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Orbital angular momentum 1
Johannes Kepler (1609): Planets move in elliptical orbits

Newton defines the orbital angular momentum

L⃗ = r⃗ × p⃗

Newton’s mechanics: the angular momentum is conserved and perpendicular to
the plane of the orbit of a planet

dL⃗
dt

= 0
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Orbital angular momentum 1 Comment 1

In 1609 Johannes Kepler published his findings on the movement of the planets.

Planets move in elliptical orbits around the sun.

A line segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

The squares (second powers) of the orbital times of two planets around the same
central star behave like the cubes (third powers) of the major orbital halfaxes.

Newtonian mechanics explains Kepler’s laws.

In particular, Newton defines the orbital angular momentum, which is indicated by
the formula underlined in red.
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Orbital angular momentum 1 Comment 2

According to its definition, the orbital angular momentum is perpendicular to the
plane of the orbit and does not change during the movement of the planet.

With a central force such as gravitational force, the derivative of the orbital angular
momentum with respect to time must always be zero.

The time derivative of the position vector gives the speed, which is parallel to the
momentum, so that the cross product must be zero.

The time derivative of the momentum is the force that, due to the law of
gravitation, is parallel to the position vector that connects the sun with the planet,
so that the cross product must also be zero here.
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Orbital angular momentum 2

According to the uncertainty relations, there can be no orbital plane for a quantum
particle, i.e.

dL⃗
dt

̸= 0

One can begin the discussion of angular momentum in quantum physics with the
uncertainty relation for the orbital angular momentum

∆φ∆Lz ≥
ħ
2
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Orbital angular momentum 2 Comment

According to the uncertainty relations, a quantum particle cannot move in an
orbital plane.

Hence the angular momentum in quantum physics cannot be independent of time.

A first access to the properties of the orbital angular momentum in quantum
physics is provided by the uncertainty relation outlined in red.
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Orbital angular momentum 3

uncertainty relation

∆x∆px ≥
ħ
2

motion in the xy plane

∆x
r
r∆px ≥

ħ
2

With ∆x/r = ∆φ and r∆px = ∆Lz

∆φ∆Lz ≥
ħ
2

uncertainty relation of the angular momentum
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Orbital angular momentum 3 Comment 1

The formulas and pictures on this page should make the uncertainty relation for
the angular momentum plausible.

The first line shows the uncertainty relation in the xdirection.

The first figure on the right shows the momentum and the momentum uncertainty
in the xdirection for a particle.

The distance of a point to the origin of the coordinates is denoted by r.

The quotient of the position uncertainty ∆x and the distance r gives the uncertainty
of the angle φ.
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Orbital angular momentum 3 Comment 2

The product of the distance r and the uncertainty of the momentum ∆px is a
contribution to the orbital angular momentum in the zdirection.

This results in the uncertainty for the orbital angular momentum component in the
zdirection.

The uncertainty in the angle ∆φ and the uncertainty in the zcomponent of the
orbital angular momentum give the uncertainty relation of the orbital angular
momentum.

The second figure on the right shows the angular momentum vector.

The orientation of the angular momentum vector is determined by the angle φ and
the angle θ.
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Orbital angular momentum 3 Comment 3

If the angle φ cannot be determined because of the uncertainty relation, then the x
and ycomponents of the angular momentum can no longer be determined either.

This is shown in the following illustration
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Orbital angular momentum 4

When ∆Lz = 0 follows ∆φ → ∞ and

Lx and Ly are not defined

it turns out that in addition to Lz also |⃗L| can be fixed
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Orbital angular momentum 4 Comment

If the zcomponent of the orbital angular momentum has a fixed value, i.e. the
uncertainty ∆L  z is zero, then the uncertainty of the associated angle φ is infinite.

This means that it is no longer possible to assign fixed values   to the x and y
components of the orbital angular momentum.

As will be shown below, the length of the angular momentum vector is still defined.

The figure shows the vector representation of angular momentum in quantum
physics.

The vector of the angular momentum lies on a conical surface around the zaxis.

However, the exact position of the angular momentum vector on this conical
surface is not determined.
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Orbital angular momentum 5

the operator of the orbital angular momentum

L⃗ = r⃗× p⃗ → ˆ⃗L = r⃗× (−iħ)∇

zcomponent of the angular momentum operator

p̂x = −iħ
∂
∂x

→ L̂z = −iħ
∂
∂φ

compare

∆x∆px ≥
ħ
2

→ ∆φ∆Lz ≥
ħ
2
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Orbital angular momentum 5 Comment 1

In order to find the contained components of the angular momentum, one has to
find the eigenvalue equations of the angular momentum according to the rules of
quantum mechanics.

