
tegrating by parts, we find a first order differential equation for the function

f (p)

p2f (p2) = −i
∂

∂p
f (p). (221)

We solve this equation and obtain an integral representation for a possible

solution of the Airy equation

y(x) =

∞∫
−∞

dp

2π
e ip(x+p

2/3). (222)

Again, we may wonder if this integral representation is useful for understanding

the behavior of the Airy function at x →∞.

Finally, similar to the case of the Γ(z) function, many special functions

possess well-known integral representations. For example, the Bessel function

Jn(x) satisfies

Jn(x) =
1

2π

2π∫
0

e i(x sin θ−nθ) dθ. (223)

We may ask if this representation can be used to understand the behavior of

Jn(x) as x →∞ or n →∞?

1. Taylor and asymptotic expansion of integrals: We will start with a

simple intuitive statement. Consider an integral

I(x) =

b∫
a

dt f (t, x), (224)

We would like to understand the behavior of this integral at x ∼ x0. If the

limit lim
x→x0

f (t, x) = f0(t) exists for all a ≤< t ≤ b, then

I(x) ∼
b∫
a

dt f0(t), (225)

This result can be generalized as follows. We assume that the function

f (t, x) possesses an asymptotic expansion at the point x = x0

f (t, x) ∼
∑
n

an(t)(x − x0)αn, (226)
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that is valid for all t from the interval [a, b]. Then the asymptotic expansion

of the integral I(x) at x ∼ x0 is given by the following (natural) formula

I(x) ∼
∑
(x − x0)αn

b∫
a

dt an(t). (227)

Let us consider a few examples. We begin with an integral

I(x) =

1∫
0

dt
ln(1 + xt)

t
. (228)

We will study its expansion at x ∼ 0. The Taylor expansion of the integrand
in x converges for all t ∈ [0, 1].

ln(1 + xt)

t
= x

∞∑
n=0

(−1)n(xt)n

n + 1
. (229)

Hence,

I(x) ∼ x −
x2

4
+
x3

9
−
x4

16
+ · · · (230)

As the second example, consider an incomplete Gamma-function Γ(α, x)

defined as

Γ(α, x) =

∞∫
x

dt tα−1e−t . (231)

We are interested in the behavior of this function at small positive x . As we

will see, there are three distinct cases that need to be considered: 1) α > 0,

2) α < 0 but not integer, and 3) α = 0,−1,−2,−3 . . . .

We begin with the first case where α > 0. We re-write Eq.(231) in the

following way

Γ(α, x) =

∞∫
0

dt tα−1e−t −
x∫
0

dt tα−1e−t . (232)

The first integral on the r.h.s. of Eq.(232) evaluates to Γ(α). The second

integral is such that its integrand can be represented by a convergent series

x∫
0

dt tα−1e−t =

∞∑
n=0

(−1)n

n!

x∫
0

dt tα−1+n =

∞∑
n=0

(−1)n

n!(n + α)
xα+n (233)
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Hence,

Γ(α, x) ∼ Γ(α)−
∞∑
n=0

(−1)n

n!(n + α)
xα+n, (234)

for x → +0 and α > 0.
The second case we want to consider is that of a non-integer negative

α. We cannot repeat what we just did since the integral over t from 0 to ∞
diverges in this case. To overcome this problem, we define an integer N

α = −N − δ, (235)

where 0 < δ < 1. To make the integral amenable to an expansion in x , we

subtract and add the first N+1 terms of the Taylor expansion of the function

e−t . We obtain

Γ(α, x) =

∞∫
x

dt t−N−δ−1e−t

=

∞∫
x

dt t−N−δ−1

[
e−t −

N∑
n=0

(−t)n

n!

]
+

∞∫
x

dt t−N−δ−1
N∑
n=0

(−t)n

n!
.

(236)

The first integral on the r.h.s. now converges at x = 0 so that we can replace

the integral from x to ∞ by a difference of integrals from zero to infinity and
from zero to x . We find

Γ(α, x) =

∞∫
0

dt t−N−δ−1

[
e−t −

N∑
n=0

(−t)n

n!

]

−
x∫
0

dt t−N−δ−1

[
e−t −

N∑
n=0

(−t)n

n!

]
+

∞∫
x

dt t−N−δ−1
N∑
n=0

(−t)n

n!
.

(237)

The first term on the r.h.s. of the above equation is an x-independent con-

stant that we denote by CN. The second and the third terms are then com-

puted by representing respective integrands by convergent series. The result,

expressed through α = −N − δ reads

Γ(α, x) ∼ C −
∞∑
n=0

(−1)n

n!(n + α)
xα+n, (238)

In fact, one can show that C = Γ(α) provided that the Gamma-function is

defined for negative α through an analytic continuation. Note that this result
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appears to be identical to Eq.(234) in spite of a more complicated derivation.

In a way, this implies that series Eq.(234) can be analytically continued to the

entire complex plane to define Γ(α, x), provided that this continuation does

not lead to singularities.

Moreover, we can see from Eqs.(234,238) where such singularities are

since the series over n can not be evaluated for α being negative integer

or zero. Since the original integral Eq.(231) does not have singularities for

any values of α, a singularity in series over n has to be compensated by a

singularity of Γ(α), see Eqs.(234,238). Hence, according to these equations,

Γ(α) has simple poles when its argument approaches negative integers or

zero. These poles read

Γ(−n + ϵ) ≈
(−1)n

n! ϵ
+ · · · (239)

After this remark we return to an incomplete Gamma-function and discuss

how to construct its expansion in x for values of α that belong to the third

category i.e. negative integers or zero. For simplicity, we will only consider

the case α = 0. This defines the so-called exponential integral

Γ(0, x) = E1(x) =

∞∫
x

dt

t
e−t . (240)

The calculation here is more tricky than in the previous examples because

the integral does not converge at x = 0. Hence, if we replace e−t with

its Taylor expansion, we will get an integral that diverges at t = ∞; in the
previous cases, if was regulated by the non-vanishing δ > 0. To get around

this problem, we can split the integration interval into regions and do different

approximations in each of the regions. We find

E1(x) =

∞∫
1

dt

t
e−t +

1∫
x

dt

t
e−t

=

∞∫
1

dt

t
e−t +

1∫
x

dt

t
(e−t − 1) +

1∫
x

dt

t

= C − ln x −
∞∑
n=1

(−1)nxn

n!n
,

(241)

where C combines contributions of the first integral and the x-independent

contributions of the second integral in Eq.(241). One can show that the
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constant C is related to the Euler constant; it is computed to be

C = lim
x→0

 ∞∫
x

dt

t
e−t + ln(x)

 = −γE = dΓ(1 + z)
dz

∣∣∣∣∣
z=0

. (242)

Numerically, γE = 0.5772.

2. Integration by parts: Integration by parts is a simple method that

allows us to compute asymptotic expansions of integrals. We will explain how

this method works by considering representative examples.

Consider an integral

I(x) =

∞∫
x

dt e−t
4

. (243)

We would like to understand the behavior of this integral in the limit x →∞.
What should we expect? If x is very large, not only the argument of the

exponential function is very large but it also changes significantly once one

moves away from lower integration boundary t = x cutting the integral off.

We therefore expect that in the x → ∞ limit, the asymptotic expansion of
the integral is defined through its behavior in the neighborhood of t = x . To

make this idea explicit, we write t = x + ξ, ξ ∈ [0,∞] and obtain

I(x) ∼
∞∫
0

dξ e−x
4−4x3ξ, (244)

where O(ξ2) and higher terms in the exponent where neglected. We integrate
over ξ and find

I(x) ∼
1

4x3
e−x

4

. (245)

To improve on this result, we note that it implies that the integral I(x) is

determined by a derivative of ln(e−t
4
) at t = x . We therefore re-write the

integral

I(x) = −
∞∫
x

dt
1

4t3
d

dt

(
e−t

4
)
, (246)

integrate by parts and find

I(x) =
1

4x3
e−x

4 −
3

4

∞∫
x

dt

t4
e−t

4

. (247)
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To continue expanding in 1/x , we have to repeat what we just did for the

second integral on the right hand side of the above equation. We write

∞∫
x

dt

t4
e−t

4

= −
∞∫
x

dt

4t7
d

dt

(
e−t

4
)
=
1

4x7
e−x

4 −
7

4

∞∫
x

dt

t8
e−t

4

. (248)

Repeating this several times, we find

I(x) ∼
1

4x3
e−x

4

{
1−

3

4x4
+
3 · 7
(4x4)2

−
3 · 7 · 11
(4x4)3

+ ...

}
. (249)

The series is not convergent but is asymptotic. Nevertheless, it describes the

integral I(x) very well; indeed, even for values of x as small as x ∼ 1.5, three
terms of the expansion describe the result with the precision that is better

than a percent. For larger values of x or on account of more terms in the

series, the result is even more accurate.

Sometimes it is not obvious how integration by parts can be applied to a

given integral; in such cases rewriting an integral before integrating by parts

may help. As an example, consider

I(x) =

x∫
0

dt t−1/2e−t . (250)

We are interested in the behavior of this integral in the limit x → ∞. It is
not very useful to integrate e−t by parts since, if we do that, we will have to

evaluate the integrand at t = 0 where the integrand diverges. Instead, we

first re-write the integral

I(x) =

∞∫
0

dt t−1/2e−t −
∞∫
x

dt t−1/2e−t . (251)

The first integral is equal to Γ(1/2) =
√
π. The second one can be asymp-

totically expanded using integration by parts

∞∫
x

dt t−1/2e−t = −
∞∫
x

dt t−1/2
d

dt

(
e−t
)
= x−1/2e−x −

1

2

∞∫
x

dt t−3/2 e−t

∼ x−1/2e−x −
1

2
x−3/2e−x .

(252)
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Hence, we find

I(x) ∼
√
π − x−1/2e−x +

1

2
x−3/2e−x . (253)

It is straightforward to calculate more terms in the expansion by repetitive

application of integration by parts.

Laplace integrals and Laplace method: An important class of integrals

that we will discuss now are the so-called Laplace integrals defined as

I(x) =

b∫
a

dt f (t) exφ(t). (254)

We assume that f (t) and φ(t) are real-valued continuous functions.

We will be interested in understanding the behavior of such integrals in

the limit x → ∞. As the first step, we can apply the integration-by-parts
technology once again. Indeed, by writing

I(x) =

b∫
a

dt
f (t)

xφ′(t)

d

dt

[
exφ(t)

]
, (255)

and integrating by parts, we obtain

I(x) =
f (t)

xφ′(t)
exφ(t)

∣∣∣∣∣
b

a

−
b∫
a

dt
d

dt

[
f (t)

xφ′(t)

]
exφ(t). (256)

Repeating the above procedure one more time, we obtain

I(x) ∼
f (t)

xφ′(t)
exφ(t)

∣∣∣∣∣
b

a

−
1

x2φ′(t)

d

dt

[
f (t)

φ′(t)

]
exφ(t)

∣∣∣∣∣
b

a

+O(x−3). (257)

Hence, we obtained an expansion of I(x) in 1/x . Then, depending on the

relation between φ(a) and φ(b) etc., a simpler version of the asymptotic

approximation to I(x) can, in principle, be derived from the above equation.

However, the above approach has limitations because 1/φ′(t) appears in

the integrand. Therefore, if there is a point t in the interval t ∈ [a, b] where
φ′(t) = 0, the above calculation becomes dubious. This case is addressed

with the help of the so-called Laplace method.

The method is based on the following observation. Suppose that the

function φ(t) has a maximum at the point t = c , c ∈ [a, b]. Then, φ′(c) = 0,

49



the above discussion is not applicable and a different approach is required. To

describe it, we note that if f (c) ̸= 0 or otherwise pathologically small, the
leading contribution to I(x) in the limit x → ∞ comes from the immediate
neighborhood of t = c since exφ(c), for large x , is exponentially large compared

to a value of exφ(t) for any other point t ∈ [a, b]. Hence, we can approximate
I(x) by I(x, ϵ) where 0 < ϵ≪ 1 and

I(x, ϵ) =

c+ϵ∫
c−ϵ

dt f (t)exφ(t), (258)

if a < c < b,

I(x, ϵ) =

b∫
b−ϵ

dt f (t)exφ(t), (259)

if c = b and

I(x, ϵ) =

a+ϵ∫
a

dt f (t)exφ(t), (260)

if c = a.

The important result that we want to explain is that the above formulas

provide a starting point for obtaining the asymptotic expansion of I(x) and

that, in spite of their appearance, they are independent of ϵ. We will consider

the case c = a.

We write

I(x) = I(x, ϵ) + δI(x, ϵ), (261)

where

I(x, ϵ) =

a+ϵ∫
a

dt f (t) exφ(t), δI(x, ϵ) =

b∫
a+ϵ

dt f (t) exφ(t). (262)

To simplify the notation, we denote values of functions and their derivatives

at a particular point x = d as follows

ϕ(d) = ϕd ,
dϕ(x)

dx

∣∣∣
x=d
= ϕ′d ,

d2ϕ(x)

dx2

∣∣∣
x=d
= ϕ′′d , etc. (263)

We consider I(x, ϵ) and take ϵ small so that we can approximate functions
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φ(t) and f (t) by Taylor series. The leading term reads

I(x, ϵ) ∼
a+ϵ∫
a

dt fae
xφa+xφ′a(t−a) = fae

xφa

a+ϵ∫
a

dt exφ
′
a(t−a)

= fae
xφa

ϵ∫
0

dξ exφ
′
aξ =

fae
xφa

x |φ′a|
(
1− e−x |φ′a|ϵ

)
.

(264)

We can choose ϵ in such a way that two conditions are satisfied

ϵ≪ (b − a), 1≪ ϵx |φ′a|. (265)

These conditions are compatible because we are interested in the limit x →∞.
Given the second condition, we observe that the second term on the r.h.s. in

Eq.(264) is exponentially suppressed6 and, therefore, can be dropped. The

same line of reasoning allows us to drop δI(x, ϵ) in Eq.(261). Indeed, since

δI(x, ϵ)

I(x, ϵ)
∼ exϵφ′a , (266)

δI(x, ϵ) is also exponentially suppressed compared to such terms in the ex-

pansion of I(x) that are suppressed by powers of 1/x . We conclude (c.f.

Eq.(264)) that the leading term in the asymptotic expansion of the integral

I(x) for large values of x reads

I(x) ∼
fae

xφa

x |φ′a|
. (267)

We can improve this estimate by accounting for more terms in the Taylor

expansion of the functions f (t) and φ(t). We write

I(x, ϵ) ∼
a+ϵ∫
a

dt

(
fa + f

′
a(t − a) +

1

2
f ′′a (t − a)2

)
exφa+xφ

′
a(t−a)

(
1 +

xφ′′a
2
(t − a)2

)

= exφa

∞∫
0

dξ

(
fa + f

′
aξ + fa

xφ′′a
2
ξ2
)
exφ

′
aξ =

fae
xφa

x |φ′a|

(
1 +

1

x |φ′a|

(
f ′a
fa
+
φ′′a
|φ′a|

))
.

(268)

6Since the maximal value of φ(x) on the interval x ∈ [a, b] occurs at the point x = a, the
derivative of the function φ(x) at x = a is negative, i.e. φ′a < 0.
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Note that in deriving this result, we have neglected all terms which are sup-

pressed by e−ϵx |φ
′
a ; the practical way of doing this is to extend the ξ integration

boundary to +∞. Obviously, we do not need to re-consider δI(x, ϵ) since it is
always exponentially suppressed relative to power-suppressed terms retained

in Eq.(268).

There is a particular case of this general result that is known as the Wat-

son’s lemma. It applies to the asymptotic behavior of the integrals with

φ(t) = t, i.e.

I(x) =

b∫
0

dt f (t) e−xt , b > 0. (269)

We are interested in the behavior of this integral in the limit x →∞. Suppose
that f (t) can be represented by asymptotic series at t ∼ 0

f (t) ∼ tα
N∑
n=0

ant
βn, (270)

where α > −1 and β > 0. Then,

I(x) ∼
∞∑
n=0

anΓ(α+ βn + 1)

xα+βn+1
. (271)

Again, with exponential accuracy, the results is independent of the upper

integration boundary since we neglect all terms that are exponentially small.

To give an example of a situation where the Watson’s lemma can be

applied, consider the following integral

I(x) =

π/2∫
0

ds e−x sin
2 s . (272)

The integral is not in the form of Eq.(269); we can, however, transform it to

the right form by changing variables s → t where

t = sin2 s. (273)

Then t ∈ [0, 1] and
ds =

dt

2
√
t(1− t)

. (274)

Hence, I(x) becomes

I(x) =

1∫
0

dt f (t)e−xt , (275)
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where

f (t) =
1

2
t−1/2(1− t)−1/2 =

1

2
t−1/2

∞∑
n=0

Γ(n + 1/2)tn

n!Γ(1/2)
. (276)

To apply the Watson lemma, we need an, α and β. We read them off from

the above equation

α = −1/2, β = 1, an =
1

2

Γ(n + 1/2)

n!Γ(1/2)
. (277)

Hence,

I(x) ∼
1

2

∞∑
n=0

[Γ(n + 1/2)]2

n! Γ(1/2) xn+1/2
. (278)

The above formulas are valid if the maximum of the function φ occurs

at the boundary of the interval [a, b]. We will now move to the case when

the maximum occurs in the interior of an interval [a, b]. The logic of the

calculation is nearly identical but there are some differences in details.

We consider an integral

I(x) =

b∫
a

dt f (t) exφ(t), (279)

and assume that the function φ(t) for t ∈ [a, b] reaches the maximum at the
point t = c ∈ [a, b]. We are interested in the asymptotic behavior of I(x) as
x →∞.
We write

I(x) = I(x, ϵ) + δI(x, ϵ), (280)

where

I(x, ϵ) =

c+ϵ∫
c−ϵ

dt f (t) exφ(t), δI(x, ϵ) =

c−ϵ∫
a

dt f (t) exφ(t) +

b∫
c+ϵ

dt f (t) exφ(t).

(281)

We take ϵ to be small, so that the functions f (t) and φ(t) can be expanded

in Taylor series around t = c . The leading term reads

I(x, ϵ) ∼ fc

c+ϵ∫
c−ϵ

dt exφc+xφ
′
c(t−c)+ 12 xφ

′′
c(t−c)2. (282)
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We write t − c = ξ and use the fact that φ′c = 0 and φ′′c < 0 since c is the
maximum. It follows

I(x, ϵ) ∼ fc exφc
+ϵ∫
−ϵ

dξ e−
1
2
x |φ′′c |ξ2. (283)

If we choose ϵ such that

ϵ≪ |b − a|, 1≪ x |φ′′c |ϵ2, (284)

where the possibility to do that follows from the fact that we consider x →∞
limit, we can extend integration boundaries in Eq.(283) to infinity without

changing power-suppressed terms.

The simplest way to see this is to change variable ξ → µ where ξ =

µ/
√
x |φ′′c |. We then find

I(x, ϵ) ∼
fc e

xφc√
|xφ′′c |

+ϵ
√
x |φ′′c |∫

−ϵ
√
x |φ′′c |

dµ e−µ
2/2 ∼

fc e
xφc√
|xφ′′c |

∞∫
−∞

dµ e−µ
2/2 ∼

fc e
xφc
√
2π√

|xφ′′c |
.

(285)

Similar to examples discussed earlier, we can also discard δI(x, ϵ) contribution

to the integral I(x) since they are exponentially suppressed

δI(x, ϵ)

I(x, ϵ)
∼ e−1/2ϵ2|φ′′c |x ≪ 1. (286)

We can improve the description of the asymptotic behavior of the integral

I(x) by computing power-suppressed terms in the asymptotic expansion. To

this end, we expand f (t) and φ(t) into series. We should be careful with these

expansions since the function φ has a prefactor x in front of it. Suppose

we aim at finding 1/x corrections to Eq.(285). Since each power of ξ in

the integrand leads to 1/
√
x suppression in the integral (since the integration

region is ξ ∼ 1/
√
x), we need to expand the function f (t) through the second

order and the function φ(t) through the fourth order around t = c . When

exφ(t) is expanded, we need to account for (φ′′′c )
3 contribution since it also

delivers the 1/x correction. Hence, we write

I(x, ϵ) ∼ exφc
ϵ∫

−ϵ

dξ e−1/2x |φ
′′
c |ξ2(fc + f

′
cξ +

1

2
f ′′c ξ

2 + ..)

×
(
1 +
1

6
xφ′′′c ξ

3 +
1

72
x2(φ′′′c )

2ξ6 +
1

24
xφ′′′′c ξ

4 + ..

)
.

(287)
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Since all odd terms integrate to zero, we find

I(x, ϵ) ∼ fcexφc
ϵ∫

−ϵ

dξ e−1/2|φ
′′
c |ξ2
(
1 +

f ′′c
2fc
ξ2 +

f ′c
fc

xφ′′′c ξ
4

6
+
x2(φ′′′c )

2ξ6

72
+
xφ′′′′c ξ

4

24
+ · · ·

)
.

(288)

The relevant integrals can be computed using the following formula

ϵ∫
−ϵ

dξ ξ2ne−1/2x |φ
′′
c |ξ2 =

ϵ
√
x |φ′′c |/2∫

−ϵ
√
x |φ′′c |/2

dµ µ2ne−µ
2

|xφ′′c/2|n+1/2
→

∞∫
−∞

dµ µ2ne−µ
2

|xφ′′c/2|n+1/2
=
Γ(n + 1/2)

|xφ′′c/2|n+1/2
.

(289)

Finally, using this result and discarding contributions δI(x, ϵ) because of their

exponential suppression, we obtain the final result

I(x) ∼ fcexφc
√
2π

x |φ′′c |

[
1 +

1

x |φ′′c |

(
f ′′c
2fc |φ′′c |

+
f ′cφ

′′′
c

2|φ′′c |2fc
+

φ′′′′c
8fc |φ′′c |2

+
5

24

(φ′′′c )
2

fc |φ′′c |3

)]
.

(290)

Let us consider a few examples that do not directly fall into classes of

integrals that we just discussed but that can be dealt with using similar logic.

We will begin with the modified Bessel function. The modified Bessel function

In(x) has the following integral representation

In(x) =
1

π

π∫
0

ex cos t cos(nt) dt. (291)

We are interested in the behavior of In(x) in the limit x →∞. According to
our classification of Laplace integrals φ(t) = cos(t). Considering the interval

t ∈ [0, π], we observe that the maximum of the function φ(t) occurs at t = 0.
An interesting aspect of this integral, however, is that φ′t=0 = 0 so we cannot

apply formulas that we derived at the beginning of our discussion of Laplace

integrals. Instead, we have to expand to second order and beyond keeping

quadratic terms O(t2) in the exponent. We find

cos(t) ∼ 1−
t2

2
+
t4

24
, cos(nt) ∼ 1−

n2t2

2
+
n4t4

24
, (292)
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so that

In(x) ∼
ex

π

∞∫
0

dt e−xt
2/2

(
1−

n2t2

2
+
xt4

24

)

=
ex

π

√
2

x

∞∫
0

dξ e−ξ
2

(
1−
1

x

(
n2 −

1

6

)
ξ2
)
=

ex√
2πx

(
1−

1

2x

(
n2 −

1

6

))
.

