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Drude model 1

Conduction electrons can move freely through a metal and behave like an
ideal gas
the velocities of the conduction electrons follow the Maxwell velocity
distribution function

speed in the maximum

vmax =
√

2kBT
m

m4He/me = 7277 ≈ 104 → vmax(e)/vmax(
4He) ≈ 100

ℓ ≈ vmax · τ ≈ 10−10m
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Drude model 1 Comment 1

The electron was discovered by J.J. Thomson in 1897.

The study of the Zeeman effect led H. Lorentz in 1899 to the conclusion that the
optical properties of atoms are caused by electrons.

Paul Drude published his theory of electric conductivity in 1900.

Drude assumes that there are electrons in metals that are not bound to their
atoms.

These quasi­free electrons are called conduction electrons.

Drude also assumes that the conduction electrons behave similarly to an ideal gas.
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Drude model 1 Comment 2

This means that the velocity of the conduction electrons follows Maxwell’s velocity
distribution function.

The thermal equilibrium between the electron gas and the crystal lattices is
established by collisions of the conduction electrons with the atoms of the lattice.

When an electric voltage is applied to a metal, an electric current flows.

The electrons are accelerated by the electric field due to their electric charge q
and lose a fraction of the kinetic energy gained when they collide with the atoms of
the crystal lattice.

The voltage source does work that increases the temperature of the crystal lattice.
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Drude model 1 Comment 3

The mean free path of the electrons can be estimated using the velocity at the
maximum of Maxwell’s velocity distribution.

The figure shows the velocity distribution of various noble gases.

For helium atoms, the velocity at the maximum of the distribution function is about
1000 m/s at room temperature.

The velocity at the maximum of the distribution function is inversely proportional to
the square root of the mass of the gas particles. The formula 1

2mv
2 = kBT applies.

The ratio of the masses of helium atoms and electrons is about 10000. Therefore
a hundred times higher speed can be expected for electrons (m(4He) = 4u,
m(e−) = 5.5 · 10−4u).
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Drude model 1 Comment 4

With a mean free flight time of 10−15 s and a speed of 105 m/s, the mean free path
ℓ is 10−10 m, which corresponds to the distance between the atoms.

With this estimate one can understand the incredibly high collision rate of the
electrons in the context of the Drude model.

By 1900, another of nature’s mysteries seemed to have found a plausible
explanation.

Unfortunately, the assumption of the Drude model that conduction electrons
behave like a classical ideal gas is incorrect.

Although this was not to be expected around 1900, it soon became clear that
many experimental results observed for metals cannot be explained in terms of a
free electron gas.
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Drude model 2

Problems of the Drude model

a classical ideal gas of quasi free conduction electrons should contribute to
the heat capacity of metals

→ the contribution of each conduction electron to the heat capacity is 3
2kB

→ the contribution of each oscillating atom is at high temperatures 3kB
(rule of Dulong­Petit)

this large contribution of a classical conduction electron gas to the heat capacity of
metals cannot be observed experimentally.
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Drude model 2 Comment

Although the idea of   an electron gas is not fundamentally wrong, metals have
many properties that cannot be explained with a quasi­classical gas made up of
conduction electrons.

Heat capacity measurements are fundamental to understanding solids.

If the conduction electrons behave like a classical ideal gas, the contribution of
each conduction electron to the heat capacity should be 3

2kB.

This is a very large contribution that can be compared to the maximum
contribution of 3kB due to the vibration of an atom at high temperatures.

The experiments clearly show that the major contribution of a classical, quasi­free
electron gas to the heat capacity of metals is missing. (Compare the 21st lecture:
“Heat capacity of the crystal lattice 8”)
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Drude model 3

Faraday motor (1821)

(Faradaymotor.mp4) (Faradaymotorbuegel.mp4)

Faradaymotor.mp4
Faradaymotorbuegel.mp4
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Drude model 3 Comment

In 1821 Faraday built a first electric motor and presented it to the Royal Society in
London.

The video shows the simple electric motor.

The image on the right shows a slightly improved version of the motor.

The electric motor is driven by the Lorentz force, which, however, was only
theoretically explained by H. Lorentz in 1895.

When Faraday performed his experiment, it was only evident that a force was
acting on a conductor carrying an electric current.

The question arose whether the force acts on the conductor as a whole or only on
the charge carriers that produce the electric current.
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Drude model 4
Hall effect (Edwin Hall 1879)

(Halleffekt.mp4)

Halleffekt.mp4
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Drude model 4 Comment

The question was answered by Edwin Hall in 1879.