In classical mechanics, the orbital angular momentum is defined by the cross
product of position and momentum vector.

The operator of the orbital angular momentum results when the momentum is
replaced by the momentum operator.

The first equation outlined in red gives the angular momentum operator.

All properties of angular momentum can be determined by analyzing this operator.

However, this procedure leads to complex calculations, which are not worth to be
discussed in a lecture (for details see books of Quantum Mechanics).
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Orbital angular momentum 5 Comment 2

Usually the angular momentum operator is not expressed in Cartesian
coordinates, but in spherical coordinates θ and φ.

The zcomponent of the angular momentum operator results in a formula that
corresponds to the formula of the momentum operator.

If one compares the uncertainty relations for momentum and orbital angular
momentum, one recognizes that the coordinate x corresponds to the angle φ and
the momentum px corresponds to the zcomponent of the orbital angular
momentum Lz.

With simple replacement, the formula for the momentum operator results in the
formula outlined in red for the zcomponent of the angular momentum operator.

This result can also be obtained if one strictly adheres to the rules of mathematics.
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Orbital angular momentum 6

eigenvalue equation of L̂z

L̂zf (φ) = −iħ
∂
∂φ

f (φ) = eigenvalue · f (φ)

eigenfunctions
f (φ) = eimφ

f(φ) = f(φ+ 2π) → m = 0,±1,±2, ...
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Orbital angular momentum 6 Comment

The first line gives the formal definition of the eigenvalue equation.

The operator applied to the wave function gives the eigenvalue times the wave
function.

The solution of this differential equation is simply the complex exponential function.

The quantum number m has the integer values   m = 0,±1,±2, ....

This must be so, because adding a multiple of 2π to the argument of the complex
exponential function cannot change the value of the function.
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Orbital angular momentum 7

eigenvalue equation of L̂z
L̂zfm(φ) = mħfm(φ)

quantum numbers of L̂z
m = 0,±1,±2, ...

eigenfunctions of L̂z
fm(φ) = eimφ

eigenvalues of L̂z
Lz = mħ
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Orbital angular momentum 7 Comment

The slide summarizes the results.

The equation outlined in red gives the eigenvalue equation of L̂z.

The quantum numbers of L̂z are m = 0,±1,±2, ....

The eigenfunctions are the complex exponential functions and the eigenvalues of
the zcomponent of the angular momentum are mħ.

The zcomponent of the angular momentum is conserved and takes on the values
mħ.
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Orbital angular momentum 8

the length of the angular momentum vector
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Orbital angular momentum 8 Comment

Only the zcomponent of the angular momentum operator has so far been
determined by an eigenvalue equation.

The x and y components of the angular momentum operator cannot have fixed
values.

What about the length of the angular momentum vector?

To find the eigenvalue equation for the absolute value of the angular momentum
vector, I use a little trick.
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Orbital angular momentum 9

L⃗ = r⃗× p⃗ = r⃗× p⃗r + r⃗× p⃗t = rpte⃗z
kinetic energy

Ekin =
p⃗ 2

2m
=

p⃗ 2
r

2m
+

p⃗ 2
t

2m
=

p⃗ 2
r

2m
+

r 2p⃗ 2
t

2mr 2
=

p⃗ 2
r

2m
+

L⃗ 2

2mr 2
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Orbital angular momentum 9 Comment

The figure shows a particle moving in the xyplane.

The momentum of the particle can be broken down into a component parallel to
the position vector, which connects the particle with the origin of the coordinate
system, and into a component perpendicular to the position vector.

The angular momentum of the particle is perpendicular to the xy plane and is
determined by the transverse momentum pt.

The kinetic energy is proportional to the square of the momentum.

