MODERN PHYSICS

Instructor: Prof. Bernd Pilawa (bernd.pilawa@kit.edu)

Winter Semester 23/24 Exercise 7

§ Wave-Particle Dualism & Atoms §

Problem 1: Schrödinger's equation: Infinitely deep potential well

One electron is captured within an infinitely deep and one dimensional potential well. The energy of the ground state is $E_0 = 0.1 \text{ eV}$.

- a) What is the width of the potential well?
- b) How large is the probability to find the electron in the left third of the potential well?
- c) At what energy level E the first excited state of the electron can be found?

Problem 2: Harmonic oscillator strength

A particle of mass m_0 is trapped in a potential well of the form $V = \frac{1}{2}Dx^2$. Assume that the quantum mechanical wave function in the ground state has the following form:

$$\psi_0(x,t) = A_0 \cdot \exp\left(-\frac{x^2}{a_0^2}\right) \cdot \exp\left(-\frac{iE_0t}{\hbar}\right).$$
(2.1)

- a) What is the frequency f of a classical particle in the potential well?
- b) Write down the Schrödinger equation for a quantum mechanical particle in the potential well.
- c) What is the dependence of the energy E_0 and the parameter a_0 on the force constant D and on the mass m_0 ?

Problem 3: X-rays and Moseley's law

The x-ray spectrum from a molybdenum (Z = 42) x-ray tube with U = 35 kV acceleration voltage is shown in the following Figure 1:

- a) Calculate the wavelengths λ of the K- α and the K- β -lines using Moseley's law and compare them with Figure 1.
- b) Calculate the cut-off wavelength λ_{cut} and compare it with the diagram.
- c) At what wavelengths λ would you expect the *L*- α and the *L*- β -lines assuming that the screening constant is $\beta = 7.4$?

Figure 1: X-ray spectrum of molybdenum.