(293)

The second example we want to consider refers to the Stirling’s formula

for n! at large n. To be slightly more general, we will derive the asymptotic

behavior of the Gamma-function and use the fact that n! = Γ(n + 1). The

Gamma function is defined as

Γ(z) =

∞∫
0

dt tz−1e−t . (294)

We are interested in the asymptotic behavior of Γ(z) at z → ∞. To write
Γ(z) in a form that is consistent with Laplace integral, we change variables

t = sz , use the fact that tz = ez ln t = ez ln s+z ln z = z zez ln s and write

Γ(z) = z z
∞∫
0

ds

s
ez(ln s−s). (295)

The function φ(s) = ln(s)− s equals to −∞ at s = 0 and s =∞. Moreover,

φ′(s) = 1/s − 1, (296)

so that φ(s) reaches the maximum at s = 1. Expanding around s = 1, we

find

φ(s) ≈ −1−
(s − 1)2

2
+O

(
(1− s)3

)
. (297)

We introduce ξ = (s − 1), extend the integration region to −∞ < ξ < +∞
and obtain

Γ(z) ∼ z ze−z
∞∫

−∞

dξ e−zξ
2/2 ∼

√
2π

z
z ze−z , (298)

We can use this result to re-derive the Stirling formula that gives the

behavior of n! at large n. To this end, we write

n! = Γ(n + 1) = nΓ(n) ∼ (2πn)1/2 nn e−n, (299)

where in the last step we used Eq.(298).
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6 Asymptotic expansion of complex-valued integrals: inte-

gration by parts and the method of stationary phase

An immediate generalization of the Laplace-type integrals that we studied in

the previous lecture are integrals that contain a complex-valued function φ(t)

in the exponent. We will assume that the second function that appeared in

the definition of a Laplace integral, f (t), is real since this assumption does

not restrict what we do in any way (if f (t) is complex-valued, the problem

simply splits into two problems).

As the first step we will assume that the function in the exponent is pure

imaginary and consider the following integrals

I(x) =

b∫
a

dt f (t) e ixφ(t). (300)

We would be typically interested in the behavior of such integrals as x →∞.
Similar to Laplace integrals discussed earlier, there is a variety of cases to

consider; the simplest ones are cases where integration by parts can be used.

We will start with an example.

Consider the following integral

I(x) =

1∫
0

dt
e ixt

1 + t
. (301)

We are interested in the behavior of this integral in the x → ∞ limit. We
would like to expand this integral in powers of 1/x . To construct an expansion,

we write

I(x) =

1∫
0

dt
1

1 + t

1

ix

d

dt

[
e ixt
]
. (302)

Integrating by parts, we obtain

I(x) =
1

ix

1

1 + t
e ixt
∣∣∣t=1
t=0
+
1

ix

1∫
0

dt

(1 + t)2
e ixt . (303)

The central point is that the second term on the r.h.s. of Eq.(303) is smaller

57



than the first one. To prove this, we apply integration by parts one more time

1

ix

1∫
0

dt e ixt

(1 + t)2
=
1

(ix)2

1∫
0

dt

(1 + t)2
d

dt

[
e ixt
]

=
e ixt

(ix)2
1

(1 + t)2

∣∣∣t=1
t=0
+
2

(ix)2

1∫
0

dt e ixt

(1 + t)3
.

(304)

Since the r.h.s. of the above equation scales as 1/x2, we conclude that in the

r.h.s. of Eq.(303), the second term is negligible compared to the first one.

Hence,

I(x) ∼
1

ix

(
e ix

2
− 1
)
. (305)

This result implies that, if integration by parts is applicable, the boundary

terms vanish more slowly than the remaining integral. Although we demon-

strated this by repeated application of integration by parts, this fact is a

consequence of the so-called Riemann-Lebesgue lemma. This lemma states

that
b∫
a

dt f (t)e iφ(t)x → 0, (306)

as x → ∞. The condition for this is that the integral
b∫
a

dt |f (t)| exists.

Hence, in Eq.(303), the integral over t is suppressed compared to the bound-

ary terms.

Although Eq.(306) can be rigorously proven, it can also be intuitively un-

derstood. The x →∞ limit implies that e iφ(t)x oscillates strongly, whereas the
function f (t) changes quite slow, in comparison. As the result, contributions

from adjacent sub-intervals nearly cancel except in regions where oscillations

do not happen. Such regions are characterized by a vanishing derivative of

the function φ; this gives rise to the name of one of the methods to compute

them – the stationary phase approximation.

To what extent this cancellation actually happens and how the integral

in Eq.(306) approaches zero depends on the details of the problem. If φ′(t)

does not vanish anywhere on the interval [a, b], the integral vanishes as 1/x ;

this follows from a straightforward generalization of the integration-by-parts

discussion.

However, similar to our discussion of real-valued integrals in the previous

lecture, integration by parts does not work if the derivative of the function
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φ(t) vanishes in the interval t ∈ [a, b]. We will suppose that this happens at
the boundary point x = a. We then write

I(x) =

a+ϵ∫
a

dt f (t) e iφ(t)x +

b∫
a+ϵ

dt f (t) e iφ(t)x . (307)

Consider the first term and assume that the first p − 1 derivatives of the
function φ(t) vanish, p > 1. Then

a+ϵ∫
a

dt f (t) e iφ(t)x ∼
ϵ∫
0

dξ fa e
ixφa+ixφ

(p)
a /p!ξp = e ixφafa

ϵ∫
0

dξ e iΩ ξ
p

, (308)

where ξ = t − a and Ω = xφ(p)a /p! → ∞. Let us assume that φ(p)a > 0. We

change variables ξ = (µ/Ω)1/p and find

ϵ∫
0

dξ e iΩξ
p

=
1

p Ω1/p

ϵpΩ∫
0

dµ µ1/p−1e iµ. (309)

We choose ϵ such that ϵpΩ = ϵpxφ
(p)
a /p! ≫ 1. This allows us to extend

the upper integration boundary in the above integral to infinity. Then, we

use Cauchy’s theorem and write the required integral as an integral over the

positive imaginary axis. We find

∞∫
0

dµµ1/p−1e iµ = e iπ/(2p)Γ(1/p). (310)

This result implies the following asymptotic behavior of the integral I(x) at

x =∞

I(x) ∼ e i(xφa+π/(2p))
fa
p
Γ

(
1

p

)[
p!

xφ
(p)
a

]1/p
, φ(p)a > 0. (311)

We note that if φ
(p)
a < 0, the above formula will slightly change. In this

case, we will perform the rescaling in Eq.(309) with the absolute value of

|φ(p)a |; this will leave us with the complex conjugated version of Eq.(310).
Hence, for φ

(p)
a < 0, we obtain

I(x) ∼ e i(xφa−π/(2p))
fa
p
Γ

(
1

p

)[
p!

x |φ(p)a |

]1/p
, φ(p)a < 0. (312)
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It remains to explain why the upper integration boundary in Eq.(309) can

be extended to infinity and why the second integral in Eq.(307) is irrelevant

for the leading x →∞ asymptotic behavior of I(x).
Let us start with the second question. Since on the interval t ∈ [a+ ϵ, b]

the first derivative of the function φ(t) does not vanish, we can use integration

by parts to estimate the contribution of this interval to the integral I(x). We

find

I(a + ϵ, x) =

b∫
a+ϵ

dt e ixφ(t) ∼
fa

xφ′a+ϵ
∼

fap!

pxφ
(p)
a ϵp−1

∼
faϵ

ϵppΩ
, (313)

where we used an estimate of the derivative of the function φ at a + ϵ,

φ′a+ϵ ∼ pφ
(p)
a /p!ϵp−1. We can now compare I(x) in Eq.(311) and I(a + ϵ, x)

in Eq.(313). Taking the ratio of relevant factors, we obtain

I(a + ϵ, x)

I(x)
∼

ϵ

ϵpΩ
[

p!

xφ
(p)
a

]1/p ∼ ϵ

ϵpΩ
[
ϵp

ϵpΩ

]1/p ∼ (ϵpΩ)1/p−1 ≪ 1, (314)

since ϵ is chosen in such a way that ϵpΩ is very large and 1/p− 1 is negative.
A similar estimate works for terms neglected in Eq.(309) when the upper

integration boundary was taken to infinity. To show this, we note that the

lower integration boundary is irrelevant for understanding how an integral

depends on the upper integration boundary. Hence, we can conveniently

change the lower integration boundary and consider the following integral

ϵpΩ∫
1

dµ µ1/p−1e iµ, (315)

for which integration by parts computation can be applied. We write

ϵpΩ∫
1

dµ µ1/p−1e iµ =

∞∫
1

dµ µ1/p−1e iµ −
∞∫

ϵpΩ

dµ µ1/p−1e iµ. (316)

We then apply integration by parts to the second integral neglecting the

contributions from the upper integration boundary and find

∞∫
ϵpΩ

dµ µ1/p−1e iµ ∼ c2 (ϵpΩ)1/p−1 . (317)
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Hence, we obtain

ϵpΩ∫
1

dµ µ1/p−1e iµ = c1 + c2 (ϵ
pΩ)1/p−1 , (318)

where the constant c1 corresponds to the ϵ
pΩ → ∞ limit. The second

term in the above equation is the neglected contribution which is sub-leading,

similar to Eq.(314). Hence, Eq.(311) indeed describes the leading asymptotic

behavior of the integral I(x) at x =∞.

We will consider a few simple examples where the results Eqs.(311,312)

can be applied. We begin with the integral

I(x) =

π/2∫
0

dt e ix cos t , (319)

and consider its behavior as x → ∞. First, we note that φ(t) = cos t and
φ′(t) = 0 at t = 0. Then we write cos t ∼ 1 − t2

2
, so that φ0 = 1, p = 2,

φ
(p)
0 = −1. Then, using Eq.(312), we find

I(x) ∼ e ix−iπ/4
[
2

x

]1/2
Γ(1/2)

2
∼
√
π

2x
e i(x−π/4). (320)

As another example, we consider the following integral

I(x) =

1∫
0

dt e ix(t−sin t). (321)

We are interested in the behavior of I(x) in the limit x → ∞. We find
φ(t) = t − sin t, φ′(t) = 1 − cos t and φ′(t) = 0 if t = 0. Expanding φ(t)
at t = 0, we find φ(t) ∼ t3/3!. We conclude that φ0 = 0, φ(3)0 = 1, p = 3.
Hence, we conclude that

I(x) ∼
e iπ/6

3
Γ

(
1

3

)(
6

x

)1/3
, (322)

as x →∞.
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7 The steepest-descent method

The steepest-descent method is a generalization of the stationary-phase method

discussed in the previous lecture. It is used to calculate integrals of the fol-

lowing type

I(x) =

∫
C

dt h(t)exρ(t), (323)

in the limit x → ∞. The integration is performed in the complex plane of a
variable t along the contour C. The functions h(t) and ρ(t) are analytic on

C. The idea of the method is to use analyticity of the integrand to express

I(x) as an integral along a new contour C1 such that ρ(t) has a constant

imaginary part on C1. To see why this helps, imagine that this has been

accomplished. Then, ρ(t) = φ(t) + iψ and the integral becomes

I(x) = e iψ
∫
C1

dt h(t)exφ(t). (324)

Hence, in spite of the fact that the integration is performed along a complex

path, the argument of the exponential function is real and the analysis of this

integral can be performed using the Laplace method discussed in the previous

lecture.

We will consider a few examples to get a sense of how this works. Consider

I(x) =

1∫
0

dt ln t e ixt . (325)

We are interested in the behavior of this integral in the limit x → +∞. To
find it, we view I(x) as an integral in the complex plane (t → z) along the

positive real axis. Since ln(z) is an analytic function in the complex plane

with a cut along the negative real axis, we can use the Cauchy theorem to

write (c.f. Fig. 1)∫
C1

dz ln z e ixz +

∫
C2

dz ln z e ixz +

∫
C3

dz ln z e ixz = 0, (326)

where the three contours are 1) C1 : z = x, x ∈ [0, 1]; 2) C2 : z = 1+ iy , y ∈
[0,+∞]; 3) C3 : z = i s, s ∈ [+∞, 0]. The integral along C1 is the original
integral I(x). It follows that

I(x) = −
∫
C2

dz ln z e ixz −
∫
C3

dz ln z e ixz . (327)
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..

flt.sc) = lat eixt

{ dt flt,x ) + µ f- (t, x) + fdtfftxko
(3

Figure 3: Contour choice for the integral in Eq.(325).

Let us start with the last integral on the r.h.s. of Eq.(327) since it can

be calculated exactly. It reads∫
C3

dz ln z e ixz = −i
∞∫
0

ds ln(i s)e−xs = −
i

x

∞∫
0

dξ

(
iπ

2
− ln(x) + ln(ξ)

)
e−ξ

= −
i

x

(
iπ

2
− ln(x)− γE

)
,

(328)

where γE is the Euler constant and we used ξ = xs.

The first integral on the r.h.s. of Eq.(327) reads∫
C2

dz ln z e ixz = ie ix
∞∫
0

dy ln(1 + iy)e−xy . (329)

Since

ln(1 + iy) =

∞∑
n=1

(−1)n+1in

n
y n, (330)

we find ∫
C2

dz ln z e ixz ∼ ie ix
∞∑
n=1

(−1)n+1inΓ(n + 1)
n

x−n−1. (331)

The complete result for the asymptotic expansion of I(x) at x =∞ reads

I(x) ∼
i

x

(
iπ

2
− ln(x)− γE

)
− e ix

∞∑
n=1

(−i)n+1Γ(n + 1)
nxn+1

. (332)
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As another example, consider the following integral

I(x) =

1∫
0

dte ixt
2

. (333)

We are interested in its asymptotic behavior for x → ∞. Similar to the
previous case, we will have to extend the calculation of this integral into the

complex plane, to obtain integrals which converge rapidly. Recall that we

would like to do that in such a way that the argument of the exponential

function has constant imaginary part along the integration contour. Hence,

we write t = z = u + iv and compute

i t2 = i(u2 − v 2)− 2uv. (334)

Therefore, for the rapid convergence, we would like to choose the integration

contour in such a way that

Im(i t2) = u2 − v 2 = const, Re(i t2) = −2uv < 0. (335)

The second condition ensures that the integrand is exponentially suppressed

on the integration path.

Consider the two boundary points of the integral, t = 0 and t = 1. The

selected contours should run through them, see Fig. 4.

We begin with the analysis of the point t = 0. Since at t = 0, i t2 = 0,

the contour that runs through the the point t = 0 and has constant imaginary

part satisfies

u2 − v 2 = 0, ⇒ u = v > 0. (336)

Note that the the choice of u = v , as opposed to the u = −v solution, is
due to the condition uv > 0, c.f. Eq.(335). Hence, we can parameterize the

integration contour as follows

t =
1 + i√
2
s = e iπ/4 s, (337)

where 0 < s < ∞ is the real parameter that measures the distance to the
origin along the integration contour.

The second boundary is at t = 1 where i t2 = i . Hence, for the second

contour, we need to choose

u2 − v 2 = 1 → u =
√
v 2 + 1. (338)
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Figure 4: Contour choice for the integral in Eq.(342).

Therefore, along this contour t =
√
v 2 + 1 + iv and i t2 = i − 2v

√
1 + v 2.

Motivated by that, we introduce a new variable s defined as

i t2 = i − s. (339)

It follows that

t =
√
1 + i s, (340)

and

dt =
i

2(1 + i s)1/2
ds. (341)

Hence, using Cauchy theorem (i.e. absence of singularities inside the

integration contour, cf. Fig.2) we find

I(x) = e iπ/4
∞∫
0

dse−xs
2 −

ie ix

2

∞∫
0

ds

(1 + i s)1/2
e−xs . (342)

Asymptotic expansion of these integrals is now easily performed. To compute

the first integral, we change integration variables s → ξ/
√
x , use the well-

known result for the Gaussian integral

∞∫
0

dξ e−ξ
2

=

√
π

2
, (343)

and find

e iπ/4
∞∫
0

dse−xs
2

=
e iπ/4

2

√
π

x
. (344)
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The second integral in Eq.(342) is more difficult to compute. Nevertheless, we

can expand the square root in Taylor series around s = 0 since the exponential

function cuts off the integral at s ∼ 1/x . We find

i

2

∞∫
0

ds

(1 + i s)1/2
e−xs =

i

2

∞∑
n=0

∞∫
0

dse−xs
Γ
(
n + 1

2

)
(−i s)n

Γ
(
1
2

)
n!

. (345)

Using
∞∫
0

ds sne−xs = Γ (n + 1) x−n−1, (346)

we obtain the result

i

2

∞∫
0

ds

(1 + i s)1/2
e−xs =

i

2

∞∑
n=0

Γ (n + 1) Γ
(
n + 1

2

)
(−i)n

Γ
(
1
2

)
n! xn+1

. (347)

Finally, putting the two parts together we find

I(x) ∼
e iπ/4

2

√
π

x
+
e ix

2

∞∑
n=0

Γ
(
n + 1

2

)
Γ
(
1
2

) (
−i
x

)n+1
. (348)

Having considered the two examples, we can discuss the problem in a

more formal way and briefly talk about the general theory behind the steepest-

descent method in the complex plane. The complex plane can be described

by a variable z = u+ iv , where u and v are real and imaginary parts of z . For

any function of two variables f (u, v) and any point in the (u, v) plane we can

define a gradient vector ∇⃗f = (∂uf , ∂v f ). The rate of change of the function
f (u, v) at a point (u, v) along the path characterized by a unit vector n⃗, is

given by n⃗ · ∇⃗f . Since
n⃗ · ∇⃗f = |∇⃗f | cosα, (349)

where α is the angle between n⃗ and ∇⃗f , the maximal change occurs in the
direction of the vector ∇⃗f itself (α = 0).
Suppose we need to integrate a function exρ(z) over z along some contour

in the complex z-plane. The function ρ is written as ρ = φ+ iψ. Then

exρ(z) = e ixψ(u,v)exφ(u,v). (350)

The steepest-descent contour is defined as a contour whose tangent is parallel

to ∇⃗exφ(u,v) = exφ(u,v) ∇⃗φ ∼ ∇⃗φ; hence, the steepest-descent contour is a
contour along which the function exφ changes most rapidly.
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However, if the original function ρ(z) is analytic along the integration

contour, ∇⃗φ and ∇⃗ψ are not independent. Indeed, analytic functions satisfy

∂ρ

∂z̄
= 0. (351)

Separating real and imaginary parts in this equation, we obtain

∂φ

∂u
=
∂ψ

∂v
,

∂φ

∂v
= −

∂ψ

∂u
. (352)

These equations imply

∇⃗φ · ∇⃗ψ =
∂φ

∂u

∂ψ

∂u
+
∂φ

∂v

∂ψ

∂v
= −

∂φ

∂u

∂φ

∂v
+
∂φ

∂v

∂φ

∂u
= 0. (353)

It follows that the steepest-descent contour is aligned with the direction along

which the function ψ – the imaginary part of the function ρ – does not change.

Hence, steepest-descent contours are stationary-phase contours.

We will now articulate why the knowledge of a steepest-descent contour

is important. Consider a point z0 = (u0, v0) and an integration contour

characterized by a vector n⃗ passing through this point. Then, parameterizing

the contour by sn⃗ we find

exφ ≈ exφ0exs|∇⃗φ0| cosα, (354)

where α is the angle between ∇⃗φ and n⃗. It follows that if the integration
contour can be deformed in the direction −∇⃗φ0, the integration will converge
very rapidly in the x →∞ limit.
Similar to cases discussed earlier, the relative importance of different parts

of the integration contour is determined by maxima of the function φ and there

are several options. The function φ can be maximal either at the integration

boundaries or somewhere along the integration contour.

This latter case is somewhat peculiar since analytic functions can not have

true local maxima or minima. This feature is a consequence of the fact that

both functions φ and ψ satisfy Laplace equations

∇2φ = 0, ∇2ψ = 0. (355)

Therefore if, say, ∂2uφ < 0, then ∂
2
vφ > 0. The first condition means that

the function decreases in the u direction, while the second condition implies

that the function increases in the v direction. This situation is referred to as

a “saddle point” and the integration contour should, in general, be deformed
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in such a way that it passes through the saddle point along the direction of

the fastest descent, avoiding directions of the fastest ascent.

We will consider an example now. The Bessel function J0(x) obeys the

following representation

J0(x) =

π/2∫
−π/2

cos(x cos θ)
dθ

π
. (356)

We are interested in the behavior of J0(x) at large x . To determine it, we will

try to write an integral representation for J0(x) in the complex plane choosing

integration contour(s) in such a way that taking the x → ∞ limit becomes
straightforward.

We can change variables θ = i t, use the fact that cos θ = cos i t = cosh t

and write

J0(x) = Re

 1
iπ

iπ/2∫
−iπ/2

dt e ix cosh t

 . (357)

We would like to modify the above equation by introducing an integration

over a particular contour that we will refer to as C. We write

J0(x) = Re

 1
iπ

∫
C

dt e ix cosh t

 . (358)

The contour C is given by a union of three intervals [−∞− iπ/2,−iπ/2] ∪
[−iπ/2, iπ/2]∪[iπ/2, iπ/2+∞], The first and the last segments are contours
that run parallel to the real axis. The equivalence of Eq.(357) and Eq.(358)

is not immediately obvious, but it follows from the fact that integrals over

the added segments vanish. To see why, consider one of them

Re

 1
iπ

iπ/2+∞∫
iπ/2

dt e ix cosh t

 . (359)

To parameterize the integration variable along the contour, we write t =

iπ/2 + y , 0 < y <∞ and obtain

Re

 1
iπ

∞∫
0

dy e ix cosh(iπ/2+y)

 = Re
 1
iπ

∞∫
0

dy e−x sinh(y)

 = 0. (360)
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The last step follows from the fact that the integral in brackets is real; this

implies that its product with 1/(iπ) is purely imaginary.

We will now use representation Eq.(358) to compute the asymptotic ex-

pansion of the Bessel function J0(x) for x → ∞. To this end, we note that
there is a contour of a constant phase that connects the points −∞− iπ/2
and +∞+ iπ/2 that passes through the origin. To find it, we write z = u+ iv
and compute

i cosh z = i cos v cosh u − sin v sinh u. (361)

If we choose the contour to pass through u = 0, v = 0, the constant phase

contour satisfies

cos v cosh u = 1. (362)

We can show that the maximum of the function sin v sinh u on the contour

described by Eq.(362) occurs at u = v = 0. To prove this, we use Eq.(362)

and find that along the contour

du

dv
=
sin v

cos v

cosh u

sinh u
. (363)

It follows
d sin v sinh u

dv
= cos v sinh u +

sin2 v cosh2 u

cos v sinh u
. (364)

We use sin2 v = 1 − cos v 2 and Eq.(362) to eliminate cos v and sin v from
the above equation and obtain

d sin v sinh u

dv
= sinh(u)

1 + cosh2 u

cosh u
. (365)

It follows from Eq.(365) that the derivative of the real part of i cosh(t) only

vanishes at the point z = (u, v) = (0, 0) and nowhere else on the integration

contour described by Eq.(362). The point z = 0 is a saddle point as can be

seen by expanding i cosh(t) in small u and v . Then

i cosh t = i cos v cosh u − sin v sinh u ≈ i + i
(u2 − v 2)
2

− vu. (366)

The contours of constant phase require u2 = v 2, so that v = ±u. The curves
of steepest descent correspond to v = u and the curves of steepest ascent

to v = −u.
Hence, to parameterize the steepest-descent path in the neighborhood of

t = 0, we write t = e iπ/4s, extend the integral over s to ±∞ and obtain

J0(x) ∼ Re

e i(x+π/4)
iπ

∞∫
−∞

ds e−xs
2/2

 =√ 2
πx
cos
(
x −

π

4

)
. (367)
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Finally, we note that it is possible to compute more terms in the asymptotic

expansion of J0(x) at x =∞ following the approach described above.
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8 Perturbation theory

We will discuss and illustrate general features of perturbation theory. A stan-

dard way in which perturbation theory appears in a physics problem is that

there is a small parameter in the problem that prevents us from solving it

exactly. However, if the small parameter is set to zero, the problem becomes

solvable. We then develop methods that allow us to solve the original problem

approximately by systematically expanding in the small parameter.

It is possible to think about perturbation theory in a broader sense, simply

as a way to approximately solve complicated problems even when no obvious

small parameter is present. In this case, we have to introduce an auxiliary

small parameter into the problem, find solutions in dependence of this “small”

parameter and, finally, set the value of this parameter to what it appears to

be in the original problem.

Let us consider a few simple examples. We are interested in solving the

following cubic equation.

x3 − 4.001x + 0.002 = 0. (368)

There is no small parameter here but we can introduce one by writing

x3 − (4 + ϵ)x + 2ϵ = 0. (369)

The original problem, i.e. Eq.(368) is recovered if we choose ϵ = 10−3.