A small calculation shows that the kinetic energy is given by the kinetic energy in
the radial direction and the kinetic energy of a rotation, which is proportional to the
square of the angular momentum.
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Orbital angular momentum 10

Ĥ =
ˆ⃗p 2

2m
= −ħ2∇2

2m

Laplace Operator in spherical coordinates (https://en.wikipedia.org/wiki/Laplace_operator)

∇2 =
∂2

∂x 2 +
∂2

∂y 2 +
∂2

∂z 2

=
1
r 2

∂
∂r

(
r 2

∂
∂r 2

)
+

1
r 2

{
1

sin θ
∂
∂θ

sin θ
∂
∂θ

+
1

sin2 θ
∂2

∂φ2

}

https://en.wikipedia.org/wiki/Laplace_operator
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Orbital angular momentum 10 Comment

The first formula outlined in red gives the Hamilton operator of the kinetic energy.

The Hamilton operator contains the square of Nabla, which is also known as the
Laplace operator.

In the second area outlined in red, the first line specifies the Laplace operator in
Cartesian coordinates.

The second line gives the Laplace operator in spherical coordinates.
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Orbital angular momentum 11
Hamilton operator of the classical kinetic energy

Ĥ =
ˆ⃗p 2

2m
= −ħ2∇2

2m
and Ekin =

p⃗ 2
r

2m
+

L⃗ 2

2mr 2

Laplace operator in spherical coordinates

∇2 =
1
r 2

∂
∂r

(
r 2

∂
∂r 2

)
+

1
r 2

{
1

sin θ
∂
∂θ

sin θ
∂
∂θ

+
1

sin2 θ
∂2

∂φ2

}

operator of the square of the angular momentum

ˆ⃗L2 = −ħ2
{

1
sin θ

∂
∂θ

sin θ
∂
∂θ

+
1

sin2 θ
∂2

∂φ2

}
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Orbital angular momentum 11 Comment

The first line gives the Hamilton operator of the kinetic energy and the
decomposition of the kinetic energy into a radial component and a component that
is related to the rotation of the mass m.

The second line gives the Laplace operator in spherical coordinates.

The comparison shows that the Hamilton operator of the kinetic energy can also
be broken down into the radial contribution and a contribution that corresponds to
a rotation.

The comparison results in the operator for the square of the orbital angular
momentum, which is outlined in red in the bottom line.
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Orbital angular momentum 12
eigenvalue equation of the square of the angular momentum

ˆ⃗L 2Yℓ,m(θ,φ) = ℓ(ℓ+ 1)ħ2Yℓ,m(θ,φ)

the eigenfunctions are spherical harmonics Yℓ,m(θ,φ)

and the eigenvalues
L2 = ℓ(ℓ+ 1)ħ2

the quantum numbers ℓ and m are

ℓ = 0,1,2, ... and |m| ≤ ℓ
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Orbital angular momentum 12 Comment 1

The solutions to the eigenvalue equation for the angledependent part of the
Laplace operator are known.

The equation outlined in red shows the eigenvalue equation for the square of the
angular momentum.

The eigenfunctions are spherical harmonics, which will be discussed later.

The equation underlined in red gives the eigenvalues   for the square of the angular
momentum operator.

The eigenvalues are determined by the quantum number ℓ.

The quantum number ℓ takes on the values 0, 1, 2, etc.
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Orbital angular momentum 12 Comment 2

The spherical harmonics also depend on the quantum number m, since L⃗2

contains the square of the zcomponent Lz.

The quantum number m takes the integer values   between −ℓ and +ℓ.
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Orbital angular momentum 13

L⃗2 = ℓ(ℓ+ 1)ħ2

Lz = mħ
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Orbital angular momentum 13 Comment

The figure shows the vectors of angular momentum for the quantum number ℓ = 1
and ℓ = 2.

The length of the vector is ħ
√
ℓ(ℓ+ 1).

The vectors lie on conical surfaces, the edge of which is indicated by the blue
circles.

Due to the uncertainty relation for the angular momentum, it is not possible to
define the orientation of the vectors more precisely.
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Orbital angular momentum 14
eigenfunctions of the angular momentum operators

Yℓ,m(θ,φ) = Pℓ,m(θ)eimφ

the eimφ are the eigenfunctions of L̂z
Pℓ,m(θ) is a polynomial that is formed from sin θ and cos θ functions

the Yℓ,m(θ,φ) are the eigenfunctions of L̂z and
ˆ⃗L 2

L̂zYℓ,m(θ,φ) = mħYℓ,m(θ,φ)
ˆ⃗L2Yℓ,m(θ,φ) = ℓ(ℓ+ 1)ħ2Yℓ,m(θ,φ)
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Orbital angular momentum 14 Comment

The spherical harmonics are the eigenfunctions of the angular momentum.