The video shows his famous experiment.

The experiment shows that the force, which was still not properly understood in
1879, acts on the moving charge carriers of the electric current.

The force deflects the charge carriers and induces an electric potential difference
perpendicular to the direction of the current.

The effect depends on the strength and direction of the magnetic field.
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Drude model 5

The Hall effect is due to the Lorentz force F⃗ = qv⃗× B⃗

The sign of the Hall voltage (EHℓ) depends on the sign of the charge carriers.

UH = RH
IB
d

and R−1
H = q

N
V

(d denotes the thickness of theHall sensor)
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Drude model 5 Comment 1

The Hall effect can easily be understood with the Lorentz force.

The figure on the left shows the Hall effect for positive charge carriers.

The drift speed of the charge carriers points in the direction of the electric current
and the Lorentz force points downwards when the magnetic field B points out of
the projection plane.

This causes the positive charges to accumulate on the lower side of the conductor
and the Hall voltage builds up.
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Drude model 5 Comment 2

The right figure shows the Hall effect with negative charge carriers.

The drift velocity of the negative charge carriers points in the opposite direction of
the electric current.

The Lorentz force also points downwards and the negative charges accumulate on
the lower side of the conductor.

The sign of the Hall voltage depends on the sign of the charge of the charge
carriers.

Therefore, by measuring the sign of the Hall voltage, the sign of the charge
carriers can be determined.



Drude Sommerfeld model Fermi sphere Fermi distribution function Revision

Drude model 6

Cu −5.3 · 10−11m3As−1

Ag −9.0 · 10−11m3As−1

Au −7.0 · 10−11m3As−1

Pt −2.0 · 10−11m3As−1

Bi −5.0 · 10−7m3As−1

Mg +48.6 · 10−11m3As−1

Be +24.3 · 10−11m3As−1

In +16.0 · 10−11m3As−1

Al +9.9 · 10−11m3As−1

Zn +6.4 · 10−11m3As−1

Hall constants RH for various elements

Amazingly, the charge of the charge carriers can also be positive in metals
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Drude model 6 Comment

The Hall voltage is proportional to the strength of the electric current, the strength
of the magnetic field and also depends on the thickness of the conductor along the
direction of the magnetic field.

The table gives the constant of proportionality RH for some metals.

Amazingly, it turns out that the Hall constant can have positive and negative
values.

Obviously the charge carriers in some metals are positively charged, which is
incomprehensible in view of the negative charge of the electron.
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Drude model 7
Hall coefficient as a function of temperature for Pr1−xSrxNiO2 thin films
( M Osada et al. · 2020)
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Drude model 7 Comment

The example from current research on a superconductor shows that the Hall
coefficient can even change sign with temperature.
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Drude model 8

In 1911 Heike Kamerlingh Onnes discovered superconductivity when he was
investigating the electric resistance of mercury
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Drude model 8 Comment 1

In 1895 the process for liquefying gases developed by Carl von Linde was
patented.

This made it possible to liquefy large quantities of gas and to carry out
experiments at low temperatures.

Liquid helium is particularly important for low­temperature experiments, since
helium becomes liquid at 4.15 K and remains liquid at ambient pressure down to
zero temperature.

Karmeling Onnes investigated the temperature dependence of the conductivity of
metals.

The electric resistance of metals decreases with falling temperatures.
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Drude model 8 Comment 2

The electric current is hindered by the oscillations of the atoms around their
equilibrium positions in the crystal lattice, i.e. by electron­phonon scattering.

At low temperatures only a few phonons are excited and there is usually a residual
resistance left, which is caused by lattice defects (cracks, grain boundaries,
impurities, etc.).

Mercury was particularly suitable for such measurements because it is relatively
easy to make very perfect crystals when cooling mercury.

The figure shows the famous measurement by Kamerlingh Onnes.

Just above the boiling temperature of helium (i.e. 4He), mercury loses its electrical
resistance completely.
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Drude model 9
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Drude model 9 Comment 1

Superconductivity is not an exotic phenomenon.

Most of the elements in the periodic table become superconducting at low
temperatures.

There are some elements that do not become superconducting at ambient
pressure but become superconducting when pressure is applied.

The periodic table also shows that magnetic order is a rather exotic phenomenon.

It turns out that the magnetism of the transition metals Cr, Mn, Fe, Co and Ni is
based exclusively on the conduction electrons.
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Drude model 9 Comment 2

In contrast to this, the magnetism of the rare earths is based on an interplay of the
localized magnetic moments of the 4f electrons and the conduction electrons of
the 5s, 5p and 5d orbitals.