It is obvious that roots of Eq.(369) are functions of ϵ. We write

x(ϵ) = a0 + a1ϵ+ a2ϵ
2 + ..., (370)

substitute Eq.(370) to Eq.(369) and find the following result

∞∑
i=0

fi(a0, ..., ai)ϵ
i = 0. (371)

Since ϵ is a parameter, Eq.(371) is only satisfied if all coefficients vanish

independently of each other. Hence, instead of a single equation Eq.(369),

we obtain an infinite sequence of equations

f0(a0) = 0, f1(a0, a1) = 0, f2(a0, a1, a2) = 0, · · · fi(a0, ..., ai) = 0. (372)

Inspecting the arguments of the functions fi , it should become clear that we

can solve these equations iteratively, starting with f0 to determine a0 and then

continuing step by step to find the remaining coefficients ai . Each of these
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steps is obviously simpler than solving the original third-order equation since

we only have to solve one simple equation at a time.

We start with f0. It reads

f0 = a0(a
2
0 − 4) = 0. (373)

It follows that a0 = ±2, 0 are three possible solutions.
We will consider a0 = −2 for concreteness. Computing f1(−2, a1), we

find the following equation

f1(−2, a1) = 4 + 8a1 = 0, (374)

so that a1 = −1/2. Computing f2(−2,−1/2, a2), we find

(−1 + 8a2) = 0, (375)

which implies that a2 = 1/8. Hence, one of the roots reads

x(ϵ) ∼ −2−
1

2
ϵ+
1

8
ϵ2 +O(ϵ3), (376)

which, for ϵ = 10−3, evaluates to −2.000499875. This is very close to the
right answer −2.0004998751; the difference is consistent with O(ϵ3) ∼ 10−9
which is the expected magnitude of the neglected terms.

We can do a similar exercise for a0 = 0. We obtain

x(ϵ) ∼
1

2
ϵ−
1

8
ϵ2 +

1

16
ϵ3. (377)

This evaluates to x = 0.00049987506250 which, again, agrees very well with

the exact result 0.00049987506249.

This example illustrates three steps of a perturbative analysis of a problem:

1) convert the original problem into a perturbative problem by introducing a

would-be small parameter; the perturbative problem should be easily solvable

if the small parameter is set to zero; 2) assume that the answer is given by

a series in the small parameter, and solve iteratively a sequence of simpler

problems to find coefficients of the series; 3) recover the answer to the original

problem by summing up – to the extent possible – the perturbative series for

the required value of the small parameter.

We turn to another example that shows how a problem can be turned into

a perturbative one in the context of solving differential equations. Consider

a second order differential equation

y ′′ = f (x)y , (378)
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with the boundary conditions

y(0) = 1, y ′(0) = 1. (379)

The function f (x) is arbitrary; Eq.(378) should remind us about the

Schrödinger equation for an arbitrary potential. Let us turn Eq.(378) into

a perturbative problem by re-writing it as follows

y ′′ = ϵf (x)y . (380)

If we set ϵ→ 0, the equation becomes y ′′0 = 0. It has two solutions y0(x) = a
and y0(x) = bx . We can satisfy the boundary conditions in Eq.(378) by

choosing y0(x) = 1 + x . Then, we write y(x) as series in ϵ

y(x) =

∞∑
n=0

ϵnyn(x), (381)

substitute this series into into Eq.(380) and derive an equation for the coef-

ficients of the series in Eq.(381). The result reads

y ′′n (x) = f (x) yn−1(x). (382)

Since we satisfied the boundary conditions for the full solution y(x) by an

appropriate choice of y0(x), the boundary conditions for yn(x), n > 0, read

yn(0) = 0 and y
′
n(0) = 0. The solution to Eq.(382) that satisfies these

boundary conditions reads

yn(x) =

x∫
0

dt

t∫
0

ds f (s)yn−1(s). (383)

Hence, the complete solution of the original differential equation is written as

follows

y(x, ϵ) = 1 + x + ϵ

x∫
0

dt1

t∫
0

ds1 f (s1)(1 + s1)

+ ϵ2
x∫
0

dt2

t2∫
0

ds2 f (s2)

s2∫
0

dt1

t1∫
0

ds1 f (s1)(1 + s1) + ...

(384)

We can estimate if this series converges. Let us suppose that the function

|f (x)| is bounded from above on the interval [0, x ], |f (x)| < K. Then, the
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O(ϵn) contribution to Eq.(384) can be estimated from above by replacing
f (si) with K in Eq.(384). Integrating (1 + s1) n times, we find

yn(x) < ϵnKn

[
x2n+1

(2n + 1)!
+

x2n

(2n)!

]
= ϵnKn x

2n

(2n)!

(
1 +

x

2n + 1

)
< ϵnKn x

2n

(2n)!
(1 + x) .

(385)

Hence,

y(x, ϵ) < (1 + x) cosh(
√
ϵKx). (386)

We find that the series solution Eq.(384) converges absolutely for all values

of ϵ including ϵ = 1 provided that |f (x)| is bounded from above on the inter-
val [0, x ]. It is also clear from Eq.(386) that the quality of the approximate

solution is controlled by the parameter
√
Kx =

√
|max[f (x)]|x . If this pa-

rameter is small, a few terms in Eq.(384) are sufficient to obtain an accurate

description of the solution at ϵ = 1 for all x ∈ [0, x ].
The construction of solutions by means of perturbative expansion that we

described assumes that a Taylor expansion in a small parameter actually exists.

If this is indeed the case, the procedure is referred to as “regular” perturbation

theory. There are also cases when this is not the case; this means that either

series does not have a form of a Taylor series (cf. Frobenius series in a

local analysis of differential equations) or they do not converge (c.f. irregular

singular points in local analysis of differential equations). In both cases one

talks about “singular” perturbation theory.

Let us consider a few examples. Consider the following equation

ϵ2x6 − ϵx4 − x3 + 8 = 0. (387)

We would like to find roots of this equation for small values of ϵ. We notice

that if ϵ = 0, the equation becomes

x3 = 8, (388)

so that the solutions are x = 2, 2e iφ, 2e2iφ, where φ = 2π/3. We note,

however, that the original equation Eq.(387) is a sixth order differential equa-

tion whereas Eq.(388) is a third order differential equation. This implies that

when we set ϵ = 0 in the original equation Eq.(387) three roots of the original

equation disappear. This dramatic change in the number of solutions of the

equation, that occurs when the small parameter is set to zero, implies that

we deal with singular perturbation theory in this case.
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Before we discuss the fate of the “disappeared” solutions, we will show

that for the three solutions of Eq.(388) we can construct solutions that are

valid also at finite ϵ by applying regular perturbative expansion. To this end,

we write

x(ϵ) =

∞∑
n=0

a0ϵ
n, (389)

and find the following equations for various orders in the ϵ-expansion

8−a30 = 0, a20(3a1+a
2
0) = 0, a0(a

5
0−4a20a1−3a21−3a0a2) = 0, .... (390)

Solving them for a0 = 2 as an example, we find

x(ϵ) = 2−
4

3
ϵ+ 8ϵ2 −

2864

81
ϵ3 +O(ϵ4). (391)

For ϵ = 0.01, x(ϵ) = 1.9874313 whereas the exact solution is 1.9874334... A

similar analysis can be applied to the other two O(ϵ0) solutions of Eq.(388).

We will now try to understand what has happened with the three solutions

of Eq.(387) that disappeared from Eq.(388). The hypothesis that we have is

that these solutions have such a dependence on ϵ that in the limit ϵ→ 0 they
move to infinity. The reason they are not visible in Eq.(388) is that Eq.(388)

is computed under the implicit assumption that x(ϵ) stays finite when ϵ is

taken to zero.

To see what happens if this assumption is violated, we write x = y/ϵα,

where α > 0. We will be looking for solutions where y ∼ O(1).
Substituting this into Eq.(387) and multiplying the whole equation with

ϵ6α−2, we find

y 6 − ϵ2α−1y 4 − ϵ3α−2y 3 + 8ϵ6α−2 = 0. (392)

We need to find the value of α that enables the construction of the solution

of this equation with y ∼ O(1). Upon some reflection, it is possible to see
that the only possible choice is α = 2/3. Then Eq.(392) becomes

y 6 − ϵ1/3y 4 − y 3 + ϵ28 = 0. (393)

Taking ϵ→ 0, we obtain the leading equation

y 3(y 3 − 1) = 0, (394)

which, besides the trivial solution y = 0, contains three non-trivial solutions

y = 1, y = e i2π/3, y = e i4π/3. These are exactly the three solutions that we

were missing! The three y = 0 solutions are the ones that we found earlier.
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The fact that they correspond to zero simply means that they do not contain

terms that are proportional to y/ϵ2/3.

It follows from Eq.(393) that ϵ-dependent corrections to Eq.(394) scale

as ϵ1/3. Hence, to develop a perturbative expansion, we write

x(ϵ) = ϵ−2/3
∞∑
n=0

anϵ
n/3. (395)

For a0 = 1, the first few terms read

x(ϵ) = ϵ−2/3
(
1 +

ϵ1/3

3
−

ϵ

81
+ ...

)
. (396)

One can perform a similar analysis to determine corrections to other O(ϵ0)
solutions of Eq.(394) following what we just discussed.

Another interesting example of singular perturbation theory concerns the

following differential equation

ϵy ′′ − y ′ = 0, (397)

with the boundary conditions y(0) = 0 and y(1) = 1. We would like to

determine the solution of Eq.(397) using perturbation theory in ϵ. We will

attempt to obtain the leading term in the ϵ-expansion of y(x) by setting ϵ to

zero in Eq.(397). We obtain

y ′ = 0, (398)

as the zeroth-order equation; its solution is y = const and it is not possible

to satisfy the two boundary conditions y(0) = 0 and y(1) = 1 that we would

like to impose on the solution of Eq.(397).

To understand what is going on, we solve Eq.(397) exactly. We easily find

y(x, ϵ) =
ex/ϵ − 1
e1/ϵ − 1 . (399)

This solution is quite spectacular (c.f. Fig. 9). For small ϵ, it is zero

everywhere except in a small neighborhood of x = 1. This small (1 − x) ∼
O(ϵ) region is called “boundary layer”. Outside of the boundary layer, the
solution is indeed the ϵ → 0 limit of the equation Eq.(397) and the left

boundary condition y(0) = 0 applies. We will discuss the construction of the

solution in the full region in a separate lecture dedicated to boundary layer

problems.

We will continue with the discussion of perturbative methods that can

be used to solve an eigenvalue problem of the Schrödinger equation. This
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Figure 5: Solution to Eq.(397) for ϵ = 10−3.

is a known topic that is covered in Quantum Mechanics courses but we will

discuss it for completeness. Consider the Schrödinger equation[
−
d2

dx2
+ V (x) +W (x)− E

]
Ψ = 0. (400)

We assume that V (x) and W (x) become infinite at |x | → ∞. We are inter-
ested in solutions that vanish at |x | → ∞; we also know that this should be
possible to achieve for certain values of the parameter E that we will refer to

as “energy eigenvalues”.

Note that we have split the potential in Eq.(400) into two functions V (x)

and W (x); we assume that we can find solutions to Eq.(400) with W (x) =

0. Hence, we turn the problem of solving Eq.(400) with specific boundary

conditions into a perturbative one by introducing a parameter ϵ as follows[
−
d2

dx2
+ V (x) + ϵW (x)− E

]
Ψ = 0. (401)

We are interested in finding Ψ and E that appear in Eq.(401) as series in the

parameter ϵ. We write

Ψ(x, ϵ) =

∞∑
n=0

ϵnΨn(x), E =

∞∑
n=0

ϵnEn. (402)

To proceed further, we substitute Eq.(402) into Eq.(401), collect contri-

butions proportional to ϵn and equate them to zero. We obtain(
−
d2

dx2
+ V (x)

)
Ψn(x) +W (x)Ψn−1 =

n∑
m=0

EmΨn−m(x). (403)
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Eq.(403) is somewhat peculiar since it contains both the unknown wave

function Ψn and the unknown energy En. To disentangle them, we write

Ψn(x) = Ψ0(x)Fn(x), F0(x) = 1. We then substitute this ansatz into

Eq.(403) and find

−2Ψ′0F ′n −Ψ0F ′′n = −Ψ0

(
WFn−1 −

n∑
m=1

EmFn−m

)
. (404)

Multiplying with Ψ0, we find

d

dx

[
Ψ20F

′
n(x)

]
= Ψ20(x)

(
W (x)Fn−1(x)−

n∑
m=1

EmFn−m(x)

)
. (405)

We can now integrate both sides of this equation over x , from x = −∞ to
x = +∞. The integral of the left hand side vanishes, thanks to the boundary
conditions. Hence, we obtain

En =

+∞∫
−∞
dx Ψ20(x)

(
W (x)Fn−1(x)−

n−1∑
m=1

EmFn−m(x)

)
∞∫
−∞
dx Ψ20(x)

. (406)

If we use conventional quantum mechanical normalization for bound states∫
Ψ0(x)

2 = 1, the denominator in the above equation becomes one.

To find the function Ψn(x) = Ψ0(x)Fn(x) we integrate Eq.(405) twice

and find

Ψn(x) = Ψ0(x)

x∫
a

dt

Ψ20(t)

t∫
−∞

dsΨ0(s)

(
W (s)Ψn−1(s)−

n∑
m=0

EmΨn−m(s)

)
.

(407)

Note that the quantity a that appears on the r.h.s. of the above equation

fixes the normalization of Ψn(x) in such a way that Ψn(a) = 0.

Next, we will discuss the concept of “asymptotic matching”. The idea

here is to find an approximate solution to, say, a differential equation using

different perturbative expansions in two overlapping regions. Requiring that

the two solutions coincide in the overlapping region, we obtain a solution

that is valid in the union of the two regions. The concept of “asymptotic

matching” is also very useful for the computation of integrals that depend on

a small parameter; we will discuss an example at the end of the lecture.
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We will introduce the concept of asymptotic matching by considering the

following differential equation

y ′ +

(
ϵx2 + 1 +

1

x2

)
y = 0. (408)

We consider the interval x ∈ [1,∞] and use y(1) = 1 as the boundary
condition. The parameter ϵ is considered to be small.

The interval [1,∞] is naturally divided into two intervals. Indeed, if x ≪
1/
√
ϵ, the term ϵx2 is much smaller than 1 and 1/x2 and we can neglect it

in comparison. We denote the solution valid in the interval [1, xb] such that

xb ≪
√
1/ϵ as y1(x), write the simplified version of Eq.(408) and solve it

y ′1 +

(
1 +

1

x2

)
y1 = 0 → y1 = e

−x+1/x . (409)

We note that this solution is consistent with the boundary condition y(1) = 1.

If, on the other hand, ϵx2 ∼ 1 then 1/x2 ∼ ϵ and, therefore, it is small.
In this case, we can neglect 1/x2, while keeping ϵx2 and 1 in the second term

on the l.h.s. of Eq.(408). We denote the corresponding solution as y2(x),

write a simplified version of Eq.(408) and solve it

y ′2 +
(
ϵx2 + 1

)
y2 = 0, y2 = ce

−ϵx3/3−x . (410)

Here, c is the unknown integration constant.

However, this constant can be fixed because there exist values of x for

which both both solutions, y1 and y2 are valid. To see this, we split the interval

[1,∞] into two intervals [1, δ] and [δ,∞]. We require that y1(x) is valid on
the first interval and y2(x) on the second. This requires that δ satisfies the

two equalities

δϵ2 ≪ 1, and
1

δ2
≪ 1. (411)

Both of these inequalities are satisfied if we choose δ from the following

interval

1≪ δ ≪
1√
ϵ
. (412)

Since we are interested in ϵ→ 0, this interval is clearly not empty.
For a given δ, the two solutions y1(x) and y2(x) should match at x = δ.

Given the constraints on δ, y(x) for x = δ simplify as follows

y1(x) = e
−x+1/x → e−x , y2(x) = ce

−ϵx3/3−x → ce−x . (413)
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Since y1(δ) should be equal to y2(δ), we find c = 1. This gives us the

approximate solution on the full interval x ∈ [1,∞]. It reads

y(x) =

{
e−x+1/x , x ≪ ϵ−1/2;

e−x−ϵ
2x3/3, x ≫ 1.

(414)

The concept of asymptotic matching is often used for the evaluation of

integrals. To see how this works, consider the following example. Suppose

we want to compute an integral

F (ϵ) =

∞∫
0

dt e−t−ϵ/t , (415)

in the limit ϵ → 0. We can easily compute the leading behavior by setting ϵ
to zero and evaluating the integral. We find F (0) = 1. The question is how

to find sub-leading terms in the expansion of F (ϵ).

The idea is as follows. We introduce a parameter δ and write

F (ϵ) =

δ∫
0

dt e−t−ϵ/t +

∞∫
δ

dt e−t−ϵ/t . (416)

In the first integral, we would like to expand e−t in a Taylor series; this is

possible if δ ≪ 1. In the second integral, we would like to expand e−ϵ/t in
series in 1/t. This is possible if ϵ/δ ≪ 1. Hence, choosing δ such that

ϵ≪ δ ≪ 1, (417)

we obtain the overlapping interval where both expansions are possible. Hence,

we find the following representations for the two integrals

I1 =

δ∫
0

e−t−ϵ/tdt =

∞∑
n=0

δ∫
0

(−t)n

n!
e−ϵ/tdt =

∞∑
n=0

δ/ϵ∫
0

ϵn
(−ξ)n

n!
e−1/ξdξ

=

∞∑
n=0

(−1)nϵn+1

n!

∞∫
ϵ/δ

ξ−n−2e−ξdξ,

(418)

and

I2 =

∞∫
δ

e−t−ϵ/tdt =

∞∑
n=0

(−ϵ)n

n!

∞∫
δ

dt t−ne−t dt. (419)
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We notice the following: the remaining integral in I2 is independent of ϵ

and only depends on δ. Hence, if we are interested in the computation of the

original integral to a particular order in ϵ, it is quite clear where to truncate

the series that appears in I2. Suppose we work to first order in ϵ. Then,

I2 ∼
∞∫
δ

dt e−t
(
1−

ϵ

t

)
. (420)

The first relevant integral reads

∞∫
δ

dt e−t = 1−
δ∫
0

dt e−t ∼ 1− δ +O(δ2). (421)

The second integral is easy to compute if we integrate by parts once7

∞∫
δ

dt e−t
ϵ

t
= ϵ

ln te−t∣∣∣∣∣
∞

δ

+

∞∫
δ

dt ln(t)e−t


= ϵ

− ln δ e−δ + ∞∫
0

dt ln(t)e−t −
δ∫
0

dt ln(t)e−t


= ϵ (− ln δ − γE + δ) +O(ϵδ2).

(422)

Hence, we find

I2 = 1− δ − ϵ (− ln δ − γE + δ) +O(δ2, ϵδ2). (423)

Calculation of I1 is more complicated because the integrals there still

depend on ϵ. It is, however, easy to understand this dependence. Indeed, the

strongest dependence comes from the lower integration boundary. Since ϵ/δ

is small, e−ξ there is close to one, so that

ϵn+1
∞∫

ϵ/δ

e−ξξ−n−2 dξ ∼ ϵn+1
δn+1

ϵn+1
∼ δn+1. (424)

Hence, we conclude that the n-th term in the series that contributes to

I1 contains terms O(δn+1), O(δnϵ), ...O(ϵn+1). Hence, to compute terms up

7We require
∞∫
0

ln t e−t dt = −γE .
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to O(ϵ0δ) we need to study the n = 0 contribution to I1 and if we want to
compute all terms up to O(ϵδ) we also require the n = 1 contribution.
Upon accounting for these two terms, we find

I1 = ϵ

∞∫
ϵ/δ

dξ ξ−2e−ξ − ϵ2
∞∫

ϵ/δ

dξ ξ−3e−ξ + · · · (425)

We start with the first integral in Eq.(425). Repeatedly integrating by

parts, we find

ϵ

∞∫
ϵ/δ

dξ ξ−2e−ξ =ϵ

(
δ

ϵ
e−ϵ/δ + ln

ϵ

δ
e−ϵ/δ + γE −

ϵ

δ

(
1− ln

ϵ

δ

))

≈ δ − ϵ+ ϵ ln
ϵ

δ
+ γEϵ..

(426)

We compute the second term in Eq.(425) in a similar manner. The result

reads

ϵ2
∞∫

ϵ/δ

dξ ξ−3e−ξ = ϵ2

−e−ξ
2ξ2

∣∣∣∣∣
∞

ϵ/δ

+
e−ξ

2ξ

∣∣∣∣∣
∞

ϵ/δ

−
1

2

∞∫
ϵ/δ

dξ

ξ
e−ξ


≈ −ϵδ +O(δ2, ϵ2).

(427)

Combining results for I1 and I2 we obtain F (ϵ) to first order in ϵ

F (ϵ) ∼ 1− δ − ϵ(− ln δ − γE + δ) + δ − ϵ+ ϵ ln
ϵ

δ
+ γϵ+ ϵδ +O(ϵ2, δ2)
∼ 1 + ϵ(ln ϵ+ 2γE − 1) +O(ϵ2).

(428)

We emphasize that we were supposed to include all the terms in our compu-

tation that scale as O(δ), O(ϵ) and O(ϵδ) and we clearly see from Eq.(428)
that the dependence on the auxiliary parameter δ cancels out through this

order, as expected.
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9 Summation of series

We have seen in many examples that solutions to various problems can be

written in the form of series. Sometimes we know all terms in the series

and sometimes just the first few. To turn series into numbers, we need to

understand how to sum them up in a way that, ideally, requires a minimal

number of terms in the series for arriving at a meaningful result.

However, there are plenty of cases when series converge slowly, if at all.

A very simple example is

S(x) =

∞∑
k=0

(−x)k = 1/(1 + x). (429)

For x = 0.9, the sum of first fifty terms in the series, gives only the first two

digits of the result, already the third digit is incorrect (S50(0.9) = 0.5288 vs.

S(0.9) = 0.5263). An interesting question is if we can do better.

To find an answer to this question, consider generic series

S =

∞∑
n=0

an, (430)

and define N-th partial sum as

SN =

N∑
n=0

an. (431)

Then,

S = SN + RN, (432)

where RN is called the remainder. Our goal is to deduce S from SN; clearly,

RN controls how successful we will be in doing that.

In the example Eq.(429), we can easily compute the remainder

RN =

∞∑
n=N+1

(−x)n =
(−x)N+1

1 + x
. (433)

We now see that for positive x and, especially, for x close to 1, the remainder

has oscillatory behavior and that oscillations around the right value of the

sum S are significant until large values of N. Indeed, if we would like RN
to disappear (decay) on its own for x ∼ 1 − ϵ, ϵ → 0, we require values of
N ≫ 1/ϵ, as can be seen from this estimate

xN ∼ eN ln x = eN ln(1−ϵ) ∼ e−ϵN, N ≫ ϵ−1. (434)
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This result can be confirmed by numerical tests – for x = 0.99 we need 400

terms to be within 2% of the correct result and for x = 0.999 we need to

4000 terms to achieve similar accuracy.

If the remainder of the series can be made smaller in a systematic way,

the convergence rate is improved. To see how this can be done, we consider

an ansatz

SN ∼ S + αqN, (435)

for the N-th partial sum. Here α and q are parameters and we assume that

|q| < 1. In practice, it is quite rare that the above form is exact and there can
be multiple remainders of the above form. However, we can imagine that this

procedure works iteratively and that by writing Eq.(435) we will be removing

a remainder with the largest value of q.

In case when the remainder of the series has the form shown in Eq.(435),

the accelerated convergence is accomplished through the Shanks transforma-

tion. Indeed, in case there is a single remainder, the partial sum is determined

by only (!) three parameters S,α and q and we can fix them from any three

consecutive terms in series. Indeed, consider

SN+1 = S + αq
N+1, SN = S + αq

N, SN−1 = S + αq
N−1. (436)

We then write

SN+1 − S = q(SN − S), (SN−1 − S) = q−1(SN − S), (437)

and upon multiplying the two equations and expressing S through SN±1, SN,

we find

S =
SN+1SN−1 − S2N

SN+1 + SN−1 − 2SN
. (438)

We note that for the series in Eq.(429) the remainder of the series has

indeed the form shown in Eq.(435), see Eq.(433); hence, Eq.(438) should

give the exact result for the series Eq.(429). It is easy to check explicitly that

it does, indeed.