The spherical harmonics are formed by the product of the eigenfunctions of L̂z, i.e.
eimφ, and a polynomial that is formed from the sine and cosine functions of the
angle θ.

The formulas outlined in red give the eigenvalue equations of the two angular
momentum operators L̂z and

ˆ⃗L2.
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Orbital angular momentum 15

ℓ m Pℓ,m(θ)

0 0 ∝ 1

1 0 ∝ cos θ

1 ±1 ∝ sin θ

2 0 ∝ 3 cos2 θ− 1

2 ±1 ∝ sin θ cos θ

2 ±2 ∝ sin2 θ

(https://en.wikipedia.org/wiki/Table_of_spherical_harmonics)

the spherical harmonics are normalized∫ π

θ=0

∫ 2π

φ=0
sin θdθdφYℓ,mY ∗

ℓ,m = 1

https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
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Orbital angular momentum 15 Comment

The table lists the most important spherical harmonics that are used in atomic
physics.

Further information on spherical harmonics can be found on the specified www
page.

The spherical harmonics are normalized functions.

The integral underlined in red gives the normalization condition.
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Orbital angular momentum 16

only a small number of eigenfunctions of the orbital angular momentum are
necessary in atomic physics

s: ℓ = 0, p: ℓ = 1, d: ℓ = 2, f: ℓ = 3, ...

s orbital (ℓ = 0 and m = 0)

Y00 =
1√
4π
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Orbital angular momentum 16 Comment

The spherical harmonics with the quantum numbers ℓ = 0,1,2 and 3 are
particularly important.

The solution of the Schrödinger equation for hydrogen atom (discussed later)
shows that these angular momentum states should be denoted by the letters s
(ℓ = 0), p (ℓ = 1), d (ℓ = 2) and f (ℓ = 3).

If the angular momentum is zero then the quantum numbers are ℓ = 0 and m = 0.

The eigenfunction is Y00 is simply a constant since all differentiations with respect
to θ and φ are zero.

The normalization factor is equal to 1√
4π

since the integration over θ and φ results
in the surface of the unit sphere 4 π.
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Orbital angular momentum 17

p orbitals (ℓ = 1 and m = 0,±1)

pz orbital (m = 0)

Y1,0 ∝ cos θ
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Orbital angular momentum 17 Comment

The pz orbital is proportional to cosθ.

It is called pzorbital, since cos θ in spherical coordinates is the projection of a unit
vector onto the zaxis.

The figure shows how the orbital is visualized.

To do this, the area is drawn on which the vectors with the length |Yℓ,m(θ,φ)| for
the different spatial directions end.

The figure shows the intersections of this surface with the xy plane.
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Orbital angular momentum 18
px and py orbitals (m = ±1)

Y1,±1 ∝ sin θ e±iφ = sin θ cosφ± i sin θ sinφ

the px orbital is the real part of Y1,±1, i.e. ∝ sin θ cosφ ∝ x
the py orbital is the imaginary part of Y1,±1, i.e. ∝ sin θ sinφ ∝ y
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Orbital angular momentum 18 Comment

The real and imaginary part of Y1,±1 are called px and py orbitals.

The figure shows an illustration of the px, py, and pz orbital.

These orbitals have the same shape because they can be transformed into one
another by rotating the coordinate axes.
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Orbital angular momentum 19
d orbitals ℓ = 2 and m = 0,±1,±2

d3z 2−1 orbital (m = 0)

Y20 ∝ (3 cos2 θ− 1)

for θm = 54.74°: 3 cos2 θm − 1 = 0
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Orbital angular momentum 19 Comment

For ℓ = 2 there are 5 eigenfunctions.

The figure shows Y00.

The length of the vectors that define the surface is |3 cos2 θ− 1|.

Y00 is called the d3z2−1 orbital since cos θ ∝ z.
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Orbital angular momentum 20

all d orbitals

Y2,0 ∝ 3 cos2 θ− 1 ∝ 3z 2 − 1
Y2,±1 ∝ sin θ cos θ e±iφ ∝ xz± iyz
Y2,±2 ∝ sin2 θ e±2iφ ∝ x 2 − y 2 ± i 2xy

spherical coordinates

→ d3z2−1, dxz, dyz, dx2−y2 , dxy orbitals
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Orbital angular momentum 20 Comment

The formulas outlined in red indicate the spherical surface functions for all d
orbitals with the decomposition into real and imaginary parts.