Superconductivity and magnetism of conduction electrons remain completely
incomprehensible in the picture of a classical electron gas.

With superconducting coils it can be shown that the electric resistance of
superconductors completely disappears below the critical temperature.

Once the superconducting current is established, the magnetic moment of the coil
is stable and does not change with time.

This effect is used in the construction of superconducting magnets, e.g. for
medical purposes (magnetic resonance imaging).
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Drude model 10
Meissner effect

(MeissnerEffekt3.mp4)

MeissnerEffekt3.mp4
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Drude model 10 Comment 1

In 1933, Meißner and Ochsenfeld discovered another amazing property of
superconductivity.

If a superconductor is cooled below the superconducting transition temperature in
a magnetic field B, the magnetic field within the superconducting material is
eliminated by shielding currents.

The left figure shows the magnetic field that penetrates a superconductor above
the transition temperature.

The picture on the right shows the deformation of the magnetic field lines caused
by the shielding currents of the superconductor.

The video shows the Meissner effect for tin.
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Drude model 10 Comment 2
If a superconductor is cooled below the transition temperature without a magnetic
field and a magnetic field is then switched on, shielding currents occur due to
Faraday’s law of induction, which prevent the magnetic field from penetrating the
superconductor.

If the magnetic field is switched on at a temperature higher than the transition
temperature, then the electric resistance dampens the shielding currents to zero
and the magnetic field can penetrate the metal.

Amazingly, even without Faraday’s law of induction, the shielding currents start up
again as soon as the superconductor has been cooled below the transition
temperature.

The Meissner effect shows that superconductivity is a thermodynamic phase,
comparable to the solid, liquid or gaseous phase of a substance.
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Sommerfeld model
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Sommerfeld model Comment

This section is divided into six subsections that cover, step by step, the most basic
concepts of conduction electrons.
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Introduction

the conduction electrons, like all quantum particles, are subject to the
Schrödinger equation
the potential energy is simply a constant
the surface is the barrier that encloses the conduction electrons
the Schrödinger equation only contains the term for the kinetic energy

E(⃗k)ψk⃗(⃗r, t) = −ħ2∇2

2m
ψk⃗(⃗r, t)

the wave functions are plane waves

ψk⃗(⃗r, t) = ψ0ei(⃗k⃗r−ωt)

the energy is

E(⃗k) = ħω =
ħ2k⃗ 2

2m
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Introduction Comment 1

It is obvious that the conduction electrons must also be described by wave
functions that are determined by the Schrödinger equation.

Based on the Drude model, Arnold Sommerfeld formulated a simple approach in
1927 that already revealed some fundamental properties of electrons in solids.

In his model of the conduction electrons, Sommerfeld assumes that the attractive
forces of the positively charged atoms and the repulsive forces between the
conduction electrons are averaged so that the potential energy of the conduction
electrons is simply constant regardless of the location of the conduction electrons.

The attractive forces of the atoms only dominate on the surface of the solid, so
that the conduction electrons are bound to the solid.
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Introduction Comment 2

The resulting potential step on the surface corresponds to the work function WA in
the photoelectric effect.

The formula outlined in red gives the Schrödinger equation.

The value zero is assigned to the constant potential energy and WA → ∞ is
assumed for the sake of simplicity, resulting in the well­known box potential.

The solutions to this Schrödinger equation are plane waves.

The last underlined formula gives the energy eigenvalues of the Schrödinger
equation.

This is simply the kinetic energy of a quasi­free electron.
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Fermi sphere



Drude Sommerfeld model Fermi sphere Fermi distribution function Revision

Sommerfeld model

Introduction
Fermi sphere
Fermi distribution function
Electric conductivity
Density of states
Heat capacity of the electron gas



Drude Sommerfeld model Fermi sphere Fermi distribution function Revision

Fermi sphere 1

Schrödinger equation

E(⃗k)ψk⃗(⃗r, t) = −ħ2∇2

2m
ψk⃗(⃗r, t)

plane waves
ψk⃗(⃗r, t) = ψ0ei(⃗k⃗r−ωt)

periodic boundary conditions (for a cubic sample with edge length L)

ψk⃗(x, y, z, t) =ψk⃗(x+ L, y, z, t)
ψk⃗(x, y, z, t) =ψk⃗(x, y+ L, z, t)
ψk⃗(x, y, z, t) =ψk⃗(x, y, z+ L, t)

kxL = 2πn1 kyL = 2πn2 kzL = 2πn3 and n1,2,3 = 0,±1,±2, ...