In a general case, the formula in Eq.(438) is not exact and we can view it as

a transformation that maps original series into another series that (hopefully)

converges faster than the original one because the remainder with the largest

q has been removed. Therefore, to make use of the Shanks transformation

in such cases, we interpret Eq.(438) as the definition of the N-th term of a

new series S̃N and then we apply Shanks transformation to a new series.

Consider the following sum as an example

S =

∞∑
k=0

(−1)k
(
1−

1

2k+1

)
zk , (439)
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and take z = 0.99. The series converges very slowly. The first few terms for

partial sums SN are

0.5,−0.2425, 0.615088,−0.294568, 0.63601,−0.300121, 0.63400,−0.294421

for values of N from 0 to 7. The correct result is 0.1680644 and it is next to

impossible to guess it from the above numbers.

However, consider the Shanks transformation and define

S̃N =
SN+1SN−1 − S2N

SN+1 + SN−1 − 2SN
. (440)

We compute S̃N for N from one to six and find

{S̃N} = {0.1555452, 0.17366, 0.165431, 0.169337, 0.167442, 0.168371, ...}.
(441)

We see that the Shanks transformation changes the situation dramatically and

that six first terms of the new series are close to the right answer 0.1680644.

To improve the convergence further, we can apply the Shanks transfor-

mation to the Shanks-transformed partial sum sequence Eq.(441). We will

call the resulting sequence ˜̃SN. The result reads

˜̃SN = {0.168001, 0.16808, 0.168061, 0.168065}. (442)

Obviously, by a repeated application of the Shanks transformation, we are

able to obtain a very accurate prediction for the sum Eq.(439). In fact, it

is important to realize that we used the explicit knowledge of just seven first

terms in the series Eq.(439) to arrive at the result Eq.(442). However, if we

do this naively and just sum up seven terms of the original series, we will get

S = 0.63400 which is a factor three larger than the exact result. By using

the same seven terms in the context of Shanks transformations we obtain the

result for S that is accurate to 0.01 percent.

We can try to understand why the Shanks transformation is so effective in

improving the convergence of the series in Eq.(439). To this end, we compute

the N-th partial sum and find

SN =

N∑
k=0

(−1)k
(
1−

1

2k+1

)
zk =

(1− (−z)N+1)
1 + z

−
(1−

(
− z
2

)N+1
)

2 + z

=
1

(1 + z)(2 + z)
−
(−z)N+1

1 + z
+

(
− z
2

)N+1
2 + z

.

(443)

85



The first term on the r.h.s. of Eq.(443) corresponds to true value of the

series Eq.(439). The other two terms on the r.h.s. of Eq.(443) describe two

transients that decay as (−z)N and as (−z/2)N, respectively. Note that for
z = 0.99, the (z/2)N ≪ zN for N ≥ 1.
We now use Eq.(438) to compute the Shanks-transformed series. We

obtain

S̃N =
1

(1 + z)(2 + z)
+

(−z/2)N+2

(1 + z)(2 + z)(1 + z − (2 + z)/22+N) . (444)

A comparison of Eq.(443) and Eq.(444) shows that in the Shanks-transformed

partial sums, at large values of N, the remainder O((−z)N) disappeared
and the only remainder that remains is O((−z/2)N). Hence, by apply-
ing the Shanks transformation we gained a factor 2N in the convergence

rate. If we apply the Shanks transformation one more time, we will remove

O((−z/2)N+1) transient and will be left with O((−z/4)N), gaining another
factor 2N in the convergence speed.

It is not always easy to understand why the convergence of a particular

series is improved when the Shanks transformation is used and to estimate the

improvement in the convergence rate. An interesting series that illustrates

this point is

S =

∞∑
n=1

(−1)n+1

n
= ln 2 = 0.693147. (445)

This series converges rather slowly. In fact, the first hundred terms of the

series give a precision of about a percent; the first thousand – 0.1 percent

etc. If we apply the Shanks transformation, we obtain partial sums

S̃2 = 0.7, S̃3 = 0.6905, S̃10 = 0.693254, S̃100 = 0.693147... (446)

In fact, S̃100 agrees with the exact result ln 2 = 0.693147 to 10
−5 percent –

to be compared with one percent if terms in the series Eq.(445) are summed

up naively.

It is interesting to understand why the convergence improves for the series

in Eq.(445). Similar to the previous case, we need to compare remainders

of the original series and the Shanks-transformed series but it is clearly less

straightforward to do so for the series Eq.(445). To accomplish this, we

introduce an auxiliary parameter z and write the remainder of the series as

RN(z) =

∞∑
k=N+1

(−1)k+1zk

k
. (447)

86



We cannot sum this series directly, but we can write a differential equation

for it. We compute the derivative of RN(z) w.r.t. z and find

dRN(z)

dz
= (−1)NzN

∞∑
k=0

(−z)k = (−1)N
zN

1 + z
. (448)

We integrate over z using the boundary condition RN(0) = 0 and obtain

RN(z) = (−1)N
z∫
0

uN

1 + u
du. (449)

We are interested in the behavior of RN(z) in the z → 1 limit for large
values of N. To this end, we set z → 1, change variables u → 1−ξ and write

RN(1) = (−1)N
1∫
0

dξ
(1− ξ)N

2− ξ . (450)

To understand the behavior of this integral in the N →∞ limit, we write

(1− ξ)N = eN ln(1−ξ) = e−Nξ
(
1−

N

2
ξ2 −

N

3
ξ3 + . . .

)
,

1

2− ξ ∼
1

2
+
ξ

4
+ . . .

(451)

Using these results in the expression for RN(1) and extending the inte-

gration boundary to infinity (which is allowed since such an extension only

introduces exponentially suppressed terms), we obtain

RN(1) = (−1)N
1∫
0

dξ
(1− ξ)N

2− ξ ∼ (−1)N
∞∫
0

dξ e−Nξ
(
1

2
+
ξ

4
−
Nξ2

4
+ ..

)

∼ (−1)N
(
1

2N
−
1

4N2
+O(N−3)

)
.

(452)

Hence, we see that RN decreases as 1/N which is the reason for the slow

convergence of the original series Eq.(445).

To understand the consequences of the Shanks transformation, we sub-

stitute S̃N = S − RN into Eq.(438) and find

S̃N = S +
RN+1RN−1 − R2N
2RN − RN+1 − RN−1

. (453)
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To simplify this expression further, we use Eq.(447) to write

RN+1 = RN +
(−1)N+1zN+1

N + 1
, RN−1 = RN −

(−1)NzN

N
. (454)

Substituting these expressions into Eq.(453) we obtain

S̃N = S + ∆N, (455)

where

∆N(z) = −RN(z) +
(−1)Nz1+N

1 + N(1 + z)
(456)

is a remainder of Shanks-improved series.

We can now evaluate the asymptotic behavior of ∆N for z = 1 and large

values of N. The asymptotic behavior of RN(1) has already been computed

in Eq.(452). We use it to find

∆N(1) ∼ (−1)N
(
−
1

2N
+
1

4N2
+

1

1 + 2N

)
∼ (−1)N

(
−
1

2N
+
1

4N2
+
1

2N
−
1

4N2
+ · · ·

)
∼ O(N−3).

(457)

Hence, the improvement in convergence of the Shanks-transformed series

relative to the original ones is governed by a factor (2N)−2 in this case.

Another useful trick that allows acceleration of slowly convergent series is

known as Richardson extrapolation. The idea is very simple. Suppose that,

for large values of N, a partial sum of the series can be written as follows

SN =

N∑
n=0

an ∼ S +Q1N−1 +Q2N−2 +Q3N−3 + .... (458)

It is clear that the convergence of the series can be drastically improved if we

can determine and remove as many terms beyond S on the right hand side

of Eq.(458) as possible. This can be done iteratively, starting with the first,

O(N−1) term. Discarding Q2, Q3 etc., we write

SN = S +
Q1
N
, SN+1 = S +

Q1
N + 1

. (459)

Hence, we use

NSN = SN +Q1, (460)
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and a similar equation for SN+1 to find

S = (N + 1)SN+1 − NSN. (461)

To get a better approximation, we account for all terms on the r.h.s. of

Eq.(458) that decrease slower than 1/N3 and write

SN = S +
Q1
N
+
Q2
N2
. (462)

We multiply both sides of this equation with N2 and obtain

N2SN = N
2S + NQ1 +Q2 → N2(SN − S) = NQ1 +Q2. (463)

To proceed further, we denote the l.h.s. of the above equation by F (N) =

N2(SN − S) and find

F (N + 2)− F (N + 1) = F (N + 1)− F (N), (464)

since both sides of this equation give Q1. Solving Eq.(464) for S, we obtain

S =
(N + 2)2SN+2 − 2(N + 1)2SN+1 + N2SN

2
. (465)

It is quite clear that one can keep including more and more power-suppressed

terms in the right hand side of Eq.(458) and keep deriving equations for S

similar to Eqs.(461) and Eq.(465) in each case. It is interesting and perhaps

not obvious that one can write down a closed formula for S under the assump-

tion that all terms up to O(1/Nn) are included on the r.h.s. of Eq.(458). The
formula that expresses S in terms of partial sums SN, SN+1, SN+2, ..., SN+n,

reads

S =

n∑
k=0

SN+k (N + k)
n(−1)k+n

k!(n − k)! . (466)

The proof of this formula is based on the following identity

1 =

n∑
k=0

(N + k)n(−1)k+n

k!(n − k)! , (467)

which by itself is quite peculiar. To prove Eq.(467), we proceed by writing

(N + k)n =

n∑
i=0

n! Nn−ik i

i !(n − i)! . (468)
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We use this result in Eq.(467) and find that the following identity should hold

1
?
=

n∑
i=0

n! Nn−i

i !(n − i)!F (i , n), (469)

where F (i , n) is defined as follows

F (i , n) =

n∑
k=0

k i(−1)k+n

k!(n − k)! . (470)

We will now show that the majority of F (i , n)’s vanish. Consider first

F (0, n). It reads

F (0, n) =

n∑
k=0

(−1)k+n

k!(n − k)! =
1

n!

n∑
k=0

(−1)k+nn!(1)n−k

k!(n − k)!

=
1

n!
(−1)n(1− 1)n = 0,

(471)

where we made use of binomial formula to sum up the series. Similarly,

F (1, n) =

n∑
k=0

k(−1)k+n

k!(n − k)! =
n∑
k=1

(−1)k+n

(k − 1)!(n − k)!

=

n−1∑
j=0

(−1)j+n+1

j!(n − 1− j)! ∼ F (0, n − 1) = 0.
(472)

Repeating this calculation for other F (i , n)’s, it is easy to convince oneself

that they all vanish except for F (n, n) which is equal to 1. Then, the r.h.s.

of Eq.(469) turns into

n∑
i=0

n! Nn−i

i !(n − i)! δin = 1, (473)

which proves Eq.(467).

We will use Eq.(467) to prove Eq.(466). To this end, we write

SN+k(N + k)
n = S(N + k)n +

n∑
i=1

Qi(N + k)
n−i , (474)

where quantities Qi appear in Eq.(458). We multiply both sides of the above

equation with (−1)k+n/k!/(n − k)! and sum over k from k = 0 to k = n.
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We find

n∑
k=0

SN+k(N + k)
n(−1)k+n

k!(n − k)! = S

n∑
k=0

(N + k)n(−1)k+n

k!(n − k)!

+

n∑
i=1

Oi
n∑
k=0

(N + k)n−i(−1)k+n

k!(n − k)! = S +

n∑
i=1

Oi
n∑
k=0

(N + k)n−i(−1)k+n

k!(n − k)! = S,

(475)

where we have used Eq.(467) and the equation

n∑
k=0

(N + k)n−i(−1)k+n

k!(n − k)! = 0, i ≥ 1, (476)

that can be proven in the same way as Eq.(467).

To see how Richardson’s extrapolation improves convergence, consider

the following series

∞∑
n=1

1

n2
=
π2

6
= 1.6449340668482262. (477)

Summing up the first ten terms of the series, we obtain 1.54977; this is

a six percent deviation from the exact result. On the other hand, using

Richardson’s extrapolation formula Eq.(466) with N = 0 and n = 10, we

obtain S = 1.6449340662 which agrees with the exact result to about ten

(!) significant digits. This is an amazing improvement – especially if one

recognizes that we have used the same amount of information about the

series in both cases.

We will now turn to the question of how to sum divergent series. This, of

course, is an ill-posed question since divergent series by definition do not allow

one to get a unique answer. It is therefore important to either know where

divergent series come from and what they mean or follow well-defined rules

to deal with them. We have seen the appearance of such series in the context

of asymptotic series where such series gave us an approximate description of

complicated functions.

There exist different “rules” or prescriptions that allow one to sum up

evidently divergent series. For example, consider divergent series

S =

∞∑
n=0

an. (478)
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However, suppose that the coefficients an are such that we can define a

function f (x)

f (x) =

∞∑
n=0

anx
n, (479)

for |x | < 1; in other words we assume that the series in Eq.(479) converges.
We then define the series in Eq.(478) through the following formula8

S = lim
x→1−

f (x). (480)

The reason that S in the above formula is not the same as in Eq.(478) is

that for divergent series

S = lim
x→1−

f (x) = lim
x→1−

∞∑
n=0

anx
n ̸=

∞∑
n=0

an. (481)

It is this interchange of the order in which the limit and sum are calculated

that makes all the difference. Of course, at this point this is just a prescription

and nothing else.

To see how this works in practice, consider the series

S =

∞∑
n=0

(−1)n. (482)

The series is just

S = 1− 1 + 1− 1 + 1− 1 + · · · (483)

and so obviously has no limit. However,

f (x) =

∞∑
n=0

(−1)nxn =
1

1 + x
. (484)

Hence,

S = lim
x→1

f (x) =
1

2
. (485)

We may be dissatisfied with the above prescription since it looks com-

pletely ad hoc. Perhaps we can see that it is indeed ad hoc if we come up

with another prescription, compute the same series and get a totally different

results. To check this, let us try another prescription, the so-called Borel

8This summation method is due to Euler.
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summation formula. It works as follows. Similar to the previous case, we

consider a divergent series

S =

∞∑
n=0

an. (486)

We use it to construct a function

φ(x) =

∞∑
n=0

anx
n

n!
. (487)

We assume that it exists. We define

B(x) =

∞∫
0

dt e−tφ(xt). (488)

To compute the integral, we replace φ(x) with its series representation Eq.(487)

and find

B(x) = lim

∞∑
n=0

an
n!
xn

∞∫
0

dt e−ttn ∼
∞∑
n=0

anx
n. (489)

Finally, although, strictly speaking the function B(x) is only asymptotic

to the series
∞∑
n=0

anx
n for x → 0, we can also define the Borel sum of the

series
∞∑
n=0

an as B(1). Hence,

∞∑
n=0

an =

∞∫
0

dt e−tφ(t). (490)

To illustrate how the Borel summation works, consider the same divergent

series Eq.(483). The function φ(t) reads

φ(t) =

∞∑
n=0

(−1)ntn

n!
= e−t . (491)

Then,

S =

∞∫
0

dt e−tφ(t) =

∞∫
0

dt e−2t =
1

2
. (492)

It is interesting that the Borel sum of the series Eq.(483) and the Euler

sum of the same series gave identical results in spite of the fact that both
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of these summation prescriptions look quite arbitrary. We will return to the

discussion of this observation shortly.

Borel summation is more powerful than the Euler summation in the sense

that it can be used to sum up series with factorially-growing terms. As an

example, consider

S =

∞∑
n=0

(−1)nn!. (493)

We write

S =

∞∫
0

dt e−t
∞∑
n=0

(−1)ntn =
∞∫
0

dt

1 + t
e−t = 0.596347, (494)

where the last integral is computed numerically.

We now go back to the question of why Euler and Borel summation rules

gave the same results for the series Eq.(483). To this end, we will introduce

axioms that define summation process and allow us to compute series. These

axiom are not random – they are identical to what is expected from the

convergent series except that we should give up on the commutativity and

associativity within infinite sums; in other words, one can not change the

order in which summation is performed in the infinite series and one can not

combine the various terms either.

To present the axioms, let us introduce the following notation

∞∑
i=1

ai = S(a1 + a2 + a3 + · · ·+ an · · · ). (495)

The order in which ai ’s appear in the argument of S is important and cannot

be changed.

The first requirement that S should satisfy reads

S(a1 + a2 + a3 + · · · ) = a1 + S(a2 + a3 + · · · ) (496)

We also impose the linearity requirement

S

(∑
n

(αan + βbn)

)
= αS

(∑
an

)
+ βS

(∑
bn

)
. (497)

Note that it follows from this rule that

S(0 + 0 + 0 + 0 + ...) = 0, (498)
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since

S(α0+α0+α0+· · · ) = S(0+0+0+0+· · · ) = αS(0+0+0+0+· · · ), (499)

for any α.

The two summation rules Eqs.(496,497) are sufficient to compute the

sum Eq.(483). Indeed,

S(1− 1 + 1− 1 + 1 + · · · ) = 1 + S(−1 + 1− 1 + 1 + · · · )
= 1 + S((−1)(1− 1 + 1− 1 + · · · )).

(500)

Hence,

S(1− 1 + 1− 1 + 1 + · · · ) = 1− S(1− 1 + 1− 1 + 1 + · · · ), (501)

which implies that

S(1− 1 + 1− 1 + 1− 1 + · · · ) =
1

2
. (502)

We see that the result of the calculation agrees with both Euler and Borel

summation prescriptions since both of these summation prescriptions respect

the summations axioms Eqs.(496,497).

Let us discuss another example. Consider a summation sequence

R = S(1 + 0− 1 + 1 + 0− 1 + 1 + 0− 1 + · · · ). (503)

To compute the sum following the Euler summation rule, we introduce a

function

f (x) = 1 + 0− x2 + x3 + 0− x5 + x6 + 0− x6 + · · ·
= 1 + x3 + x6 + x9 + ...− (x2 + x5 + x8 + ...)

=
1

1− x3 −
x2

1− x3 =
1− x2

1− x3 ,
(504)

and compute the limit

R = lim
x→1−

f (x) =
2

3
. (505)

To show how the same result follows from the two conditions that we just

mentioned, we write three equations

R = S(1 + 0− 1 + 1 + 0− 1..),
R = 1 + S(0− 1 + 1 + 0− 1..),
R = 1 + S(−1 + 1 + 0− 1 + 1..).

(506)

Adding the three equations and using Eq.(497) “backwards”,we obtain

3R = 2 + S(0 + 0 + 0 + 0 + 0...) = 2. (507)

It follows that S = 2/3 in agreement with the Euler summation formula.
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10 Pade approximations and continued fractions

Another important method of improving convergence of (potentially diver-

gent) series is the Pade approximation. This method is often applied when a

few terms in the series expansion are known and one attempts to deduce the

sum (or the function that the sum represents) from just a few terms in the

series. It works in the following way. Consider the series

∞∑
n=0

anz
n. (508)

We can approximate these series by a sequence of rational functions called

Pade approximants. They read

PNM(z) =

N∑
n=0

Anz
n

M∑
m=0

Bmzm
. (509)

The values of N and M are a matter of choice.

For a given N andM, the rational function in Eq.(509) contains N+M+1

unknown coefficients since we can choose B0 = 1 without loss of generality.

These N +M + 1 unknown quantities can be fixed by considering the first

N +M + 1 terms in Eq.(508) and Taylor-expanding the Pade approximants

at small z .

To see how this works, consider diagonal Pade approximant P 11 (z). Then,

there are three unknowns (A0, A1, B1) and we find

a0 + a1z + a2z
2 = A0 + (A1 − A0B1)z + (−A1B1 + A0B21)z2. (510)

Eq.(510) contains three equations, one for each power of z . The equations

look complicated (except that A0 = a0 is simple, obviously) but it is useful to

start solving equations starting from the one that originates from matching

the coefficients of highest powers of z . It reads

a2 = −A1B1 + A0B21. (511)

We can rewrite the r.h.s. as

(−A1B1 + A0B21) = −B1(A1 − A0B1) = −B1a1, (512)
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where the last step follows from the requirement that O(z) contributions to
Eq.(510) agree on both sides of that equation. Eq.(512) then implies

B1 = −a2/a1. (513)

Matching the coefficients of O(z1) terms in Eq.(510) finally gives

A1 = a1 + a0B1 = a1 − a0a2/a1. (514)

Hence, P 11 (x) reads

P 11 (x) =
a0 + (a

2
1 − a0a2)/a1x
1− a2/a1x

. (515)

To see why this representation is interesting, consider the function log(1+

x)/x . Its Taylor expansion reads

log(1 + x)

x
≈ 1−

x

2
+
x2

3
−
x3

4
+ ... (516)

We take the first three terms of this expansion and construct the Pade ap-

proximant P 11 (x). Using Eq.(515), we find

P 11 (x) =
1 + x

6

1 + 2x
3

. (517)

In Fig. 9 we compare the Taylor series of the function log(1 + x)/x

Eq.(516), the Pade approximant P 11 (x) Eq.(517) and the function log(1 +

x)/x . We see that the Taylor series starts deviating from the function at

around x = 0.5; this is a consequence of the fact that |x | = 1 is the radius of
convergence of the Taylor expansion of 1/x log(1 + x) in the complex plane.

On the contrary, the simplest Pade approximation stays very close to the

original function all the way up to x = 3; at x = 3, the difference between

P 11 (x) and the correct result is only about eight percent. Although what

we just discussed is one specific example, the fact of the matter is that

Pade approximations work remarkably well in many cases where they can be

compared with exact results.

We will discuss a few general things about Pade approximations. First,

the way we determined the coefficients of the Pade approximant in the above

example is not very transparent and, definitely, not efficient in more complex

cases. A better way is to rewrite Eqs.(508,509) as follows(
N+M∑
n=0

anz
n

)(
M∑
m=0

Bmz
m

)
+O

(
zN+M+1

)
=

N∑
n=0

Anz
n. (518)
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Figure 6: Taylor expansion (green) and Pade P 11 (x) approximant (blue) in

comparison to the function log(1 + x)/x (orange).

where the last term on the left hand side indicates that we do not fully control

terms proportional to zN+M+1 and higher powers. We rewrite the left-hand

side of Eq.(518) as follows(
N+M∑
n=0

anz
n

)(
M∑
m=0

Bmz
m

)
+O

(
zN+M+1

)
=

N+M∑
n=0

M∑
m=0

zn+manBm +O
(
zN+M+1

)
=

N+M∑
k=0

zk
k∑

m=0

ak−mBm +O
(
zN+M+1

)
.

(519)

An important feature of this sum is that powers of z appear there that

exceed powers of z that appear on the right hand side of Eq.(518). Hence,

we write

N∑
k=0

zk
k∑

m=0

ak−mBm +

N+M∑
k=N+1

zk
k∑

m=0

ak−mBm =

N∑
n=0

Anz
n. (520)
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Eq.(520) implies that two sets of equations should hold simultaneously

k∑
m=0

ak−mBm = Ak , k ∈ [0, 1, 2, .., N],

k∑
m=1

ak−mBm = −ak , k ∈ [N + 1, ..., N +M].

(521)

The M latter equations only involve B coefficients and can be solved inde-

pendently of the former equations that also involve A coefficients. In fact,

these equations can be conveniently written in a matrix form

α̂


B1
B2
..

BM

 = −


aN+1
aN+2
..

aN+M

 (522)

where the entries of the M ×M matrix α̂ are

α̂i j = aN+i−j . (523)

Once all the B-coefficients are determined, the A-coefficients are found from

Eq.(521) in a straightforward way.