The sine and cosine functions are replaced by the projection of a unit vector onto
the x, y and z axes.

This results in the usual designation of this orbital as d3z2−1, dxz, dyz, dx2−y2 , and
dxy orbitals.
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Orbital angular momentum 21

(Drehimpulsorbitale.mp4)

Drehimpulsorbitale.mp4
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Orbital angular momentum 21 Comment

Most d orbitals have a cloverleaf shape.

The video gives a spatial impression of these orbitals.
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Diatomic Molecule
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The Schrödinger equation as a wave equation

Schrödinger equation
Box potential
Harmonic oscillator
Orbital angular momentum
Rotation of a diatomic molecule
Schrödinger equation of the Hatom
normal Zeeman effect
Dia and paramagnetism
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Rotation of a diatomic molecule 1

rotation of a point mass

Erot =
L⃗ 2

2mr 2

rotation of a diatomic molecule

Erot =
L⃗ 2

2I

moment of inertia I =
∑

i=1,2miri 2

Erot =
ℓ(ℓ+ 1)ħ2

2I
→ Erot = Bℓ(ℓ+ 1)
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Rotation of a diatomic molecule 1 Comment 1

The angular momentum quantization can be observed directly in the rotational
spectra of diatomic molecules in the gas phase.

The first formula underlined in red gives the rotational energy for a particle of mass
m at a distance r from the axis of rotation.

In the case of a molecule, the moment of inertia I must be used instead of the
mass m.

In general there are three principal orthogonal axes of rotation.

In the case of a diatomic molecule, only rotations perpendicular to the molecular
axis can be excited.

This results in the second formula underlined in red.
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Rotation of a diatomic molecule 1 Comment 2

In the formula for the moment of inertia, ri=1,2 denotes the distance between the
two atoms and the center of gravity of the molecule.

With the rotational energy, the Hamilton operator for the rotation of the molecule
results when the angular momentum is replaced by the angular momentum
operator.

The eigenfunctions of the timeindependent Schrödinger equation are the
spherical harmonics.

The formula outlined in red shows the energy eigenvalues   of the timeindependent
Schrödinger equation.

The energy is quantized and proportional to ℓ(ℓ+ 1).
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Rotation of a diatomic molecule 2

Erot = Bℓ(ℓ+ 1)
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Rotation of a diatomic molecule 2 Comment

The figure shows the expected energy level scheme for the rotation of a diatomic
molecule.

For electric dipole radiation, the Schrödinger equation yields the selection rule
∆ℓ = ±1.

With this selection rule, the red marked transitions between the energy levels
result.

The transition energy of the radiation increases in steps of 2B = ħ2/I.
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Rotation of a diatomic molecule 3
microwave spectrum of the CO molecule
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Rotation of a diatomic molecule 3 Comment 1

The figure shows the microwave spectrum of carbon monoxide.

The experimental observations confirm the theoretical results.

The intensity of the transitions is determined on the one hand by the transition
probability, which increases with increasing values   of the quantum number ℓ.

On the other hand, the thermal occupation of the energy levels must be taken into
account.

The intensity of the spectral lines increases on the left side of the spectrum due to
the increasing transition probability (increasing ℓ quantum number) and decreases
due to the thermal occupation of the energy levels on the right side of the
spectrum.
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Rotation of a diatomic molecule 3 Comment 2

With the distance between the spectral lines of about 116 GHz, the moment of
inertia of carbon monoxide and from this the distance between the two atoms can
be determined.
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Revision
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Summary in Questions 1

1. Sketch the vector of the quantized angular momentum and justify the sketch.

2. Give the length of the zcomponent of the quantized angular momentum.

3. Give the length of the quantized angular momentum vector.

4. Give the eigenvalue equations of the angular momentum operator.
5. Spherical harmonics are the eigenfunctions of the angular momentum operator.

Explain the structure of the spherical harmonics.

6. Give the formulas of the spherical harmonics Y1,−1 , Y1,0 and Y1,+1 without the
normalization factor.

7. Give the energy eigenvalues   for the rotation of a diatomic molecule.
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Summary in Questions 2

8. Calculate the energy difference Eℓ+1 − Eℓ.

9. Show that cos θ is an eigenfunction of the angular momentum operators and
determine the quantum number ℓ and m.
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