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Monatomic chain of atoms1

atoms oscillate around their equilibrium positions

(laufendeWelleundreflektierteWelle.mp4)

laufendeWelleundreflektierte Welle.mp4
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Monatomic chain of atoms 1 Comment

The sketch shows a chain of N equal atoms.

The distance between the atoms is the lattice parameter a of the onedimensional
lattice.

The rest position of the atoms is indicated by the index s starting with s = 1 up to
s = N.

The video of a chain of coupled pendulums can serve as a model for the atoms of
a crystal lattice.

Atoms of a solid can swing around their equilibrium positions, similar to the
pendulums in the model.

And as with the model of the coupled pendulum, waves can propagate in a crystal
lattice.
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Monatomic chain of atoms 2
the shift of the atoms from their equilibrium positions is described by the vector
u⃗(x), i.e.

u⃗(x) = u⃗0 exp i(kx−ω(k)t)

Newton’s equation of motion

m¨⃗u(sa) = D{u⃗(a(s+ 1))− u⃗(sa)}+ D{u⃗(a(s− 1))− u⃗(sa)}

gives the angular frequency

ω(k) = 2
√

D
m

∣∣∣∣sin(ka
2

)∣∣∣∣
one longitudinal mode u⃗0 ∥ xaxis
two transversal modes u⃗0 ⊥ xaxis
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Monatomic chain of atoms 2 Comment 1

The displacement of the atoms from their equilibrium positions can be described
by the vector u⃗(x).

The video shows that waves can propagate on a chain of coupled pendulums.

Waves can also propagate on a chain of atoms that can exert forces on one
another.

The motion of the atoms is determined by Newton’s equation of motion.

The wave functions u⃗(x) are a reasonable approach to solving Newton’s equation
of motion.

In a chain of atoms, two forces act on the mass of an atom.

One force on the right and one on the left of the atom.
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Monatomic chain of atoms 2 Comment 2

The first curly bracket indicates the force on the right and the second curly bracket
indicates the force on the left.

If the displacement of the atoms from equilibrium is not too big, then the force is
proportional to the difference in the displacement vectors.

If a harmonic wave is used as the solution, the formula outlined in red results for
the relationship between the angular frequency of the wave and the wave number.

In general, the constant of proportionality D of the force depends on the direction
of the displacement vectors.

There is a longitudinal mode and two transverse modes.

The angular frequencies of the longitudinal and transverse modes are usually
different.
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Monatomic chain of atoms 3

harmonic waves have no starting and no end point and describe not a finite
chain

Periodic boundary conditions:

u⃗(sa) = u⃗(sa+ L)

the allowed wave numbers are

knL = 2πn and kn =
2π
L
n
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Monatomic chain of atoms 3 Comment 1

Harmonic waves are infinite and have no start and end point.

Therefore harmonic waves are not directly suitable to describe the properties of a
finite chain or a finite crystal.

The video shows that the reflection creates standing waves at the end points of
the chain.

In macroscopic systems, however, there are no standing waves, since the
undisturbed propagation of the waves is hindered by scattering events.

Socalled periodic boundary conditions are used to solve the problem.

The figure illustrates the approach.
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Monatomic chain of atoms 3 Comment 2

The finite chain (or crystal in three dimensions) is formally repeated infinitely often,
so that a virtual infinite chain with the period L   is created.

Now it is required that every chain segment with the length L   behaves in exactly
the same way.

The formula underlined in red is the mathematical formulation of this requirement.

A Fourier series expansion can be used to describe a general periodic function
with the period L.

Only those harmonic waves contribute to the Fourier series expansion that satisfy
the condition knL   = 2πn with n = ±1,±2, ... .
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Monatomic chain of atoms 3 Comment 3

Only a discrete set of wavenumbers is necessary to describe a general periodic
function with the period L.

The general behavior of a finite chain of length L   can be described by plane waves
if the wave numbers are restricted to this set.
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Monatomic chain of atoms 4

the largest possible wave length on the chain is

λ = L → |k| ≥ 2π
L

the smallest possible wave length on the chain is λ ≥ 2a

→ −π
a

≤ kn ≤ π
a

The number of different wave numbers kn equals the number of atoms N

2π
a
2π
L

=
L
a
= N

(Crystalmomentum.mp4)

Crystalmomentum.mp4
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Monatomic chain of atoms 4 Comment

The smallest absolute value of the wave number is k1 = 2π/L, i.e. the largest
possible wavelength on the chain is λ = L.

The smallest wavelength on a chain with the lattice parameter a is λ = 2a.

A shorter wavelength cannot be resolved with the distance a of the atoms.

Therefore, the wavenumber can be restricted to the range given by the second
inequality outlined in red.