We will use this technique to construct a Pade approximant starting from

the asymptotic expansion of the Gamma function Γ(x) at large x . The asymp-

totic expansion reads

ΓAS(x) =
(x
e

)x√2π
x

(
1 +

1

12x
+

1

288x2
−

139

51840x3

)
. (524)

We may turn the asymptotic series into a Pade approximant. To this end, we

denote 1/x = ϵ and write a P 21 Pade approximant

1 +
1

12
ϵ+

1

288
ϵ2 −

139

51840
ϵ3 =

1 + a1ϵ+ a2ϵ
2

1 + b1ϵ
. (525)

Upon multiplying both sides of this equation with 1 + b1ϵ, we find(
1 +

1

12
ϵ+

1

288
ϵ2 −

139

51840
ϵ3
)
(1 + b1ϵ) +O(ϵ4) = 1 + a1ϵ+ a2ϵ2. (526)

The O(ϵ4) term and higher powers of ϵ on the left hand side can not be
determined; they exceed the accuracy that we work with. The O(ϵ3) term
on the l.h.s. has no counter-part on the r.h.s.; it reads

−
139

51840
+

b1
288
= 0, (527)
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Figure 7: Comparison of the Pade approximation for the Gamma-function

Eq.(529) with the asymptotic expansion Eq.(524). We plot ΓAS(x)/Γ(x)

(blue) and ΓP (x)/Γ(x) (orange).

and allows us to find b1 = 139/180. Once b1 is fixed, the left hand side of

Eq.(526) is fully determined; expanding it through O(ϵ2) and equating powers
of ϵ that appear on the left and the right hand sides, we find

P 21 (x) =
1 + 77

90x
+ 293
4320x2

1 + 139
180x

. (528)

We then write a Pade-improved formula for the asymptotically-expanded

Gamma function

ΓP (x) =
(x
e

)x√2π
x
P 21 (x). (529)

In Fig. 2 we compare how well ΓAS(x) and ΓP (x) describe Γ(x). First, we

note that the expansion ΓAS(x) is constructed for x → ∞, so it is amazing
to see that it works very well all the way down to x ∼ 0.4. For smaller values
of x , the plain asymptotic expansion starts deviating from the true value

significantly, but the Pade-improved function ΓP (x) stays within ten percent

of the “true” Gamma function even for values of x as low as x ∼ 0.1.

There are many other examples that demonstrate that Pade approxima-

tions work remarkably well and allow one to extend the region of applicability

of asymptotic expansions. However, it is not always clear why this happens.

In fact, there are two questions that have to be addressed. The first one is –

do sequences of Pade approximations actually converge? The second ques-

tion is – if sequences of Pade approximations do converge, do they converge

to those functions that are intended to be represented by the original series?
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The second question is even more complex if we consider complex-valued

series since in this case functions that we obtain may require additional def-

initions (e.g. cuts in the complex plane ), not apparent in original series, to

become single-valued . It then becomes important to clarify to which branch

of a multi-valued function a sequence of Pade approximants converges.

We will not discuss these questions with any degree of rigor. Below, I

will describe how convergence of Pade sequences can be studied; then, I will

discuss an example where a convergence of a particular Pade sequence can

be proven. The question of whether the limit of a particular Pade sequence

corresponds to a function that is supposed to be represented by the origi-

nal series is only proven for one class of series/functions known as Stieltjes

series/functions.

To discuss convergence of Pade sequences, we begin with the introduc-

tion of yet another way to provide approximate representations of series or

functions – the so-called continued fractions. A continued fraction is defined

as follows

FN(z) =
c0

1 +
c1z

1 +
c2z

1 + .. .
+

cN−1z

1 + cNz

. (530)

Suppose we want to construct a continued fraction representation of a

function f (z) that possesses a Taylor expansion at z = 0

f (z) =

∞∑
i=0

aiz
i . (531)

To construct its continued fraction representation, we employ the following

identity

f (z) =
f (0)

1 + zf1(z)
, (532)

where

f1(z) =
f (0)− f (z)
zf (z)

. (533)

To see why Eq.(532) is useful, we compute denominator of the r.h.s. of

Eq.(532) to order O(z). This requires f1(0) which, on account of Eq.(531),
evaluates to f1(0) = −a1/a0. Hence, we find

f (z) ∼
a0

1− za1/a0
. (534)
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Upon Taylor expansion in z , we recover the first two terms of the original

series Eq.(531).

To proceed further, we return to Eq.(531) and iterate. We find

f (z) = c
f (0)

1 +
zf1(0)

1 + zf2(z)

, (535)

where

f2(z) =
f1(0)− f1(z)
zf1(z)

. (536)

Yet another iteration gives the following result

f (z) =
f (0)

1 +
zf1(0)

1 +
zf2(0)

1 + zf3(z)

, (537)

where

f3(z) =
f2(0)− f2(z)
zf2(z)

. (538)

It is quite obvious how this continues. In fact, truncating iterations after

N steps, we find

f (z) ∼ FN(z) =
f (0)

1 +
f1(0)z

1 +
f2(0)z

1 + .. .
+

fN−1(0)z

1 + fN(0)z

, (539)

where

fi(z) =
fi−1(0)− fi−1(z)

zfi−1(z)
, (540)

and

fi(0) = −
d ln fi−1(z)

dz

∣∣∣∣∣
z=0

. (541)

We can use these formulas to compute coefficients of continued fractions

using the Taylor series representation of the function f (z), Eq.(531). We
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obtain

c1 = f1(0) = −
a1
a0
, c2 = f2(0) =

a21 − a0a2
a0a1

, c3 = f3(0) =
a0(a

2
2 − a1a3)

a1(a0a2 − a21)
,

(542)

etc. We observe that, in order to compute the coefficient cp in the continued

fraction FN, we only need to know p + 1 terms (a0, a1, ..., ap) of the Taylor

expansion of the function f (z) at z = 0.

A continued fraction representation of a function is intimately related to a

particular sequence of the Pade approximants. To establish this relation, we

prove that FN(z) is the ratio of two polynomials of degree M = N/2, if N is

even, and the ratio of degree M = (N − 1)/2 and degree M + 1 polynomials
if N is odd. The proof proceeds by induction. The N = 0 and N = 1 cases

are trivial to verify. Then, we assume that the above assertion is valid for

N = 2M. Then, if we consider N = 2M + 1, we find

F2M+1(z, c0, . . . , c2M+1) =
c0

1 + zF2M(z, c1, . . . , c2M+1)
. (543)

Since, by assumption, F2M can be written as the ratio of two degree M

polynomials, we immediately conclude that, indeed, F2M+1 is written as the

ratio of degree M and degree M + 1 polynomials.

A similar line of reasoning shows that – for even N – FN(z) is the ratio of

two degree N/2 polynomials. Since Pade approximations are ratios of polyno-

mials and since coefficients of these polynomials are uniquely reconstructed

from the original series once degrees of these polynomials are fixed, we con-

clude that the continued fraction FN(z) is one of the two Pade approximants

PMM (z) or P
M
M+1(z), depending on whether N is even or odd.

To prove the convergence of the sequence of Pade approximants, we will

consider FN(z) and investigate its N →∞ limit. Suppose that the coefficients
{cp} of the continued fraction are known. We can write FN(z) as the ratio
of two polynomials

FN(z) =
RN(z)

SN(z)
. (544)

A simple but important observation is that the functions RN(z) and SN(z)

satisfy a recurrence relation

RN+1 = RN + cN+1zRN−1,

SN+1 = SN + cN+1zSN−1.
(545)

This assertion is proved by induction. We assume that the above equations

are valid for RN, SN and we prove them for RN+1, SN+1. To this end, we note
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that, as follows from the definition of continued fraction, we can obtain FN+1
from FN if in FN we replace cN with cN/(1 + cN+1z). Hence,

FN+1 =
RN+1
SN+1

=
RN
SN

∣∣∣
cN→cN/(1+cN+1z)

=
RN−1 +

cNz
1+cN+1z

RN−2

SN−1 +
cNz

1+cN+1z
RN−2

=
RN−1(1 + cN+1z) + cNzRN−2
SN−1(1 + cN+1z) + cNzRN−2

=
RN + cN+1zRN−1
SN + cN+1zSN−1

,

(546)

and this proves relations in Eq.(545). The third and fifth steps in the above

derivation follow from the inductive assumption.

The reason Eq.(545) is useful is that it allows us to discuss the behavior

of the continued fraction FN as a function of N. Indeed, it is straightforward

to use Eq.(545) to prove that

RN+1SN − RNSN+1 = −cN+1z (RNSN−1 − RN−1SN) . (547)

This is a recurrence relation for GN+1 = RN+1SN − RNSN+1. The boundary
condition for GN is G1 = R1S0 −R0S1 = c0 − c0(1 + c1z) = −c0c1z . Hence,
we find

RNSN−1 − RN−1SN = c0c1c2 . . . cN(−z)N. (548)

We now divide this equation by SNSN−1 and obtain

FN(z)− FN−1(z) =
c0c1c2 . . . cN(−z)N

SN(z)SN−1(z)
. (549)

The above equation is the basis for the analysis of the behavior of FN(z)

in the limit N → ∞ and for understanding of convergence properties of the
continuous fractions and the Pade approximants. Apart from knowing the

coefficients of the continued fractions, we also need to know SN(z). All

these quantities are not universal and need to be investigated for each case

separately.

We will consider a very simple example where such an analysis can be

carried out explicitly. Recall the recursive construction of the continued series

that we discussed; it was based on using the identity

f (z) =
f (0)

1 + zf1(z)
, (550)

where f1(z) is related to f (z) in a particular way, c.f. Eq.(533). Suppose

f1(z) = f (z). If so, all continuous fractions coefficients cp are given by f (0).
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Does such a function exist? We take Eq.(550), substitute f1(z) → f (z)

and solve the quadratic equation to find

f (z) =
1

2z

(
±
√
1 + 4f (0)z − 1

)
. (551)

We choose the positive sign in front of the square root to ensure that f (z) is

Taylor expandable at z = 0. Taking also f (0) = 1/4, for simplicity, we finally

find

f (z) =
1

2z

(√
z + 1− 1

)
. (552)

All coefficients of the continued fraction representation of this function are

identical, cp = 1/4.

We can now use Eqs.(545) to determine SN. The recurrence relation for

SN reads

SN+1 = SN +
z

4
SN−1. (553)

To solve this recurrence relation, we make an ansatz SN = Aλ
N and find an

equation for λ

λ = 1 +
z

4λ
. (554)

We solve this quadratic equation and find

λ± =
1±
√
1 + z

2
. (555)

The general solution is

SN(z) = A+(z)λ
N
+ + A−(z)λ

N
−. (556)

We determine A±(z) by matching SN(z) to S0(z) = 1 and S1(z) = 1+ z/4.

We find

SN(z) =
1√
1 + z

[(
1 +
√
1 + z

2

)N+2
−
(
1−
√
1 + z

2

)N+2]
. (557)

Since for z > −1,
√
1 + z +1 >

√
1 + z − 1 we can neglect the second term

as compared to the first term in the N →∞ limit in the above equation.
Hence, we use Eq.(549) and find an asymptotic relation between FN’s

FN(z)− FN−1(z) ∼
−2(1 + z)

z(1 +
√
1 + z)

(
1−
√
1 + z

1 +
√
1 + z

)N+1
. (558)
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We can solve this relation by writing

FN(z) ∼ A(z) + X(z)
(
1−
√
1 + z

1 +
√
1 + z

)N+2
, (559)

where A(z) is not determined at this point. It is easy to see that Eq.(558)

implies

X(z) =

√
1 + z

z
. (560)

Hence,

lim
N→∞

FN(z)→ A(z). (561)

One needs to do more work to find the function A(z) and we are not

going to do it here. Nevertheless, our discussion shows that a sequence of

Pade approximants P 01 (z), P
1
1 (z), P

1
2 (z), . . . , P

N
N (z), . . . does converge to a

limit as N → ∞. The convergence is not uniform and depends on the value
of z .
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11 Boundary layer theory

The boundary layer theory applies when a small parameter multiplies the high-

est derivative in a differential equation. An obvious example is the Schrödinger

equation [
−
ℏ2

2m
∇2 + V (x)

]
Ψ(x) = EΨ(x). (562)

The Planck constant ℏ is small and we can think about constructing an expan-
sion of the solutions to the Schrödinger equation in ℏ. The way to do this is
known as the WKB (Wentzel-Kramers-Brillouin) approximation; among other

things, it gives the Bohr-Sommerfeld quantization conditions for energy levels

of the discrete spectrum.

The WKB method is relatively complex. The reason for that are problems

that we encountered when we talked about perturbation theory. There we

saw that if, by setting the small parameter to zero, we abruptly change the

structure of the equation that we are trying to solve, the perturbative expan-

sion becomes singular, most likely. The boundary layer theory allows one to

avoid such problems when dealing with differential equations.

The idea of the boundary layer theory can be illustrated by studying the

following differential equation

ϵy ′′ + (1 + ϵ)y ′ + y = 0. (563)

We would like to find solution to Eq.(563) subject to boundary conditions

y(0) = 0 and y(1) = 1.

Although this is not the point of the exercise, we can solve this equation

exactly by introducing a function w = y ′ + y . Then Eq.(563) becomes

ϵw ′ + w = 0, (564)

so that

w = C0e
−x/ϵ. (565)

Using this expression for w , we obtain a linear inhomogeneous differential

equation

y + y ′ = C0e
−x/ϵ. (566)

The solution to this equation is

y = C1e
−x + C2e

−x/ϵ, (567)
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where C2 is a function of C0 and ϵ whose explicit form we do not need. We

now match Eq.(567) to the boundary conditions and obtain

y =
e−x − e−x/ϵ

e−1 − e−1/ϵ . (568)

If we now take ϵ to be small, we see that on an interval ϵ ≪ x ≪ 1, the
solution is approximated by y(x) ∼ e1−x . However, for x ∼ ϵ the solution

changes and becomes y(x) ∼ e
(
1− e−x/ϵ

)
.

We would like to understand how these approximate solutions can be

deduced from the original equation Eq. (563). To this end, we note that on

the interval ϵ≪ x ≪ 1
y ′′ ∼ y ′ ∼ y . (569)

This simply follows from the fact that y ′ ∼ y/x ∼ y if x and y are both order
one quantities.

Eq.(569) can be immediately used to discard ϵy ′′ and ϵy ′ term in the

original differential equation Eq.(563); we find

y ′ + y = 0. (570)

We solve it to obtain

y(x) ∼ e1−x , (571)

where the integration constant is determined by the “right” boundary condi-

tion y(1) = 1.

If we extrapolate the above solution to x ∼ ϵ we find y(ϵ) ∼ 1. On the
other hand, the “left” boundary condition y(0) = 0 should force a change

from the above solution to the one that is consistent with the boundary

condition. This implies that the function y(x) should change very fast on the

interval 0 < x ≲ ϵ. This rapid change implies that on that interval

y ′ ∼
1

ϵ
, y ′′ ∼

1

ϵ2
, y ∼ 1. (572)

It follows that the differential equation Eq.(563) on the interval 0 < x ≲ ϵ

can be approximated by

ϵy ′′ + y ′ = 0. (573)

The solution of this equation is

y ′ = Ce−x/ϵ. (574)

Integrating one more time, we obtain

y(x) ≈ C(1− e−x/ϵ), (575)
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where we took into account the “left” boundary condition y(0) = 1.

The constant C can be obtained from the requirement that the left and

the right solutions to the differential equation shown in Eqs.(571,575), re-

spectively, match in the overlap region.

To establish that the overlap region exists, we take x ∼ δ and choose

ϵ≪ δ ≪ 1. Then, we reconsider estimates that led to Eq. (573. We find

ϵy ′′ ∼
ϵ

δ2
, (1 + ϵ)y ′ ∼

1

δ
, y ∼ 1. (576)

Hence, under our assumption,

ϵy ′′ ≪ y ′, y ≪ y ′ (577)

in that region. The differential equation becomes

y ′ = 0, (578)

which appears in a contradiction with the assumption that the y ′ ∼ 1/δ in
the leading term. However, the above equation tells us that the large ∼ 1/δ
derivative of y(x) in this x-region is absent and the correct scaling is then

y ′ ∼ 1. And this scaling immediately implies that for small values of x ∼ δ,
the function is approximately a constant. Inspecting the two approximate

solutions that we have constructed, we indeed find that for values of x in the

region ϵ≪ x ≪ 1, both solutions asymptote to a constant and by adjusting
C in Eq. (575) we ensure that this constant is the same.

We can also argue in a slightly different way. Consider ϵ ≪ x ∼ δ ≪ 1.
For such values of x , the “right” solution is valid, it is given by Eq. (571) and

it is, essentially, a constant

y(δ) = e +O(δ). (579)

For the “left” solution, taking x ≫ ϵ also gives the constant solution

y(x) = C. However, the question is if we can take this limit x ≫ ϵ in

the solution of Eq. (575). To understand this, we note that the scaling of

derivatives y ′ ∼ 1/ϵ that we assumed in deriving the left solution is accurate
up to O(1) terms that we neglected. Hence, our solution should be valid as
long as

y ′(x) ∼
1

ϵ
e−x/ϵ ≫ 1. (580)

This equation is satisfied for

x ≪ ϵ ln
1

ϵ
. (581)
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Since ϵ→ 0, we can simultaneously have

ϵ≪ x ∼ δ ≪ ϵ ln
1

ϵ
, (582)

and in this region the “left solution” is indeed a constant but, also, the right

solution is applicable.

Hence, the complete solution can be written as

y(x) =

{
e
(
1− e−x/ϵ

)
, 0 < x ≲ δ

ee−x , δ ≲ x < 1,
(583)

where ϵ ≪ δ ≪ ϵ ln ϵ−1 ≪ 1. The small region around x = 0 where the
solution changes quite rapidly from y ∼ O(1) to y ∼ O(0) is the boundary
layer. One can check that this solution Eq.(583) agrees with the exact one,

Eq.(567), provided that both in the boundary layer and in the bulk, we work

to leading orders in the respective small parameter.

The above procedure can be extended to obtain solutions to differential

equations with a boundary layer to higher orders in the small parameters. We

will illustrate how to do this with a more complicated example. Consider the

following differential equation

ϵy ′′ + (1 + x)y ′ + y = 0, (584)

with the boundary conditions y(0) = 1 and y(1) = 1.

We begin with “right” solution, valid for x ∼ 1. In this case the term ϵy ′′
in Eq.(584) can be treated as a perturbation. Then, we write

y(x) =

∞∑
n=0

ϵnyn(x), (585)

substitute the ansatz into the equation Eq.(584) and obtain

(1 + x)y ′n + yn = −y ′′n−1. (586)

We set y−1(x) to zero, for obvious reasons.

We can rewrite the above equation as follows

d

dx
((1 + x)yn) = −y ′′n−1. (587)

Hence,

yn(x) =
cn
1 + x

−
y ′n−1(x)

1 + x
, (588)
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where cn is the integration constant. Since the boundary condition y(1) = 1

implies that y0(1) = 1 and yn>0(1) = 0, we choose c0 = 2 and cn>0 = y
′
n−1(1).

Hence, we obtain

y0 =
2

1 + x
,

y1(x) = −
1

2

1

1 + x
+ 2

1

(1 + x)3
,

y2(x) = −
1

4

1

1 + x
−
1

2

1

(1 + x)3
+

6

(1 + x)5
.

(589)

To find the “left” solution as an expansion in ϵ, we introduce a new variable

ξ such that x = ϵξ. Hence, x ∼ ϵ corresponds to ξ ∼ 1. Furthermore, we
denote y(x) = Y (ξ), rewrite the differential equation Eq.(584) using the

variable ξ and obtain

d2Y

dξ2
+
dY

dξ
= −ϵ

(
ξ
dY

dξ
+ Y

)
. (590)

Next, we write

Y (ξ) =

∞∑
n=0

ϵnYn(ξ). (591)

Substituting Eq.(591) to Eq.(590), we obtain

d2Yn
dξ2
+
dYn
dξ
= −

(
ξ
dYn−1
dξ

+ Yn−1

)
. (592)

We can rewrite this equation as follows

d

dξ

[
dYn
dξ
+ Yn

]
= −

d

dξ
[ξYn−1] , (593)

which allows us to immediately integrate it. We find

dYn
dξ
+ Yn = An − ξYn−1, (594)

where An is the integration constant.

To solve the above equation, we make an ansatz

Yn = Fn(ξ)e
−ξ, (595)

use it in Eq.(594) and find

dFn
dξ
= (An − ξYn−1(ξ)) eξ. (596)
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Figure 8: Two solutions of the differential equation Eq.(584) for ϵ = 10−3.

The orange one is y(x). The blue one is Y (ξ). The region where the two

solutions match is clearly visible. The blue solution becomes increasingly

inaccurate for larger values of x . However, a combination of blue and orange

remains a perfect approximation to the correct solution for all values of x .

We integrate this equation and add a solution of the homogeneous part of

the differential equation Eq.(594) to satisfy the boundary condition at ξ = 0.

We obtain

Yn(ξ) = δn0e
−ξ + e−ξ

ξ∫
0

dµ (An − µYn−1(µ)) eµ. (597)

We find

Y0(ξ) = A0 + e
−ξ (1− A0) ,

Y1(ξ) = A0(1− ξ) + A1 + e−ξ
(
−A0 − A1 −

ξ2

2
+
A0ξ

2

2

)
,

Y2(ξ) = 3A0

(
1− ξ +

ξ2

3

)
+ A1(1− ξ) + A2

+ e−ξ
(
−3A0 − A1 − A2 +

A0ξ
2

2
+
A1ξ

2

2
+
ξ4

8
−
A0ξ

4

8

)
.

(598)

The constants A0, A1, A2 etc. have to be determined by matching the

solutions in Eq.(589) and the solutions in Eq.(598). To understand where

the solutions can be matched, we note that Eq.(598) provides a valid solution

to differential equation for values of ξ that are large provided only that x ≪ 1.
Similarly, Eq.(589) is valid all the way to small values of x . Hence, we if we

take ϵ≪ x ≪ 1 we can match the solutions. We note that for such values of
x all exponential terms in Eq.(598) drop out and only parts of the solutions

which are represented by powers of ξ and x will have to be matched.
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We then find

lim
ξ→∞

Y0(ξ)→ A0, lim
x→0

y(x)→ 2, ⇒ A0 = 2. (599)

The second term involves matching to first power in ϵ and first power in

x ≪ 1. Expanding Eq.(589) we find

y(x) = y0(x) + ϵy1(x) ≈ 2− 2x +
3

2
ϵ. (600)

At the same time, Eq.(598) gives

Y0(ξ) + ϵY1(ξ) ≈ 2 + 2ϵ
(
1−

x

ϵ

)
+ ϵA1 = 2− 2x + ϵ(2 + A1). (601)

It follows that A1 = −1/2.
Finally, we perform the matching to O(x2, ϵ2, xϵ). We write y(x) =

y0(x) + ϵy1(x) + ϵ
2y2(x) and expand through terms O(x2, ϵ2, xϵ). We find

y(x) ≈ 2− 2x + 2x2 + ϵ
(
3

2
−
11

2
x

)
+
21

4
ϵ2 + ... (602)

We have to match Eq.(602) to Y (ξ) = Y0(ξ)+ ϵY1(ξ)+ ϵ
2Y2(ξ) computed in

the ξ→∞ limit. We find

Y (ξ) ≈ 2 + ϵ
[
2

(
1−

ξ

ϵ

)
−
1

2

]
+ ϵ2

[
6

(
1−

ξ

ϵ
+
x2

3ϵ2

)
−
1

2

(
1−

ξ

ϵ

)
+ A2

]
= 2− 2x + 2x2 + ϵ

(
3

2
−
11

2
x

)
+ ϵ2

(
11

2
+ A2

)
.

(603)

Comparison of Eq.(602) and Eq.(603) shows that A2 = −1/4. Finally, having
determined the three constants A0,1,2, we can use them in Eq.(598) to provide

fully determined solutions in the boundary layer x ∼ 0 that also match the
solutions in the bulk region. The two solutions are shown in Fig. 8 where also

the quality of their matching can be seen.