The range of these wavenumbers divided by 2π/L gives the total number of
wavenumbers in this range.

This number is equal to the number of atoms in the chain.
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Monatomic chain of atoms 5
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Monatomic chain of atoms 5 Comment

The sketch summarizes the results.

There are three branches of dispersion for the oscillations of the chain: one
longitudinal mode and two transversal modes.

The wave numbers are limited to the range between −π/a and +π/a.

The total number of oscillation modes is 3N due to the three polarization directions.

N denotes the number of atoms in the chain.
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Crystal with one atom per primitive unit cell 1

The waves can propagate in three dimensions, i.e. k → k⃗
The range −π

a ≤ k ≤ π
a for the chain has to be generalized

k⃗ ∈ 1st Brillouin zone

The volume of a k⃗mode is
(
2π
L

)3
= (2π)3

V

the volume of the 1st Brillouin zone is V1st BZ = (2π)3
VCell

the number of k⃗modes is N

N =
V1st BZ
(2π)3/V

=
V

VCell

i.e. number of primitive unit cells within the crystal
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Crystal with one atom per primitive unit cell 1 Comment 1

If the vibrations of the atoms are considered in a threedimensional crystal lattice,
then the wavenumber must be generalized to the wave vector k⃗ and the
wavenumber interval −π

a ≤ k ≤ π
a to the 1st Brillouin zone.

The periodic boundary condition is now applied in all three spatial directions,
which works most easily with a cubeshaped sample.

The difference between the wave numbers of a chain of 2π
L generalizes to(

2π
L

)3
= (2π)3

V .

That is the volume that each wave vector can occupy in kspace.
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Crystal with one atom per primitive unit cell 1 Comment 2

Periodic boundary conditions can only be used if the surface of a crystal does not
affect the properties of the crystal, i.e. that due to the reflection of the waves on
the surface of the crystal, no standing waves may form that extend over the entire
crystal.

But if the surface of a crystal has no influence, one can abandon the assumption
of a cubeshaped sample with the edge length L and replace L3 with the volume V
of a sample of any shape.

The number of different wave vectors results from dividing the volume of the 1st

Brillouin zone by the volume that a wave vector can occupy.

The number of different wave vectors is equal to the number of primitive unit cells
in the crystal lattice.



Monatomic chain One atom in Vcell Diatomic chain n atoms in Vcell Revision

Crystal with one atom per primitive unit cell 2

dispersion branches of palladium
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Crystal with one atom per primitive unit cell 2 Comment 1

In a crystal lattice it is not possible to plot the frequency of the lattice vibrations for
all wave vectors.

One has to restrict oneself to certain characteristic wave vectors.

The figure shows the procedure using palladium (Atomic number (Z) 46, [Kr]4d10)
as an example.

Palladium crystallizes in an fcc lattice.

The figure on the right shows the 1st Brillouin zone of the fcc lattice.

The dispersion of the lattice vibrations is shown in the figure on the left along
certain directions.



Monatomic chain One atom in Vcell Diatomic chain n atoms in Vcell Revision

Crystal with one atom per primitive unit cell 2 Comment 2

If one starts on the left side of the figure, the wave vector points along a coordinate
axis of the cubic unit cell (compare the figure on slide ”Reciprocal lattice 7” of the
last lecture).

The direction is denoted by ∆ and the frequency of the lattice oscillations is plotted
for all wave vectors between Γ and X.

Along the coordinate axes there is a longitudinal mode and two transversal modes
of the same frequency.

The frequency of the two transverse modes is the same, since the coordinate axes
are fourfold axes of symmetry of the cube.

In the next column, the wave vectors end on the connecting line between points X
and W.
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Reciprocal lattice 7
Notice

The reciprocal lattice of an fcc lattice is a bcc lattice!
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Crystal with one atom per primitive unit cell 2 Comment 3

For this orientation of the wave vectors, the frequencies of the two transverse
modes are no longer the same.

On the right side of the figure, the wave vector lies on the connecting line Σ
between Γ and K and on the connecting line Λ between Γ and L.

The line Σ denotes a twofold axis of symmetry that goes through one edge of the
cubic unit cell.

The frequency of the two transverse modes is different.

The Λ line denotes a sixfold axis of symmetry that corresponds to the diagonals of
the cubic unit cell.
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Crystal with one atom per primitive unit cell 2 Comment 4
The frequencies of the two transverse modes are the same for this highly
symmetrical direction.

The frequency of the longitudinal modes is always greater than the frequency of
the transverse modes.

The force constant is consequently greater when the atoms swing directly towards
one another than when they move to the side.

Finally, it makes sense to think about the temperature, which corresponds to an
energy of E/hc = 220 cm−1.

E/kB =
4.14 · 10−15 eVs3 · 1010 cms−1 220 cm−1

8.617 · 10−5 eVK−1 = 317K

This means that all lattice vibrations are excited at room temperature.
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Diatomic chain of atoms 1

the solution are harmonic waves

u⃗(x) = u⃗0 exp i(kx−ω(k)t) and v⃗(x) = v⃗0 exp i(kx−ω(k)t)

Newton’s equation of motion

m1ü(sa) = D{v(sa)− u(sa)} + D{v((s− 1)a)− u(sa)}
m2v̈(sa) = D{u((s+ 1)a)− v(sa)}+ D{u(sa)− v(sa)}
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Diatomic chain of atoms 1 Comment 1

The figure shows a linear chain with two atoms in the primitive unit cell.

The lattice parameter is a.

The shift from the equilibrium position is u⃗ for the atoms with the mass m1 and v⃗
for the atoms with the mass m2.

The movement of the atoms around their equilibrium position is a harmonic
oscillation which, due to the coupling of the atoms, leads to a wave that can
propagate along the chain.

Newton’s equation of motion does not contain the absolute coordinates of the
atoms, but only the positions of the primitive unit cells.

The reason for this is that the force with which the atoms act on each other is
simply proportional to the displacement of the atoms from their equilibrium position.
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Diatomic chain of atoms 1 Comment 2

As with the monatomic chain, the force depends on the direction of vibration of the
atoms.

There are three main directions of vibration (L, i.e. longitudinal, T1, and T2, i.e.
transversal 1 and 2), for which Newton’s equations of motion can be solved
independently of each other.

The equations of motion outlined in red correspond to one main directions of
vibration.

The shifts correspond to this polarization direction, so that the vector arrows can
be omitted.

The force constant generally has three different values   for the three directions of
polarization.
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Diatomic chain of atoms 2

shift of the atoms in the unit cell at x = sa

u(sa) =u0,branch(k)ei(k·sa−ωB(k)t)

v(sa) =v0,branch(k)ei(k·sa−ωB(k)t)
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Diatomic chain of atoms 2 Comment 1

The figure shows the dispersion relation of the diatomic chain, i.e. the solution of
Newton’s equation of motion for one direction of polarization, with the force
constant D and m1 > m2.

The absolute positions of the atoms do not enter Newton’s equation of motion, and
the shift u and v are determined by the localization of the primitive unit cell, i.e.
x = sa.

The formulas outlined in red explicitly show the solution of Newton’s equations of
motion for the two atoms within the primitive unit cell.

The amplitudes of the waves for the two types of atoms u0,branch and v0,branch
depend on the wave number k and the dispersion branch.
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Diatomic chain of atoms 2 Comment 2

As with the monatomic chain, the periodic boundary conditions can be applied and
the corresponding results obtained for the monatomic chain remain valid.

The distance between two neighboring wave numbers is 2π/L and ω(k) is again
shown in the range between −π/a and +π/a.

The number of different wave numbers kn between −π/a and +π/a corresponds
to the number of primitive unit cells.

The figure shows the socalled acoustic branch and the optical branch of the
dispersion of the lattice vibrations.

The acoustic branch begins with ω ∝ k for k → 0, as we know it for sound waves
in a gas.
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Diatomic chain of atoms 2 Comment 3

Both atoms in the primitive unit cell vibrate in the same direction.

At higher oscillation frequencies, an optical branch lies above the acoustic branch.

This branch is known as the optical branch because the atoms vibrate against
each other, which in ionic crystals such as sodium chloride leads to oscillating
electrical dipoles that can absorb and emit electromagnetic waves.
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Diatomic chain of atoms 3

(Kette.mp4)

Kette.mp4
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Diatomic chain of atoms 3 Comment 1

The animation shows the movement of the atoms for both branches for k = 0 and
k = π/a.

For k = 0 all atoms in all primitive unit cells vibrate with the same phase.

In the acoustic branch the amplitudes u0,acoustic(k → 0) and v0,acoustic(k → 0) have
the same sign and the atoms vibrate in the same direction.

In the optical branch the amplitudes have opposite signs, i.e.
u0,optical(k → 0) = −v0,optical(k → 0), and the atoms vibrate against each other.

At the borders of the first Brillouin zone, i.e. for k = ±π/a, the sign of the
oscillation between neighboring unit cells changes because of e i(ksa) = e iπs.
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Diatomic chain of atoms 3 Comment 2

In the acoustic branch the smaller masses m2 < m1 are at rest, i.e.
v0,acoustic(k = ±π/a) = 0 , and the heavier masses m1 swing against the smaller
masses m2.