In the example that we have just discussed, matching of inner and outer

solutions was happening for values of x that were comparable to ϵ. Although

the boundary layer region must be small and its smallness should be controlled

by the small parameter, the exact relation between the size of the region and

the small parameter depends on the equation that we are trying to solve. To

see this, consider the following equation

ϵy ′′ − x2y ′ − y = 0, (604)
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with the boundary conditions y(0) = y(1) = 1. We will start by setting ϵ = 0

and solving equation Eq.(604) in that approximation. We find

dy

y
= −
dx

x2
. (605)

Upon integration, we obtain

ln
y

C
=
1

x
. (606)

We conclude that

y = Ce1/x . (607)

However, we will show that this solution does not provide a valid approxima-

tion of the solution at large values of x for Eq. (604).

It is clear that the solution Eq. (607) cannot satisfy the boundary con-

dition y(0) = 1 for any choice of C. Hence, there must be a boundary layer

around x = 0. To find the size of this region, we introduce a new variable

x = δξ and re-write the differential equation as

ϵ

δ2
d2y

dξ2
− δ ξ2

dy

dξ
− y = 0. (608)

If two out of three terms were to balance each other, three possibilities should

be considered

1) 1≪
ϵ

δ2
∼ δ; 2) δ ≪

ϵ

δ2
∼ 1, and 3) δ ∼ 1. (609)

The first condition implies δ ∼ ϵ1/3 so that δ ≪ 1 for ϵ ≪ 1 and there is
an inconsistency. The second condition implies δ ∼ ϵ1/2 ≪ 1. The third
implies that the last two terms in Eq.(608) balance and this approximation

we already considered in Eqs.(605,607).

Hence, the only possibility is δ ∼ ϵ1/2 which means that the first term and
the last term in Eq.(607) balance. The approximate equation reads

ϵy ′′ = y . (610)

The solution that satisfies the boundary condition at x = 0 is then

y(x) = B1e
x/
√
ϵ + (1− B1) e−x/

√
ϵ (611)

To match solutions in Eq.(607) and Eq.(611), we need to remove the

increasing exponential in Eq.(611). This implies B1 = 0. Then, Eq.(611)

becomes exponentially suppressed at large x and we can only match it to
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Figure 9: Exact (orange) and approximate (blue) solutions of the differential

equation Eq.(604) for ϵ = 10−2 For the approximate solution, we used y(x) =

e−x/
√
ϵ + e−(1−x)/ϵ.

Eq.(607) if C = 0. However, if C = 0, the outer solution becomes y(x) = 0

and this solution can not satisfy the boundary condition y = 1 at x = 1! This

implies that we need yet another boundary layer at around x = 1.

This layer is easy to find. We write x = (1 − zδ), so that the equation
becomes

ϵ

δ2
d2y

dz2
+
(1− zδ)2

δ

dy

dz
− y = 0. (612)

Taking δ ∼ ϵ, we find that the first two terms in the above equation should
balance. The approximate equation therefore reads

d2y

dz2
+
dy

dz
= 0. (613)

Its solution is simple to find. We obtain

y(z) = A+ Be−z = A+ Be−(1−x)/ϵ. (614)

The boundary condition y = 1 at x = 1 implies A+ B = 1, so that

y(x) = A+ (1− A)e−(1−x)/ϵ. (615)

As we move away from x = 1, the solution Eq.(615) becomes just a

constant A so that we need to put it to zero, to match the solution from the

other side. Hence, the complete solution is

Hence, the full solution of the differential equation that we constructed

becomes

y(x) =

{
e−x/

√
ϵ, 0 ≤ x ≲ δ

e−(1−x)/ϵ, δ ≲ x ≤ 1 (616)
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The exact value of δ is not important as both solution decrease exponentially

and are tiny for values of x that are away from the boundaries.

We compare numerical solution of the differential equation and the ap-

proximate solution for ϵ = 10−2 in Fig. 2; the agreement between the two is

quite impressive and can be further improved by computing O(ϵ) corrections
to the leading approximation.
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12 The WKB method

The so-called WKB (Wentzel-Kramers-Brillouin) method is a way to solve

linear differential equations approximately in cases when the highest derivative

term is multiplied by a small parameter. We have discussed a similar situation

when talking about the boundary layer problem but the WKB approximation

is more powerful since it can capture solutions that are singular at the whole

interval and not just in the boundary regions.

The fact that such cases exist can be illustrated with the very simple

example. Consider the differential equation

ϵ2y ′′(x) + y(x) = 0, (617)

with the boundary conditions y(0) = 0, y(1) = 1. We solve it to find

y(x) =
sin
(
x
ϵ

)
sin
(
1
ϵ

) . (618)

This is an oscillatory solution and the limit ϵ → 0 is singular everywhere.
Note also that a similar equation with the opposite sign in front of y(x) in

Eq.(617), i.e.

ϵ2y ′′(x)− y(x) = 0 (619)

and the above boundary conditions, has the solution

y(x) =
sinh

(
x
ϵ

)
sinh

(
1
ϵ

) ∼ e−(1−x)/ϵ. (620)

This solution is of the type that can be obtained using boundary layer methods.

The WKB approximation is a formalism that allows one to treat both of these

cases in a uniform fashion.

A typical differential equation that can be analyzed using the WKB method

reads

ϵ2
d2y(x)

dx2
−Q(x)y(x) = 0, ϵ≪ 1. (621)

The main idea is to choose a particular ansatz for the function y(x); in

a certain sense this (exponential) ansatz is very similar to what we did to

understand the behavior of differential equations at irregular singular points.

We write

y(x) = e
1
δ

∞∑
n=0

δnSn(x)
. (622)

At this point, the parameter δ is arbitrary but it is understood that δ → 0 if
ϵ→ 0. We will establish the relation between ϵ and δ shortly.
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We substitute Eq.(622) into Eq.(621) and find

ϵ2

δ

∑
δnS′′n(x) +

ϵ2

δ2

(∑
δnS′n(x)

)2
= Q(x). (623)

We can develop a systematic expansion of this equation in a small parameter

if we choose δ = ϵ. Indeed, the leading approximation then corresponds

to the situation where the second term in Eq.(623) balances the term on

the right-hand side of that equation and other contributions provide small

perturbations. The first few terms of such an expansion read

(S′0(x))
2
= Q(x),

S′′0 + 2S
′
0S
′
1 = 0,

S′′1 + 2S
′
0S
′
2 + (S

′
1)
2 = 0.

(624)

We can solve these equations iteratively. The first one gives S′0 = ±
√
Q(x),

so that

S0 = ±
x∫ √

Q(ξ)dξ. (625)

The second equation is straightforward to solve. We write

S′1 = −
S′′0
2S′0
= −
1

2

d

dx
lnS′0 = −

1

4

d

dx
ln
(
(S′0)

2
)
. (626)

It follows

S1(x) = C1 + ln
(
Q−1/4(x)

)
. (627)

Hence, a general solution of the differential equation Eq.(621) can be written

as a linear combination of two independent solutions

y(x) =
C1
Q1/4

exp

1
ϵ

x∫
dξ
√
Q(ξ)

+ C2
Q1/4

exp

−1
ϵ

x∫
dξ
√
Q(ξ)

 . (628)
It is clear that if Q(x) > 0, we have exponentially growing and exponentially

decaying solutions and if Q(x) is negative, we have oscillating solutions.

The expansion that we have constructed involves, roughly,
√
Q(x)x/ϵ as

the leading term and lnQ(x) as the subleading one. If Q(x) is small, the

first term may be not larger than the second so that the approximation then

breaks down. In quantum mechanics, ϵ = ℏ and Q(x) = 2m(V (x) − E), so
that Q(x) = 0 if E = V (x); this is the equation for a classical turning point.
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Let us denote a turning point as x0, i.e. Q(x0) = 0. For the sake of

definiteness, we will assume that Q(x) > 0 for x > x0 and Q(x) < 0 for

x < x0. We consider a non-degenerate case Q
′(x0) ̸= 0. Close to the turning

point, we can write Q(x) ∼ Q0 + (x − x0)Q1, Q1 > 0, and we can choose
both normalization and coordinates in such a way that Q0 = 0 and x0 = 0.

The problem that we now discuss is as follows. As we explained, the

solutions shown in Eq.(628) are valid to the left and to the right of the turning

point. However, in the vicinity of the turning point the approximations that

led to them are invalid and the solutions cannot be used. Hence, in order

to connect the solutions on both sides of the turning point, we need to

investigate the differential equation Eq.(621) in the vicinity of the turning

point expanding in x − x0.
Owing to our choice of the normalization and the coordinate system Q0 =

0, x0 = 0, we re-write Eq.(621) as

ϵ2
d2y

dx2
−Q1xy = 0. (629)

To simplify it further, we change variables x → ξ, where x = (ϵ2/Q1)
1/3ξ,

and obtain
d2y

dξ2
− ξy = 0. (630)

This equation is the so-called Airy equation and its solutions are well-known

(not surprisingly, they are called Airy functions).

Airy equation Eq.(630) has two canonical solution Ai(ξ) and Bi(ξ). They

have the following asymptotic properties

Ai(ξ) ∼

{
1

2
√
πξ1/4

e−2ξ
3/2/3, ξ→ +∞,

1√
π(−ξ)1/4 sin

(
2(−ξ)3/2
3
+ π
4

)
, ξ→ −∞,

Bi(ξ) ∼

{
1√
πξ1/4

e2ξ
3/2/3, ξ→ +∞,

1√
π(−ξ)1/4 cos

(
2(−ξ)3/2
3
+ π
4

)
. ξ→ −∞.

(631)

The general solution of the Airy equation is given by a linear combination of

two solutions

y(ξ) = CaAi(ξ) + CbBi(ξ). (632)

Our goal now is to match the solutions of the Airy equations, obtained

in an approximation of small x and the solutions of the original equation

Eq.(621) constructed in the WKB approximation, c.f. Eq.(628). We will do

that assuming that the boundary conditions are similar to the ones in quantum
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mechanics, namely that in the limit x → +∞, the solution y(x) can only have
the exponentially decreasing component. For x > x0, we therefore choose

yI(x) =
C+

[Q(x)]1/4
exp

−1
ϵ

x∫
0

dξ
√
Q(ξ)

 . (633)

Note that we have chosen the lower-integration boundary at x = 0; this

choice is arbitrary, but it uniquely defines the meaning of the constant C+.

As we discussed earlier, the solution yI(x) is valid for values of x that

satisfy the following inequality

Q
1/2
1 x3/2

ϵ
≫ 1. (634)

We rewrite this inequality as (
ϵ2

Q1

)1/3
≪ x. (635)

Since ϵ→ 0, this condition can be satisfied simultaneously with the condition
x ≪ 1. This second condition, however, makes the solution in terms of

Airy functions applicable independent of any other approximation. Hence,

assuming that (
ϵ2

Q1

)1/3
≪ x ≪ 1, (636)

we can use Q(x) = Q1x in Eq.(633) to find an approximate form of the

solution in the region where both the WKB approximation and the solution

in terms of Airy functions is applicable.

The WKB solution to the right of the turning point for x ’s in the range

described by Eq.(636) reads

yI(x) ∼
C+

Q
1/4
1

x−1/4 exp

[
−
2Q1/2x3/2

3ϵ

]
, x ≪ 1. (637)

It is easy to see that this solution matches one of the two asymptotic solutions

of Airy functions in Eq.(631). Denoting the solution in the region around the

turning point as yII, we find

yII(x) ∼ 2C+
√
π (Q1ϵ)

−1/6Ai

[(
Q1
ϵ2

)1/3
x

]
. (638)
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This solution continues across the turning point x = x0 = 0 from positive to

negative values of x . It is clear that if we consider the region of negative x

that satisfies (
ϵ2

Q1

)1/3
≪ |x | ≪ 1, (639)

we should again be able to match the solution of the Airy equation Eq.(638)

to the solution of the WKB equation for negative x . The asymptotic form of

yII(x) for ξ→ −∞ is obtained from Eq.(631). It reads

yII(x) ∼
2C+

Q
1/4
1 |x |1/4

sin

(
2Q1/2|x |3/2

3ϵ
+
π

4

)
. (640)

We now take the WKB solution in Eq.(628) and compute the result for

negative x that satisfies Eq.(639), setting the lower integration boundary to

ξ = 0. We use (−1)1/2 = i and (−1)1/4 = e iπ/4) and find

yIII(x) ∼
C1

Q
1/4
1 |x |1/4

e−iφ−iπ/4 +
C2

Q
1/4
1 |x |1/4

e iφ−iπ/4, (641)

where φ = 2Q1/2|x |3/2
3ϵ

. We then match it to the solution in Eq.(640) by choos-

ing C1 = C+i and C2 = C+. The complete solution in region III (x < 0, far

from the turning point) is then

yIII(x) =
2C+

|Q(x)|1/4 sin

−1
ϵ

x∫
0

dξ
√
|Q(ξ)|+

π

4


=

2C+
|Q(x)|1/4 cos

1
ϵ

x∫
0

dξ
√
|Q(ξ)|+

π

4

 .
(642)

The two solutions yI(x) and yIII(x) provide the WKB solution of Eq.(628)

for all values of x subject to the boundary condition y(x)→ 0 as x →∞. This
solution is not valid in the vicinity of the turning point where |x | < (ϵ2/Q1)1/3
that becomes smaller and smaller as ϵ → 0. The regions of positive and
negative x are connected by the solution valid under the condition x → 0
which is provided by Airy functions.

It is quite natural to assume that one does not remember the asymptotic

behavior of Airy functions. Can one still find a relationship between solutions

to the left and to the right of a turning point? The answer to this question

is, actually, positive. To explain how this can be done, consider extending

the differential equation Eq.(628) to the complex plane. The WKB solutions
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are still given by formulas in Eq.(628) except that now all variables should be

considered to be complex. We will also take Q(x) to be Q(z) = Q1z to study

the vicinity of the turning point. The general solution reads

y(z) = C1y+(z) + C2y−(z), (643)

where

y±(z) =
1

Q
1/4
1 z1/4

exp

[
±
2
√
Q1z

3/2

3ϵ

]
(644)

As it appears, this function has a branch cut at z = 0; this means we need to

define how
√
z and its powers are to be understood. We will make this cut

along the negative real semi-axis. This implies that, for computing square

roots etc., the proper parameterization of z is

z = |z |e iφ, with − π < φ < π. (645)

We now write the solutions y±(z) using the representation of z in Eq.(644).

We obtain

y± ∼ exp
[
±
2
√
Q1|z |3/2

3ϵ
cos

(
3φ

2

)
+ ...

]
, (646)

where ellipses stand for the imaginary part.

The result shown in Eq.(648) is quite instructive. Indeed, on the real axis

for positive values of z , the solution y+ is exponentially large and the solution

y− is exponentially small. However, as Eq.(648) shows, the role of large and

small changes as we move around the turning point in the complex plane.

Indeed, since cos 3φ/2 changes the sign as φ changes, we find that in the

region −π/3 < φ < π/3, the solution y+ is much larger than y−, but for

π/3 < φ < π and −π < φ < −π/3, y+ is much smaller than y−.
We are interested in the solution of the differential equation that equals

the exponentially small solution y−(x) on the positive real axis; since the WKB

approximation has power accuracy, it means that if we start with y−(z) at

φ = 0, we will still have y−(z) when we come to φ = ±π/3. However, once we
move past π/3, we can not guarantee that y− remains y− since the solution

y+ is exponentially suppressed there (in other words, an exponentially small

solution can be generated out of nothing within the WKB approximation).

Hence, in the regions π/3 < φ < π and −π < φ < −π/3 we should allow for
two solutions

ya(z) = y−(z) + ay+(z), π/3 < φ < π,

yb(z) = y−(z) + by+(z), −π < φ < −
π

3
.

(647)
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We can now compute the two solutions at (just above and just below) the

cut. The key point now is that one should get the same because the point

z = 0 is not a singular point of the differential equation and so the cut should

not be needed. Hence, we impose the following requirement

y−(|z |e iπ) + ay+(|z |e iπ) = y−(|z |e−iπ) + by+(|z |e−iπ). (648)

We use the explicit representation of the functions y± to compute a relation

between the various entries in Eq.(648). We obtain

y±(|z |e−iπ) =
e iπ/4

Q
1/4
1 |z |1/4

exp

[
±i
2
√
Q1|z |3/2

3ϵ

]
,

y±(|z |e iπ) =
e−iπ/4

Q
1/4
1 |z |1/4

exp

[
∓i
2
√
Q1|z |3/2

3ϵ

]
.

(649)

This implies

y+(|z |e−iπ) = iy−(|z |e iπ), y−(|z |e−iπ) = iy+(|z |e iπ). (650)

We use these results in Eq.(648) and find

a = i , b = −i . (651)

Hence, the solution on the negative real axis reads

yII(z) =
2

Q1/4z1/4
cos

(
2
√
Q|z |3/2

3ϵ
−
π

4

)
=

2

Q1/4z1/4
sin

(
2
√
Q|z |3/2

3ϵ
+
π

4

)
.

(652)

This is the same result that we obtained in Eq.(640) using the asymptotic

behavior of the Airy function.

We will now translate what we discussed to Quantum Mechanics; we will

see that translation will leave to interesting consequences.

In this case, the equation that we would like to solve is the Schrödinger

equation that we write in the following way

ℏ2
d2

dx2
Ψ(x)− 2m(V (x)− E)Ψ(x) = 0. (653)

It follow that we can use the formulas that we derived above provided that

we identify ϵ→ ℏ and 2m(V (x)− E) = Q(x).
We will consider a situation where V (x) < E for a < x < b, so that a and

b are the two classic turning points. We would like to solve the Schroödinger
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equation for standard boundary conditions Ψ(x)→ 0 for x → ±∞. We now
split the x axis into three regions 1) x < b, 2) a < x < b 3) x > b.

Consider the right turning point x = b. For x > b the solution is

Ψ3(x) =
C3

[Q(x)]1/4
exp

−1
ℏ

x∫
b

dξ
√
Q(ξ)

 , x > b. (654)

We know that if we continue the result to x < b, Ψ3(x) matches the following

approximate solution of the Schrödinger equation

Ψ2(x) =
2C3

[|Q(x)|]1/4 sin

−1
ℏ

x∫
b

dξ
√
|Q(ξ)|+

π

4

 , a < x < b. (655)

We can investigate the impace of the second turning point at x = a. Since

in this case the classically-forbidden region is at x < a, we can make use of

the above results if we write x = a − y with y > 0 in the forbidden region.
Then, in terms of y

Ψ1(y) =
C1

[Q(a − y)]1/4 exp

−1
ℏ

y∫
0

dµ
√
Q(a − µ)

 , y > 0. (656)

We can now go back to x and ξ = a − µ. We obtain

Ψ1(x) =
C1

[Q(x)]1/4
exp

1
ℏ

x∫
a

dξ
√
Q(ξ)

 , x < a. (657)

We can also continue to x > a using Ψ1(y) written in terms of y . We find

an alternative representation for the wave function in the region a < x < b.

We find

Ψ2 =
2C1

[Q(a − y)]1/4 sin

−1
ℏ

y∫
0

dµ
√
Q(a − µ) +

π

4

 , y < 0, (658)

which we again express in terms of x

Ψ2 =
2C1

[Q(x)]1/4
sin

1
ℏ

x∫
a

dξ
√
|Q(ξ)|+

π

4

 , a < x < b. (659)
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We now have two expressions for Ψ2(x) in the allowed region a < x < b,

Eq. (655) and Eq. (659). Requiring that they actually coincide, we obtain

the following equation

b∫
a

dx
√
2m(E − V (x)) = πℏ

(
n +
1

2

)
, (660)

where n is integer. Note that this is a condition on the allowed values of

the energy E, i.e. a quantization condition. This quantization condition is

the Bohr-Sommerfeld quantization condition from the early years of quantum

mechanics. Finally, since
√
2m(E − V (x)) = p(x) is the canonical mometum,

the above equation reads

b∫
a

p(x)dx = πℏ
(
n +
1

2

)
. (661)

In classical mechanics
b∫
a

p(x)dx is related to
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13 Resonance and secular behavior in non-linear differen-

tial equations

In this lecture we will talk about small oscillations in classical mechanics.

Small (harmonic) oscillations are described by the differential equation

ÿ + ω2y = 0, (662)

where ÿ = d2y/dt2. The solution to Eq.(662) is well-known

y(t) = a cos(ωt + φ), (663)

where a and φ are two parameters to be fixed using initial conditions.

In case there is an external harmonic force acting on an oscillator, the

equation of motion reads

ÿ + ω2y = f0 cosΩt. (664)

The solution of this equation is

y(t) = a cos(ωt + φ) +
f0

ω2 −Ω2 cosΩt. (665)

The oscillation amplitude y(t) is bounded for all Ω ̸= ω. However, in case
Ω = ω, the solution changes and becomes

y(t) = ã cos(ωt + φ̃) +
f0t

2ω
sinωt. (666)

Note that the amplitude of the second term on the r.h.s. is unbounded

as t → ∞. Terms that exhibit such a growing amplitude are called secular
terms and their appearance in solutions to equations that describe oscillations

subject to an external resonance force is natural because there is energy

transfer from the external force to the system.

Next, consider a generalization of Eq.(662) that describes small oscilla-

tions subject to a non-linear pertubation

ÿ + ω2y = −ϵy 3. (667)

We assume that the parameter ϵ is small.

It is tempting to solve Eq.(667) by developing a perturbation theory in ϵ.

This amounts to writing

y(t) =

∞∑
n=0

ϵnyn(t), (668)
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and then using this representation of y(t) to solve Eq.(667) order by order in

ϵ. We will work through order O(ϵ) in the perturbative expansion. We find
two equations

ÿ0 + ω
2y0 = 0,

ÿ1 + ω
2y1 = −y 30 .

(669)

The general solution of the first equation reads

y0(t) = a cos(ωt + β). (670)

For simplicity, we impose the boundary conditions y(0) = a and ẏ(0) = 0; we

find β = 0. The second equation we have to solve reads

ÿ1 + ω
2y1 = −a3 cos3 ωt. (671)

Since

cos3 ωt =
3

4
cosωt +

1

4
cos 3ωt, (672)

we obtain

ÿ1 + ω
2y1 = −a3

(
3

4
cosωt +

1

4
cos 3ωt

)
. (673)

We require the solution to this equation subject to boundary conditions

y1(0) = 0, ẏ1(0) = 0. We observe that Eq.(673) is equivalent to Eq.(664)

with Ω = 3ω and Ω = ω. This implies that y1(t) is a combination of the

solutions shown in Eq.(665) and Eq.(666). We find

y1(t) = −
3a3t

8ω
sin(ωt)−

a3

32ω2
cosωt +

a3

32ω2
cos (3ωt) , (674)

where we have fixed all the boundary condition by requiring that y1(0) = 0

and ẏ1(0) = 0.

Hence, we obtain the solution to the original equation Eq.(667) valid

through first order in ϵ

y(t) = a

(
1−

ϵa2

32ω2

)
cosωt +

a3ϵ

32ω2
cos (3ωt)−

3a3tϵ

8ω
sin(ωt) +O(ϵ2).

(675)

From this solution, it is easy to see that perturbation theory is somewhat

pathological. Indeed, the last term in Eq.(675) is secular. This implies that as

long as a3tϵ/ω ≪ 1, the perturbation theory works fine but as time increases,
we are bound to reach a moment when

a2tϵ/ω ≫ 1, (676)
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after which the correction becomes larger than the leading order solution.

Moreover, Eq.(675) predicts that the amplitude of oscillations keeps in-

creasing and this does not make much sense physically. In fact, it is very easy

to prove that any solution to Eq.(667) is bounded. This is accomplished by

calculating the total energy stored in the mechanical system. To this end, we

multiply Eq.(667) with ẏ , use

ẏ ÿ =
1

2

d

dt

[
ẏ 2
]
, ẏ y n =

1

n + 1

d

dt

[
y n+1

]
, (677)

integrate over t and find

ẏ 2

2
+
ω2y 2

2
+
ϵy 4

4
= C. (678)

The constant C is easily computed from the boundary condition at t = 0.

Since ẏ(0) = 0, we find

C =
ω2y 2

2
+
ϵy 4

4
=
ω2a2

2
+
ϵa4

4
. (679)

Since ẏ 2/2 is positive definite,

ω2y 2

2
+
ϵy 4

4
< C, (680)

and we conclude that y(t) is bounded from above.