In the optical branch the smaller masses m2 oscillate, i.e. v0,optical(k = ±π/a) ̸= 0,
whereas the heavier mass m1 is at rest.

The frequency of the vibration is consequently higher.
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n atoms in Vcell
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Crystal with n atoms per primitive unit cell 1

Rules

The number of different k⃗ vectors in the 1st Brillouin zone corresponds to the
number of primitive unit cells that make up the crystal

For one atom per primitive unit cell there are three acoustic branches (LA,
TA1, and TA2)

For each additional atom in the primitive unit cell there are three optical
branches (LO, TO1, and TO2)
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Crystal with n atoms per primitive unit cell 1 Comment

This page summarizes the rules for a crystal.

Except for the last rule, all rules for a crystal with n atoms per primitive unit cell
agree with the rules for crystals with only one atom in the primitive unit cell.

For example, if there are two atoms in the primitive unit cell, there are three
acoustic branches and three optical branches.

If there are three atoms in the primitive unit cell, there are three acoustic branches
and six optical branches, and so on.
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Crystal with n atoms per primitive unit cell 2

Cubic unit cell of Silicon
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Crystal with n atoms per primitive unit cell 2 Comment
The figures show the cubic unit cell of the diamond structure again.

The diamond structure is an fcc lattice with two atoms per primitive unit cell.

In the figure on the right, one atom of the primitive unit cell is highlighted in red and
the other in blue.

The two atoms are shifted against each other by the vector (X+ Y+ Z)(a/4)
along the space diagonal of the cubic cell.

This results in a tetrahedral environment for each atom, which corresponds to the
geometry of a sp3 hybrid orbital.

The tetrahedra are indicated by the vectors drawn in blue and the green lines.

The next page shows the dispersion branches of the lattice vibrations for silicon.
Like carbon and germanium, silicon crystallizes in the diamond structure.
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Crystal with n atoms per primitive unit cell 3

dispersion branches of the lattice vibrations for silicon
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Crystal with n atoms per primitive unit cell 3 Comment 1

The left figure shows the dispersion branches of the lattice vibrations for silicon
measured by neutron diffraction.

The right figure shows two neighboring 1st Brillouin zones of the fcc lattice and it is
good to remember a page from the last lecture, which I show here again:
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Reciprocal lattice 7
Notice

The reciprocal lattice of an fcc lattice is a bcc lattice!
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Crystal with n atoms per primitive unit cell 3 Comment 2

The dispersion of the lattice vibrations is measured in selected directions of the
lattice.

The left figure shows the path from Γ→ X.

The middle figure shows the way from Γ→ K → X.

The right figure shows the path from Γ→ L.

The vectors [ζ, ζ, ζ] etc. indicate the wave vectors which refer to the 1st Brillouin
zone.

For the directions of propagation [ζ,0,0] and [ζ, ζ, ζ] it is to be expected that the
frequencies of TA1 and TA2 and TO1 and TO2 polarization are identical.
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Crystal with n atoms per primitive unit cell 3 Comment 2

For the directions of propagation [ζ, ζ,0], a splitting of the dispersion for the
polarizations TA1 and TA2 as well as TO1 and TO2 is to be expected.

This splitting was shown, for example, by measuring the lattice vibrations for
palladium.

These splittings are not resolved in the measurement shown and are obviously
small.

The path Γ → K → X leaves the 1st Brillouin zone.

In the next section I will explain what happens when the boundary of the 1st

Brillouin zone is crossed.
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Crystal with n atoms per primitive unit cell 3 Comment 3

Finally, it makes sense to think about the temperature, which corresponds to an
energy of E/h = 16 · 1012Hz.

E/kB =
4.14 · 10−15 eVs16 · 1012 s−1

8.617 · 10−5 eVK−1 = 769K
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Summary in Questions 1

1. Use Newton’s equation of motion to calculate the dispersion relation for a
monatomic chain.

2. Explain the periodic boundary condition.

3. Write down the different wavenumbers of a monatomic chain with N atoms of
length L when periodic boundary conditions are used.

4. How many different wavenumbers are then in interval ±π/a?

5. Sketch the dispersion spectrum of a monatomic chain.

6. Sketch the dispersion spectrum of a diatomic chain.

7. Describe the difference between the acoustic and the optical branches of the
dispersion spectrum of the lattice vibrations.
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Summary in Questions 2

8. What determines the number of acoustic and optical branches of the dispersion
spectrum of the lattice vibrations?

9. The interval ±π/a is generalized to the 1st Brillouin zone for three dimensional
crystal lattices. How many different wave vectors are there in the 1st Brillouin
zone if periodic boundary conditions are used?
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