We can reconcile this observation with the fact that the perturbative so-

lution Eq.(675) does exhibit unbounded growth at t → ∞ by arguing that
higher terms in the perturbative expansion in ϵ will correct the behavior of

the leading order term. Indeed, if two terms in a would-be expansion

1− ϵt (681)

get supplemented by

1− ϵt +
ϵ2t2

2
−
ϵ3t3

3!
+ · · · −

ϵntn

n!
+ · · · , (682)

the series sums up to e−ϵt which is bounded for all t. We expect something

similar to happen to the series in Eq.(668).

To show that this is actually the case, we will analyze the most secular

terms in the perturbative expansion. Such terms should contain one power

of t for one power of ϵ so that n-th term in the series behaves as

anϵ
ntne iωt + a∗nϵ

ntne−iωt . (683)
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We will use induction to prove that the coefficients an are given by the

following formula

an =
a

2

1

n!

(
3ia2

8ω

)n
. (684)

However, before we do that, we need to understand how to extract the most

secular terms from the following equation

ÿn+1 + ω
2yn+1 = cnt

ne iωt . (685)

To do that, we write yn+1 = f (t)e
iωt , substitute this expression into Eq.(685)

and find

f̈ + 2iωḟ = cnt
n. (686)

We write f =
n+1∑
k=0

bkt
k , substitute this ansatz into the above equation and

find

bn+1 =
cn

2iω(n + 1)
(687)

Hence, we can write

yn+1 =
cnt

n+1

2iω(n + 1)
e iωt + ỹn+1(t), (688)

where the first term describes the leading secular term in the solution y(t)

and ỹ(t) describes subleading secular terms.

We return to the differential equation Eq.(667). We solve it using the

perturbative expansion Eq.(668). To find the leading secular contribution in

the equation for yn+1(t), we first determine contributions of order ϵ
n+1 on

the right-hand side. We find

ÿn+1 + ω
2yn+1 = −

∑
j+k+l=n

yjykyl . (689)

To find the most secular contributions, we make an inductive assumption that

for j ≤ n such terms follow from Eq.(684) and read

yj =
a

2

1

j!

(
3a2

8ω

)j [
(i t)je iωt + (−i t)je−iωt

]
. (690)

Collecting terms that produce e iωt on the r.h.s. of Eq.(689), we obtain

−
∑

j+k+l=n

yjykyl ⇒ −
a3

8

(
3a2

8ω

)n
tne iωt

∑
j+k+l=n

i j+k−l + i−j+k+l + i j−k+l

j! k! l!

= −
a3

8

(
3ia2

8ω

)n
tne iωt

∑
j+k+l=n

(−1)l + (−1)j + (−1)k

j! k! l!
.

(691)
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To compute the last sum, we note that we can relate it to the n-th term

in the expansion of the function ex = exexe−x in powers of x . Indeed,

exexe−x = ex =

∞∑
n=0

xn

n!
=

∞∑
n=0

xn
∑

j+k+l=n

(−1)l

j! k! l!
. (692)

Hence, we conclude that∑
j+k+l=n

(−1)l + (−1)j + (−1)k

j! k! l!
=
3

n!
. (693)

Therefore,

ÿn+1 + ω
2yn+1 = −

3a3

8n!

(
3ia2

8ω

)n
tne iωt + c.c. (694)

Upon comparing the r.h.s. of this equation with Eq.(685), we find

cn = −
3a3

8n!

(
3ia2

8ω

)n
. (695)

This gives

yn+1 =
cnt

n+1

2iω(n + 1)
e iωt+c.c. =

a

2(n + 1)!

(
3ia2

8ω

)n+1
tn+1e iωt+c.c. . (696)

This result is consistent with our assumption about the most secular coeffi-

cients in Eq.(684); this completes the inductive proof.

It is now straightforward to sum up the most secular contributions to y(t).

We find

y(t) =

∞∑
n=0

ϵna

2n!

(
3ia2

8ω

)n
tne iωt + c.c. =

a

2
e iωt+3ia

2ϵt/(8ω) + c.c. = a cosω1t,

(697)

with

ω1 = ω +
3a2ϵ

8ω
. (698)

Hence, we conclude that the sum of the most secular terms in the perturbative

expansion of Eq.(667) produces a shift in the frequency of oscillations in spite

of the fact that solutions at any given order in perturbation theory appear to

be unbounded.

We would like to understand how to extend these calculations to enable

dealing with all secular terms and not only the most singular ones. in other

words, we would like to find a way to construct a systematic expansion of
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non-linear equations in ϵ. The method that allows us to do that is known as

multi-scale analysis. The idea behind it is as follows. As we have seen from

the above example, the differential equation implies that, in addition to an

obvious time scale t ∼ 1/ω, there is another time scale t ∼ ω/(ϵa2), where
naive perturbation theory breaks down. It is convenient to formally treat the

two time scales separately by describing them using two different variables.

The removal of secular terms from the solution allows us to determine the

dependence of the solution depends on the variable that describes larger time

scale.

Following what we have just described, we introduce a new variable τ = ϵt

and formally write

y(t) = Y (t, τ). (699)

The derivative w.r.t. t reads

d

dt
Y (t, τ) =

∂Y

∂t
+
∂Y

∂τ

dτ

dt
(700)

Since τ = ϵt, we obtain

d

dt
Y (t, τ) =

∂Y

∂t
+ ϵ

∂Y

∂τ
(701)

The second derivative is computed in an analogous way; we find

d2

dt2
Y (t, τ) =

∂2Y

∂t2
+ 2ϵ

∂2Y

∂t∂τ
+ ϵ2

∂2Y

∂τ2
. (702)

We now write an expansion of y(t) in powers of ϵ. Then

y(t) = Y0(t, τ) + ϵY1(τ) +O(ϵ2). (703)

Note that there is a hidden dependence on ϵ in e.g. Y0 through its dependence

on τ .

Substituting Eq.(703) into Eq.(667) and using Eq.(702) to express the

time derivative through derivatives w.r.t. t and τ , we find for the two first

terms in the ϵ-expansion.

∂2Y0
∂t2
+ ω2Y0(t, τ) = 0,

∂2Y1
∂t2
+ ω2Y1(t, τ) + 2

∂2Y0
∂t∂τ

= −Y 30 .
(704)

The general solution of the first equation is straightforward. We find

Y0 = A0(τ)e
iωt + A∗0(τ)e

−iωt . (705)
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We note that at this point the function A0(τ) is not determined.

We consider the second equation in Eq.(704). Using Y0 from Eq.(705)

and focusing on the secular terms, we find

∂2Y1
∂t2
+ ω2Y1(t, τ) + F (τ)e

iωt + F ∗(τ)e−iωt = . . . , (706)

where

F (τ) = 2iω
∂A0(τ)

∂τ
+ 3A20A

∗
0, (707)

and the ellipsis stands for non-secular terms. If F (τ) ̸= 0, the equation for
A0 contains secular terms and the oscillation amplitude exhibits unbounded

growth. We can avoid this by requiring that F (τ) = 0. This condition gives

us a differential equation for A0. It reads

2iω
∂A0(τ)

∂τ
+ 3A20A

∗
0 = 0. (708)

To solve this equation, we write

A0(τ) = R0(τ)e
iθ0(τ). (709)

Substituting the ansatz Eq.(709) into Eq.(708) and separating real and imag-

inary parts, we obtain two equations that read

∂R0(τ)

∂τ
= 0, −2ω

∂θ0(τ)

∂τ
+ 3R20 = 0. (710)

Accounting for the boundary conditions, we conclude that

R0 =
a

2
, θ0 =

3a2τ

8ω
. (711)

Hence,

Y0(t, τ) = a cos

(
ωt +

3a2τ

8ω

)
, (712)

and we have reproduced our previous result. This analysis can be continued

also in higher orders of the expansion in ϵ.

As another example of an application of multi-scale analysis, we consider

the so-called Rayleigh oscillator

ÿ + ω2y = ϵ

(
ẏ −
1

3
ẏ 3
)
. (713)
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We will consider the following boundary conditions

y(0) = 0, ẏ(0) = 2v . (714)

Similar to the previous case, we write

y(t) = Y0(t, τ) + ϵ Y1(t, τ), (715)

and expand the Rayleigh equation to first order in ϵ. We find

∂2Y0
∂t2
+ ω2Y0(t, τ) = 0,

∂2Y1
∂t2
+ ω2Y1(t, τ) + 2

∂2Y0
∂t∂τ

=
∂Y0
∂t
−
1

3

(
∂Y0
∂t

)3
.

(716)

The solution to the first equation is

Y (t, τ) = A0(τ)e
iωt + A∗0(τ)e

−iωt (717)

Next, we investigate the second equation in Eq.(716) to find the secular

terms. We obtain

∂2Y1
∂t2
+ ω2Y1(t, τ) + F (τ)e

iωt + F ∗(τ)e−iωt = . . . , (718)

where

F (τ) = 2iω
∂A0(τ)

∂τ
− iωA0 + iω3A20A∗0. (719)

Requiring that there are no secular terms in Eq.(718), we obtain

∂A0(τ)

∂τ
=
1

2
A0
(
1− |A0|2

)
. (720)

Writing A0(τ) = R0(τ)e
iθ0(τ), we obtain two equations for the real and imag-

inary parts

2
dR0
dτ
= R0(1− R20),

dθ0
dτ
= 0. (721)

The solutions to these equations are

θ0 = θ0(0), R0(τ) =
R0(0)√

e−τ + R20(0)(1− e−τ)
. (722)

The constants of integration θ0(0) and R0(0) are chosen in such a way that

the boundary conditions Eq.(714) are satisfied. We finally obtain

y(t) =
2v

ω

sinωt√
e−τ +

(
v
ω

)2
(1− e−τ)

, τ = ϵt. (723)
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Note that the solution to the Rayleigh equation in Eq.(723) has a peculiar

asymptotic behavior in the limit t →∞. Indeed, since in this limit e−τ → 0,
we find

y(t)|t→∞ → 2 sin(ωt), (724)

regardless of the initial conditions. The asymptotic solution at t = ∞ is
called the “limit cycle”.
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14 Parametric excitations in differential equations. Sta-

bility.

Consider a pendulum whose pivot point performs vertical oscillations; we dis-

cussed this mechanical system in the first lecture. It was shown there that it

can be described by means of a differential equation with a time-dependent

frequency

y ′′ + ω2 (1 + κ cos γt) y = 0. (725)

We will first discuss general features of solutions to Eq.(725). An im-

portant observation is that if y(t) is the solution to Eq.(725) then y(t + T )

where T = 2π/γ is also a solution. To prove this, write

d2

dt2
y(t + T ) + ω2 (1 + κ cos γt) y(t + T ), (726)

and replace t with τ where t = τ−T . Since cos γt = cos(γ(τ−T )) = cos γτ ,
Eq.(726) becomes

d2

dτ2
y(τ) + ω2 (1 + κ cos γτ) y(τ), (727)

which is zero according to Eq.(725).

Consider now two independent solutions of Eq.(725); we will call them

y1(t) and y2(t). We will imagine that the two solutions are chosen in such a

way that their Wronskian

W (t) = y ′1y2 − y ′2y1 (728)

equals to one, W (t) = 1. Since y1,2(t+T ) are solutions to Eq.(725) they can

be written as linear combinations of y1,2(t) with time-independent coefficients.

We find (
y1(t + T )

y2(t + T )

)
=

(
a11 a12
a21 a22

)(
y1(t)

y2(t)

)
. (729)

Let us call the matrix in the above equation Â, i.e.

Â =

(
a11 a12
a21 a22

)
. (730)

Its transpose ÂT possesses eigenvectors and eigenvalues; we will call them

ϵ⃗1,2 and λ1,2 so that

ÂT ϵ⃗σ = λσ ϵ⃗σ, σ = 1, 2. (731)
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Now, consider the solution to Eq.(725) defined as follows

ỹi(t) = ϵ⃗i · y⃗(t). (732)

Then,

ỹσ(t + T ) = ϵ⃗σ · y⃗(t + T ) = ϵ⃗σ,k Aki yi(t) = ATik ϵ⃗σ,k yi(t) = λσỹσ(t). (733)

Therefore,

ỹσ(t + nT ) = λ
n
σ ỹσ(t). (734)

We can re-write this equation as follows

ỹσ(t) = e
t/T lnλσ fσ(t), (735)

where fσ(t) is a T -periodic function fσ(t + T ) = fσ(t). It follows from this

representation that if lnλσ > 0, the solution yσ is unstable since it grows

exponentially with time. If, on the other hand, lnλσ < 0, the solution is said

to be stable. Negative values of λσ lead to complex values of lnλσ which

implies that the solutions oscillate.

Existence of stable and unstable solutions depends on parameters that

appear in Eq.(725).9 We will write this equation in the following way

y ′′ + (a2 + 2ϵ cos t)y = 0, (736)

where a2 = ω2/γ2 and ϵ = κω2/(2γ2). We will consider ϵ to be small. Our

goal will be to find regions in the (a, ϵ) plane that correspond to different

(stable, unstable) types of solutions.

Let us look for the solutions to Eq.(736) using regular perturbation theory

in ϵ. We write

y =

∞∑
n=0

ϵnyn(t). (737)

Substituting this expression into Eq.(736), we obtain

y ′′0 + a
2y0 = 0,

y ′′1 + a
2y1 = −2y0 cos t,

y ′′2 + a
2y2 = −2y1 cos t.

(738)

The solution to the first equation in Eq.(738) reads

y0 = A0 e
iat + c.c. . (739)

9This equation is known as the Mathieu equation.
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Note that since the problem is symmetric with respect to a transformation

a→ −a, we can choose a to be positive.
The second equation in Eq.(738) can be written in the following way

y ′′1 + a
2y1 = −A0 e i(a+1)t − A0 e i(a−1)t + c.c. . (740)

It is clear that secular terms can appear in y1(t) if

a ± 1 = −a. (741)

The solution to these equations, subject to the condition a > 0 is a =

1/2; this means that secular (growing) terms in the solution of the Mathieu

equation appear if a2 = 1/4.

More instabilities can appear in higher orders in the expansion in ϵ. In-

deed, suppose that a ̸= 1/2 so that equation for y1(t) does not contain
secular terms. According to Eq.(740), the solution to y1(t) contains har-

monic functions with frequencies a±1. Consider the equation for y2(t). The
right hand side of the equation for y2(t) is proportional to cos t y1(t); hence,

it will contain harmonic functions with frequencies

a + 2, a, a − 2. (742)

The case of a will require the standard treatment of secular terms; however,

we also observe that secular solutions appear for

a ± 2 = ∓a. (743)

The solution to these equation that satisfies the a > 0 condition is

a = 1, (744)

so that, obviously, a2 = 1. After some reflection, it should be clear that if we

continue to consider higher and higher orders in perturbation theory, we will

find that secular terms appear at frequencies n2a2/4, where n = 1, 2, 3, ....

However, if we assume a ̸= 2n, no secular terms appear and solutions are
stable.

What happens to the solutions in cases when the frequencies are close to

one of the unstable points a2 = n2/4? To study this question, we take n = 1

and write a2 = 1/4 + ϵa1; the Matthieu equation reads

d2y(t)

dt2
+

[
1

4
+ ϵ (a1 + 2cos t)

]
y(t) = 0. (745)
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Since we expect that naive perturbation theory does not work, we use multi-

scale expansion method. Similar to what we did in the previous lecture, we

introduce a new time variable τ and we assume τ = ϵt. We write

y(t) = Y0(t, τ) + ϵY1(t, τ) + . . . . (746)

From the previous lecture we recall

d2

dt2
Y (t, τ) =

∂2Y

∂t2
+ 2ϵ

∂2Y

∂t∂τ
+ ϵ2

∂2Y

∂τ2
. (747)

Hence, through order O(ϵ), we have to satisfy two equations

∂2Y0
∂t2
+
1

4
Y0 = 0,

∂2Y1
∂t2
+
1

4
Y1 = −(a1 + 2cos t)Y0 − 2

∂2Y0
∂t∂τ

.

(748)

We solve the first of the above equations and find

Y0(t, τ) = A0(τ)e
it/2 + A∗0(τ)e

−it/2. (749)

At order O(ϵ), the equation becomes

∂2

∂t2
Y1 +

1

4
Y1 = −(a1 + 2cos t)Y0(t)− i

(
∂A0(τ)

∂τ
e it/2 −

∂A∗0(τ)

∂τ
e−it/2

)
.

(750)

We now collect secular terms on the right hand side and obtain the following

equation

−a1A0 − i
∂A0(τ)

∂τ
− A∗0 = 0. (751)

To solve this equation, we separate real and imaginary parts

A0 = A
R
0 + iA

I
0. (752)

Substituting this expression into Eq.(751) we find

∂AR0 (τ)

∂τ
= (1− a1)AI0,

∂AI0(τ)

∂τ
= (1 + a1)A

R
0 .

(753)

Combining the two equations, we find a second-order differential equation[
∂2

∂τ2
− (1− a21)

]
AR0 (τ) = 0. (754)
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It follows that if |a1| > 1, the solution is oscillatory. It reads

AR0 (τ) = α cosω1τ + β sinω1τ, (755)

where ω1 ∼
√
a21 − 1. If, on the other hand, |a1| < 1, there are exponentially

increasing and decreasing solutions

AR0 (τ) = αe
±
√
1−a21τ . (756)

The transition from stable to unstable solutions occurs at |a1| = 1. This im-
plies that stability bounds of the solutions are described by following equation.

a2 =
1

4
± ϵ+O(ϵ2). (757)

We will extend this analysis to one higher order in the ϵ expansion using

multi-scale analysis. For this, we will assume that

a2 =
1

4
+ ϵ+ a2ϵ

2, (758)

and study the consequences. Note that we should not try to connect what

we do below to an earlier analysis since if we truncate a2 in Eq.(758) at order

O(ϵ), we will be right on the line in the (a2, ϵ)-plane that separates stable
and unstable solutions and on that line the previous solution is secular. This

means that if we are interested in finding solutions for such a value of a2 we

will have to discuss the relevant time scales one more time.

It is then easy to see that for |a1| ≈ 1, the relevant scale changes. Indeed,
let us write Eq.(758) as a2 = 1/4 + ϵ(1 + a2ϵ) and interpret 1 + a2ϵ as an

“ϵ-dependent” a1. We now substitute it into in Eq.(756) and find

αe±
√
1−a21τ → αe±

√
−2a2ϵϵt ∼ e±

√
−2a2ϵ3/2t . (759)

This suggests that, in case when a1 ∼ 1 +O(ϵ), the scale τ = ϵt disappears
from the problem and the new scale σ = ϵ3/2t appears.

We now repeat the analysis of the differential equation using a different

scaling relation between regular time t and large time σ. The expansion of

the solution of the differential equation in small parameter reads

y = Y0(t, σ) + ϵ
1/2Y1(t, σ) + ϵY2(t, σ) + ϵ

3/2Y3(t, σ) + ϵ
2Y4(t, σ) +O(ϵ5/2).

(760)
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The second time derivative evaluates to

d2y(t, σ)

dt2
=
∂2y

∂t2
+ 2ϵ3/2

∂2y

∂t∂σ
+ ϵ3

∂2y

∂σ2
. (761)

Substituting Eq.(760) in Eq.(761), we obtain an expansion of the time

derivative

d2Y

dt2
=
∂2Y0
∂t2
+ϵ1/2

∂2Y1
∂t2
+ϵ
∂2Y2
∂t2
+ϵ3/2

(
∂2Y3
∂t2
+ 2

∂2Y0
∂t∂σ

)
+ϵ2

(
∂2Y4
∂t2
+ 2

∂2Y1
∂t∂σ

)
+· · · .

(762)

We now substitute the time derivative from Eq.(762) and the expansions

of y(t) and a in powers of ϵ Eqs.(760,758), respectively, into the Mathieu

equation Eq.(736). Since terms proportional to different powers of ϵ should

vanish independently of it other, we obtain a system of coupled differential

equations. It reads

ϵ0 :
∂2Y0
∂t2
+
1

4
Y0 = 0,

ϵ1/2 :
∂2Y1
∂t2
+
1

4
Y1 = 0,

ϵ :
∂2Y2
∂t2
+
1

4
Y2 = −(1 + 2 cos t)Y0,

ϵ3/2 :
∂2Y3
∂t2
+
1

4
Y3 = −(1 + 2 cos t)Y1 − 2

∂2Y0
∂t∂σ

,

ϵ2 :
∂2Y4
∂t2
+
1

4
Y4 = −(1 + 2 cos t)Y2 − 2

∂2Y1
∂t∂σ

− a2Y0.

(763)

We now solve these equations one after the other, making sure that no secular

terms appear in the solutions. We then find

Y0 = A0(σ)e
it/2 + c.c. , Y1 = A1(σ)e

it/2 + c.c. . (764)

With these results, the equation for Y2 becomes

∂2Y2
∂t2
+
1

4
Y2 = −(A0 + A∗0)e it/2 − A0e i3t/2 + c.c. . (765)

The secular term is removed from this equation if

A0 + A
∗
0 = 0. (766)

Hence, we choose A0 = iB0 with B0 real, and find for Y2

Y2 = A2(σ)e
it/2 +

1

2
A0(σ)e

3it/2 + c.c.. (767)
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In Eq.(767) A2(σ)e
it/2 is the solution of the homogeneous part of the equation

Eq.(765).

We continue with the equation for Y3. It reads

∂2Y3
∂t2
+
1

4
Y3 = −(A1 + A∗1 + i

dA0
dσ
)e it/2 − A1e i3t/2 + c.c. . (768)

Secular terms are absent provided that

−i
dA0
dσ
= A1 + A

∗
1. (769)

We continue with the equation for Y4; it reads

∂2Y4
∂t2
+
Y4
4
= −(A2 + A∗2)e it/2 −

A0
2
e i3t/2 − A2e i3t/2

−
A0
2
e i5t/2 −

A0
2
e it/2 − i

dA1
dσ

e it/2 − a1A0e it/2 + c.c..
(770)

Collecting the secular terms, we obtain the following equation

−i
dA1
dσ
= A2 + A

∗
2 +

(
1

2
+ a2

)
A0. (771)

To proceed further, we apply complex conjugation to Eq.(771) and obtain

i
dA∗1
dσ
= A2 + A

∗
2 −

(
1

2
+ a2

)
A0, (772)

where we used the fact that A∗0 = −A0. Subtracting Eq.(772) from Eq.(771),
we find

−i
d(A1 + A

∗
1)

dσ
= (1 + 2a2)A0. (773)

We now use Eq.(769) to eliminate A1+A
∗
1 from the above equation and find

−
d2A0
dσ2

= (1 + 2a2)A0. (774)

Hence, if a2 < −1/2, the solutions are unstable; they are stable otherwise.
We conclude that the curve in the (a2, ϵ) plane that separates stable and

unstable regions in the vicinity of a2 = 1/4 is given by

a2 =
1

4
+ ϵ−

1

2
ϵ2 +O(ϵ3). (775)
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15 Inverted pendulum

In the very first lecture and in the previous lecture we talked about a pendulum

whose pivot oscillates. We will again talk about this problem and analyze it

from a somewhat different perspective, making use of what we have learned

so far.

We will study a pendulum of length l with the mass m attached to its end

point; the pendulum’s pivot moves up and down with an amplitude a cos γt.

We choose the angle θ to describe the position of the pendulum and construct

the Lagrange function in the standard way. First, we write the coordinates of

the mass as

x = l sin θ, y = −l cos θ + a cos γt. (776)

Then we compute derivatives

ẋ = l θ̇ cos θ, ẏ = l θ̇ sin θ − aγ sin γt. (777)

Substituting these expressions into the Lagrange function

L =
mẋ2

2
+
mẏ 2

2
−mg(a cos γt − l cos θ), (778)

and discarding θ-independent terms, we find

L =
ml2θ̇2

2
−mlaγθ̇ sin θ sin γt +mgl cos θ. (779)

It is convenient to rewrite the second term as

−mlaγθ̇ sin θ sin γt = mlaγ
d cos θ

dt
sin γt

= mlaγ
d cos θ sin γt

dt
−mlaγ2 cos θ cos γt.

(780)

Since the first term in the last equation in Eq.(780) is a total derivative, it

does not contribute to the equations of motion and can be omitted from the

Lagrangian. Hence, the Lagrangian reads

L =
ml2θ̇2

2
−maγ2l cos(γt) cos θ +mgl cos θ. (781)

The Euler-Lagrange equation of motion then easily follows

ml2θ̈ = maγ2l cos(γt) sin θ −mgl sin θ. (782)
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We denote g/l = ω2 and find

θ̈ +
(
ω2 −

a

l
γ2 cos γt

)
sin θ = 0. (783)

Since we cannot solve Eq.(783) exactly, we will consider the following

situation: the amplitude of oscillations a is small compared to the length of

the pendulum l , i.e. a/l ≪ 1, but the frequency of pivot oscillations is much
higher than the natural frequency of the pendulum ω/γ ≪ 1. Note that under
these conditions, it is not possible to neglect any of the terms in Eq.(783).

To proceed further, we change variables t → x/γ and find

γ2
d2θ

dx2
+
(
ω2 −

a

l
γ2 cos x

)
sin θ = 0 ⇒

d2θ

dx2
+

(
ω2

γ2
−
a

l
cos x

)
sin θ = 0.

(784)

It follows from the above equation that we need to decide on the hierarchy

of two small parameters ω/γ and a/l . We will assume that they satisfy the

following relation
a

l
∼
ω

γ
∼ ϵ≪ 1. (785)

Then, writing ω2/γ2 = ϵ2κ2 and a/l = αϵ, we obtain an equation that

we will work with

d2θ

dx2
+
(
ϵ2κ2 − ϵα cos x

)
sin θ = 0. (786)

To get an idea of how to approach solving this equation, let us consider the

case of small oscillations. Then sin θ ∼ θ. We then imagine that the pendulum
oscillates with its natural frequency ω and, at the same time, trembles around

its smooth trajectory with the frequency γ. The solution then may look as

follows

θ ∼ (1 + β cos γt) cosωt. (787)

Hence, we expect that the solution depends on the two time scales γt = x

and ωt = τ . The relation between τ and x is

τ =
ω

γ
x = ϵκx. (788)

Following the discussion of multi-scale problems in preceding lectures, we

assume that θ = θ(x, τ) and write

d2θ

dx2
=
∂2θ

∂x2
+ 2ϵκ

∂2θ

∂x∂τ
+ ϵ2κ2

∂2θ

∂τ2
. (789)
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We also write θ(x, τ) as a series in ϵ

θ(x, τ) =

∞∑
n=0

ϵnθn(x, τ). (790)

We now replace sin θ with θ in Eq.(786), make use of Eqs.(789,790)

there and collect powers of ϵ. We then obtain an infinite set of differential

equations that the functions θn should satisfy. Through order O(ϵ2) these
equations read

∂2θ0
∂x2

= 0,

∂2θ1
∂x2

+ 2κ
∂2θ0
∂x∂τ

− α cos xθ0 = 0,

∂2θ2
∂x2

+ 2κ
∂2θ1
∂x∂τ

+ κ2
∂2θ0
∂τ2

+ κ2θ0 − α cos xθ1 = 0.

(791)

We solve these equations one by one. The solution of the first equation

in Eq.(791) is

θ0 = A10(τ)x + A0(τ). (792)

Since exact solutions of the original differential equation should be periodic

in x , we set A10(τ) = 0 so that

θ0 = A0(τ). (793)

The second equation in Eq.(791) becomes

∂2θ1
∂x2

− α cos xA0(τ) = 0. (794)

The solution that is periodic in x reads

θ1 = −α cos xA0(τ) + A1(τ). (795)

The last equation in Eq.(791) becomes

∂2θ2
∂x2

+ 2ακ sin x
∂A0
∂τ
+ κ2

∂2A0(τ)

∂τ2

+ κ2A0 + α
2 cos2 xA0(τ)− α cos xA1(τ) = 0.

(796)

We write cos2 x = (1 + cos(2x))/2 and obtain

∂2θ2
∂x2

+ 2ακ sin x
∂A0
∂τ
+
α2 cos 2x

2
A0(τ)− α cos xA1(τ)

+ κ2
∂2A0(τ)

∂τ2
+

(
κ2 +

α2

2

)
A0 = 0.

(797)
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The part of the equation that is independent of cos(nx) and sin(nx), where

n is a non-vanishing integer, has to vanish since, otherwise, θ2 will contain

terms that grow with x quadratically. This implies that the function A0(τ)

must satisfy the following equation

κ2
∂2A0(τ)

∂τ2
+

(
κ2 +

α2

2

)
A0 = 0. (798)

Solving it, we obtain

A0(τ) = a0 cos(ντ + φ) (799)

where φ is a constant phase and

ν2 = 1 +
α2

2κ2
= 1 +

a2γ2

2l2ω2
, (800)

Using τ = ωt, we find

A0 = a0 cos(Ωt + φ), (801)

where

Ω2 = ω2 +
a2γ2

2l2
. (802)

Hence, combining solutions for θ0 and θ1, we obtain

θ ≈
(
1−

a

l
cos γt

)
cos(Ωt + φ) + ϵA1(τ). (803)

The function A1(τ) remains undetermined (we need to expand the original

equation to O(ϵ3) to find it). However, even without A1 we see that the
dependence of θ on the time t and the shifted frequency of oscillations Ω

agrees with what we have derived in the first lecture using somewhat different

considerations.

We will now generalize the calculation described above in that we will not

make the assumption that the angle θ is small. All other assumptions about

how small or large various parameters are, as well as Eq.(790), remain valid.

The change, however, occurs at the level of differential equations that we need

to solve, Eq.(791), since the substitution sin θ → θ is not valid anymore. We

find

∂2θ0
∂x2

= 0,

∂2θ1
∂x2

+ 2κ
∂2θ0
∂x∂τ

− α cos x sin(θ0) = 0,

∂2θ2
∂x2

+ 2κ
∂2θ1
∂x∂τ

+ κ2
∂2θ0
∂τ2

+ κ2 sin(θ0)− α cos x cos(θ0)θ1 = 0.

(804)
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We construct solutions to Eq.(804) following the discussion of the small-

angle case. This gives

θ0(x, τ) = A0(τ),

θ1(x, τ) = −α cos x sin(A0(τ)) + A1(τ).
(805)

Similar to the small-angle case, we use the above solutions in the last

equation in Eq.(804) and determine that θ2 does not grow as O(x2) provided
that the following condition is fulfilled

κ2
∂2A0
∂τ2

+ κ2 sinA0 +
α2

2
cosA0 sinA0 = 0. (806)

Eq.(806) defines the leading order (i.e. θ0(x, τ) = A0(τ) ) trajectory of

slow (i.e. x-independent) oscillations. If we interpret Eq.(806) as a typical

Euler-Lagrange equation, write A0 = θ and replace τ with ωt, Eq.(806)

becomes
∂2θ

∂t2
= f (θ), (807)

where

f (θ) = −ω2 sin(θ)−
α2ω2

2κ2
cos(θ) sin(θ) (808)

is the “effective” force that acts on a pendulum. Since

f (θ) = −
∂U

∂θ
, (809)

where U(θ) is an “effective” potential energy for slow oscillations. We can

compute the potential energy by integrating f (θ). We find

U(θ) = −ω2 cos(θ)−
α2ω2

8κ2
cos(2θ). (810)

Note that this “effective” potential energy contains a term that is just the

usual potential energy of the pendulum in the gravitational field and the other

term that describes an average effect of fast oscillations on slow oscillations.

It is important that fast oscillations do not explicitly appear in the expression

for the potential energy; one usually says that they have been “integrated

out”. These concepts of “effective interactions” and degrees of freedom

“integrated out” are very popular in theoretical physics under the name of

“effective field theories”. This example is a simple mechanical analogy of

techniques widely used in theoretical particle physics and quantum field theory.

Since we have the potential energy, we can study different types of motion

of a pendulum without explicitly solving equations of motion. For example,
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we can investigate the various minima of the potential U(θ). Consider, e.g.

θ = 0. We use cos θ ≈ 1− θ2/2 and write

U(θ)− U(0) ≈
(
ω2 +

α2ω2

2κ2

)
θ2

2
. (811)

Hence, θ = 0 is the minimum of the potential for all values of parameters.

Another interesting point is θ = π. We write θ = π − f , assume |f | ≪ 1
and expand the trigonometric functions

cos θ = cos(π − f ) = −1 +
f 2

2
,

cos 2θ = cos(2π − 2f ) = cos(2f ) = 1− 4
f 2

2
.

(812)

Hence, we find

U(π − f )− U(π) ≈
(
−ω2 +

α2ω2

2κ2

)
f 2

2
. (813)

If the coefficient of f 2/2 on the r.h.s. of the above equation is positive, the

point θ = π is a point of a stable equilibrium; if the coefficient is negative, it

is an unstable equilibrium point. The condition for the point θ = π to become

a point of stable equilibrium is

α2ω2

2κ2
> ω2 ⇒

a2

l2
γ2 > ω2. (814)

If this condition is satisfied, the pendulum can turn upside down and stay like

that for an infinitely long time.
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16 Anharmonic oscillator

In this lecture, we will discuss an anharmonic oscillator (recall that we briefly

talked about it in the first lecture). An anharmonic oscillator is described by

the following Hamiltonian

H =
p2

2
+ V (x) =

p2

2
+
ω2x2

2
+ λx4 = H0 + λx

4. (815)

In Eq.(815), H0 is the Hamiltonian function of the harmonic oscillator H0 =

p2/2+ω2x2/2. Since lim|x |→∞ V (x) =∞, the anharmonic oscillator possesses
discrete energy levels; the continuous energy spectrum is absent.

We would like to compute the energy of the ground state of the anhar-

monic oscillator. We can do so by solving the Schrödinger equation

Hψ = Eψ, (816)

with the boundary condition lim|x |→∞ψ(x)→ 0 and taking the lowest energy
solution.

It should not come as a big surprise that Eq.(816) cannot be solved ana-

lytically for any λ ̸= 0. We can try to make headway by solving Eq.(816) in
perturbation theory, treating λ as a small parameter. We learn how to do this

in Quantum Mechanics classes. The solution involves using eigenfunctions

of the harmonic oscillator Hamiltonian H0 and computing corrections to its

ground state energy.

To this end, we write

E(λ) = E
(0)
0 +

∑
n

λnEn, (817)

where E
(0)
0 = ω/2. The first and second corrections to the ground state

energy E1,2 read

E1 ∼ ⟨0|x4|0⟩, (818)

and

E2 ∼
∞∑
k ̸=0

⟨0|x4|k⟩⟨k |x4|0⟩
E
(0)
0 − E

(0)
k

, (819)

where E
(0)
k are energy eigenvalues of the Hamiltonian H0.

It is clear that computing corrections En to the ground state energy in

Eq.(817) within this framework is very difficult. Fortunately, there is an al-

ternative (better) way to do that, as we now explain. To this end, consider
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the Schrödinger equation that describes the anharmonic oscillator[
−
1

2

d2

dx2
+
ω2x2

2
+ λx4

]
ψ(x) = Eψ(x). (820)

We can simplify the equation by writing x = ξ/
√
ω. The above equation

becomes [
−
1

2

d2

dξ2
+
ξ2

2
+

(
λ

ω3

)
ξ4
]
ψ(x) =

E

ω
ψ(x). (821)

It follows that we can write an expansion of the ground state energy in powers

of λ isolating all dimensionfull quantities. We obtain

E = ω

∞∑
n=0

(
λ

ω3

)n
An. (822)

The expansion coefficients An in Eq.(822) are just numbers.

We will solve Eq.(821) to determine the coefficients An; for ease of no-

tation, we will re-write Eq.(821) using ξ → x , E/ω → E, λ/ω3 → λ. It

becomes the old Schrödinger equation again[
−
1

2

d2

dx2
+
x2

2
+ λx4

]
ψ(x) = Eψ(x). (823)

To establish an efficient way to solve Eq.(823), we expand the wave func-

tion ψ(x) in powers of λ

ψ(x) =

∞∑
n=0

λne−x
2/2Bn(x). (824)

In Eq.(824), we have factored out the ground-state wave function of a har-

monic oscillator e−x
2/2. The functions Bn(x) are polynomials since the func-

tion ψ(x) should be normalizable and vanish at |x | → ∞.
To use the expansion Eq.(824) in Eq.(823), we need to compute d2ψ/dx2.

It reads

d2ψ

dx2
=

∞∑
n=0

λne−x
2/2

[
x2Bn(x)− 2x

dBn(x)

dx
− Bn(x) +

d2Bn(x)

dx2

]
. (825)

We substitute Eq.(825) into Eq.(823), collect the relevant terms and obtain

a differential equation for Bn(x)

−
1

2

d2Bn(x)

dx2
+ x
dBn(x)

dx
+ x4Bn−1(x) =

n−1∑
m=0

An−mBm(x). (826)
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In deriving Eq.(826), we used the fact that A0 = 1/2, the ground state energy

of the harmonic oscillator.

It is easy to see that we can choose B0(x) = 1. This choice is consistent

with the fact that ψ ∼ e−x2/2 is the wave function of the ground state of the
harmonic oscillator.

Consider the n = 1 case. The differential equation becomes

−
1

2

d2B1(x)

dx2
+ x
dB1(x)

dx
+ x4B0(x) = A1B0(x). (827)

It is easy to see that B1(x) is a polynomial in x
2 of degree four. We write

B1(x) = B1,2(x
2)2 + B1,1(x

2). (828)

Substituting this ansatz into Eq.(827), we find

(4B1,2 + 1)x
4 + (−6B1,2 + 2B1,1)x2 − B1,1 − A1 = 0. (829)

This immediately implies

B1,2 = −
1

4
, B1,1 = −

3

4
, A1 =

3

4
. (830)

Hence, we have found the B1(x) polynomial

B1(x) = −
1

4
x4 −

3

4
x2, (831)

and the first correction to the energy of the ground state A1 = 3/4.

Consider the n = 2 case. The equation reads

−
1

2

d2B2(x)

dx2
+ x
dB2(x)

dx
+ λx4B1(x) = A2B0(x) + A1B1(x). (832)

The highest power of x among known terms comes from the term x4B1(x) ∼
x8. It is also clear that B2(x) is a polynomial in x

2. Hence, we make the

following ansatz

B2(x) = B2,4(x
2)4 + B2,3(x

2)3 + B2,2(x
2)2 + B2,1x

2. (833)

Using this expression in Eq.(832) and collecting terms with identical powers

of x , we find

B2,4 =
1

32
, B2,3 =

13

48
, B2,2 =

31

32
, B21 =

21

8
. (834)
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Also,

A2 = −B2,1 = −
21

8
. (835)

It becomes clear how to generalize these computations to obtain coeffi-

cients An for arbitrary n. Indeed, for any n, Bn(x) is a polynomial in x
2 of

degree 2n. We write

Bn(x) =

2n∑
i=1

Bn,i(x
2)i . (836)

Substituting this expression into Eq.(826), we find the following results

2iBn,i = (i + 1)(2i + 1)Bn,i+1 − Bn−1,i−2 +
n−1∑
m=1

An−mBm,i ,

An = −Bn,1.
(837)

The above equations can be used to recursively find polynomials Bn(x) and

in this way compute large number of corrections to the ground state energy

level An. The whole procedure is infinitely easier and faster as compared to

conventional perturbative computations. One finds

A1 =
3

4
, A2 = −

21

8
, A3 =

333

16
, A4 = −

30 885

128
,

A5 =
916 731

256
, A6 = −

65 518 401

1 024
, · · · A9 =

54 626 982 511 455

65 536
.

(838)

As we already mentioned in the first lecture, the coefficients An of the

perturbative expansion of the ground state energy of an anharmonic oscillator

in λ exhibit a very strong growth. By fitting the coefficients An, one finds

lim
n→∞

An ∼ (−1)n3nΓ(n + 1/2)
√
6

π3/2
. (839)

Although there exist important power corrections (1/n etc.) to An, we will

assume that Eq.(839) is valid for all values of n. Then, the energy of the

ground state reads

E(λ) =

∞∑
n=0

Anλ
n =

√
6

π3/2

∞∑
n=0

Γ

(
n +
1

2

)
(−3λ)n. (840)

We note that since Γ(n + 1/2) > (n − 1)!, the radius of convergence of
the series in Eq.(840) is zero; the series is asymptotic. To make sense out of
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Eq.(840), we need to make use of what we learned about the summation of

divergent series. One of the ways to sum the divergent series was the Borel

method which boils down to the following steps. We write

Γ(n + 1/2) =

∞∫
0

dt tn−1/2e−t , (841)

and use this expression in series Eq.(840). We change the order of integration

and summation. We find

E(λ) =

√
6

π3/2

∞∫
0

dt t−1/2e−t
∞∑
n=0

(−3tλ)n =
√
6

π3/2

∞∫
0

dt e−t

t1/2(1 + 3tλ)
. (842)

To proceed further, it is convenient to change variables t = ξ2. We obtain

E(λ) =
2
√
6

π3/2

∞∫
0

dξ e−ξ
2

(1 + 3λξ2)
. (843)

The above result gives us a function E(λ) whose asymptotic expansion co-

incides with the asymptotic expansion of the ground state of an anharmonic

oscillator at small values of λ. We will interpret this function as the ground

state energy of the anharmonic oscillator.

We can express E(λ) in Eq.(843) through special functions. To this end,

we change variables ξ = x/
√
3λ and obtain

E(λ) =
23/2

π3/2
√
λ

∞∫
0

dx e−x
2/(3λ)

(1 + x2)
=
23/2

π3/2
√
λ
G

(
1

3λ

)
, (844)

where the function G(η) reads

G(η) =

∞∫
0

dx e−ηx
2

(1 + x2)
. (845)

To compute G(η), it is convenient to derive a differential equation that

this function satisfies. To this end, consider the derivative of G(η) w.r.t. η.

We find

−
dG(η)

dη
=

∞∫
0

dx x2e−ηx
2

(1 + x2)
= −G(η) +

√
π

2η1/2
. (846)
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It is straightforward to solve this differential equation. One finds

G(η) = eη

C − √π
2

η∫
0

dξ

ξ1/2
e−ξ

 , (847)

where C is the integration constant. To find it, we note that Eq.(845) implies

that G(0) = π/2. It follows from Eq.(847) that C = π/2 leading to

G(η) = eη
π

2

1− 1√
π

η∫
0

dξ

ξ1/2
e−ξ

 = eηπ
2

1− 2√
π

√
η∫

0

dte−t
2

 = πeη

2
Erfc (

√
η) ,

(848)

In Eq.(848), Erfc(x) is the so-called complementary error function. Hence,

the ground state energy of an anharmonic oscillator evaluates to10

E(λ) =
23/2

π3/2
√
λ
G

(
1

3λ

)
=

√
2

πλ
e1/(3λ)Erfc

(
1√
3λ

)
. (849)

We can use the above formula to determine the ground state energy at

large values of λ. In that case, Erfc(1/
√
3λ) → 0 and e1/(3λ) → 1. Hence,

we find

E(λ)|λ≫1 ∼
√
2

πλ
. (850)

Thus, the perturbative expansion supplemented with a way to re-sum the

asymptotic series allows us to determine the bound state energy for large val-

ues of the coupling constant λ that is clearly beyond the realm of applications

of conventional perturbation theory.

We now go back to Eq.(843) where E(λ) is written as a one-dimensional

integral. It is easy to see from that formula that for negative values of λ, the

integrand has a pole at x = x∗ = 1/
√
3|λ|. To understand what the position

of the pole tells us, we need to regularize the singularity. To this end, we add

an infinitesimal imaginary part to the constant λ and write λ = −|λ| ± i ϵ.
Then

E(λ) =
2
√
6

π3/2

∞∫
0

dx e−x
2

1− 3x2|λ| ± i ϵ (851)

Using
1

x − a ± i ϵ = P
[
1

x − a

]
∓ iπδ(x − a), (852)

10In the approximation that large-n asymptotic formulas for An’s are used as if they were

exact.
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we see that for negative values of λ, E(λ) develops an imaginary part that

evaluates to

Im [E(λ± i ϵ)] = ∓
2
√
6

π1/2
θ(−λ)

∞∫
0

dx e−x
2

δ(1−3x2|λ|) = ∓θ(−λ)
√
6

π1/2
1√
3|λ|

e−1/(3|λ|).

(853)

How can we understand the fact that the energy of the ground state

develops an imaginary part? In general, if a quantum state has a complex

energy, e.g. E− iΓ/2, it is metastable. To see this we write the wave function

ψ(t) ∼ e−i(E−iΓ/2)t ∼ e−iEt−Γ/2t , (854)

and compute the probability that a physical system is in a state |ψ⟩

|ψ(t)|2 ∼ e−Γt . (855)

The time-dependence of the probability to find a quantum system in a par-

ticular state indicates that Γ is indeed the life-time of the quantum state.

The anharmonic oscillator has the following potential energy

V (x) =
x2

2
+ λx4, (856)

which, for negative values of λ, becomes unbounded from below

V (x) =
x2

2
− |λ|x4. (857)

Because of that, the ground state becomes metastable. We can compute its

lifetime in the quasi-classical approximation. The lifetime is proportional to

the probability to tunnel through a barrier. The corresponding formula is

Γ ∼ e
−2

b∫
a
dxp̄(x)

, (858)

where p̄(x) =
√
|2(E − V (x))| and the interval x ∈ [a, b] is forbidden classi-

cally. In our case E = 0 since we are in the ground state. Then

b∫
a

dxp̄(x) =

b∫
a

dx
√
x2(1− 2|λ|x2) =

√
2|λ|

x∗∫
0

dx
√
x2(x2∗ − x2) =

√
2|λ|x3∗

1∫
0

dξξ
√
1− ξ2,

(859)
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where x∗ =
√
1/(2|λ|). Since

1∫
0

dξ ξ
√
1− ξ2 =

1

3
, (860)

we find
b∫
a

dxp̄(x) =
1

3

√
2|λ|x3∗ =

1

6|λ| , (861)

so that

Γ ∼ e
−2

b∫
a
dxp̄(x)

= e−1/(3λ). (862)

We see that up to a pre-factor, the decay width of the vacuum Γ indeed

matches the result in Eq.(853). We will not discuss the calculation of the

pre-factor of the decay width Γ in the semi-classical approximation but merely

state that it matches that in Eq.(853).

We are now in a position to understand the deep connection between the

instability of the ground state of the anharmonic oscillator at negative values

of λ and the factorial growth of the coefficients of the perturbative expansion

of the ground state energy for positive values of λ. The key idea is to write a

dispersion relation for the vacuum energy E(λ) with respect to the coupling

constant

E(λ) =
1

π

0∫
−∞

dλ′ ImE(λ′)

λ′ − λ− i0 . (863)

The dispersion relation follows from the assumption that E(λ) is an analytic

function in the complex λ-plane with a cut along negative real axis. Cauchy

theorem and deformation of the contour leads to Eq.(863).

As we discussed, the imaginary part of E(λ) can be computed in the

quasi-classical approximation. The result is given in Eq.(853).11 We use it to

rewrite Eq.(863)

E(λ) = −
√
6

π3/2

0∫
−∞

dλ′

λ′ − λ− i0
1√
3|λ′|

e−1/(3|λ
′|). (864)

It is now easy to see that if we change integration variable according to the

following formula

λ′ = −
1

3x2
, (865)

11We need to take the expression with the minus sign to be consistent with E → E− iΓ/2
and Γ > 0.
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we obtain the result for E(λ) shown in Eq.(843). A naive expansion of this

equation in powers of λ leads to an asymptotic series for E(λ) with coefficients

that exhibit factorial growth; this is what we observe when doing conventional

perturbation theory.

Hence, we conclude that the factorial growth of the coefficients of the

perturbative expansion of the ground state energy of an anharmonic oscilla-

tor in powers of λ is directly connected to the instability of the ground state

energy at negative values of λ. The connection arises through a dispersion

relation for E(λ) in λ. The ground state energy E(λ) develops an imagi-

nary part for negative values of λ that can be predicted using quasi-classical

methods.
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