Drude Sommerfeld model Fermi sphere Fermi distribution function Revision

Fermi sphere 1 Comment 1

The first underlined equation gives the Schrödinger equation for a conduction
electron in the Sommerfeld model.

The solutions of the Schrödinger equation are plane waves and periodic boundary
conditions have to be used to adapt the infinite plane waves to the finite
dimensions of the sample.

It is the same procedure that has already been used to describe blackbody
radiation and lattice vibrations, and the justification for using periodic boundary
conditions is always the same.

The standing waves, which were used for exactly the same Schrödinger equation
for the box potential, cannot be used in an extended volume because scattering
events suppress the formation of standing wave modes.
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Fermi sphere 1 Comment 2

The simplest is a cubic sample with the edge length L, which is repeated infinitely
often in all spatial directions.

The wave functions in the resulting infinite but periodic structure can be described
in the context of a Fourier series expansion using plane waves.

The equations framed in red formulate the periodic boundary condition of the wave
functions.

The last line specifies the condition that the components of a wave vector kx, y, z
have to meet within the Fourier series expansion.
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Fermi sphere 1 Comment 3

These wave vectors result in periodic wave functions, which have the edge length
L of the cube­shaped sample as the period length.

With this trick, infinitely plane waves can be used, although only the wave
functions of a finite cubic sample are needed.
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Fermi sphere 2
allowed wave vectors

k⃗n1,n2,n3 =
2π
L

n1
n2
n3



volume around the tip of each
wave vector

∆k 3 =

(
2π
L

)3
=

(2π)3

V
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Fermi sphere 2 Comment 1

The formula outlined in red shows the permitted wave vectors.

These wave vectors form a discrete lattice and each of these lattice points, i.e.
each of these plane waves can be occupied by two electrons according to the
Pauli principle, which differ in their spin quantum number ms = ±1/2.

This lattice of wave vectors fills the reciprocal lattice of the crystal and since the
edge length L   of the cubic sample is much larger than the lattice parameters of the
crystal lattice (e.g. a in the case of a simple cubic lattice), it is obvious that the k
­states are very dense compared to the lattice points of the reciprocal lattice.

The figure shows the lattice of k states, with the spacing of the lattice points being
exaggerated.
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Fermi sphere 2 Comment 2

All k states that are occupied by electrons at zero temperature are surrounded by
a sphere called the Fermi sphere.

The largest wave number, i.e. the radius of the Fermi sphere, is called the Fermi
wave number.

The underlined formula gives the volume around the tip of each k state.

In the formula L3 can be replaced by the volume V of the sample.

This is a remarkable detail.

Since scattering events prevent the formation of standing waves, which are
caused by the superposition of the waves reflected on the surfaces, the surfaces
do not influence the waves in the volume of the sample.
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Fermi sphere 2 Comment 3

Therefore, the reference to a cubic shape of the sample is not necessary and L3

can be replaced by the volume V of an arbitrarily shaped crystal.

Technically, the Fermi sphere is reminiscent of the sphere of the Debye model,
although the underlying physics is different.
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Fermi sphere 3

radius of the Fermi sphere

N = 2 ·
4π
3 k

3
F

(2π)3
V

=
Vk3F
3π2

Fermi wave number kF

kF =

(
3π2N

V

) 1
3

Fermi energy, Fermi temperature and Fermi velocity

EF =
ħ2k2F
2m

and TF =
EF
kB

and vF =

√
2EF
m
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Fermi sphere 3 Comment 1

At the temperature T = 0 all occupied k states are enclosed by the Fermi sphere.

Since all k states can be occupied by two electrons, the condition of the first row
results.

The volume of the sphere divided by the volume of a k state is half the number of
electrons.

With this condition the radius of the Fermi sphere can be calculated and the first
equation outlined in red gives the Fermi wave number.

The Fermi energy can be calculated using the Fermi wave number.

The Fermi energy is the highest kinetic energy of an electron at zero temperature.
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Fermi sphere 3 Comment 2

If the Fermi energy is divided by the Boltzmann constant, the Fermi temperature is
obtained.

The Fermi temperature is useful to estimate the influence of thermal excitations.

With the formula for the kinetic energy EF = mv2F/2 the speed of an electron with
the Fermi energy can be calculated.

vF is the Fermi velocity.

The Fermi velocity needs some comments.

The Sommerfeld model assumes infinite electron waves. However, due to the
scattering events, the electron waves must be described with finite wave packets.
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Fermi sphere 3 Comment 3

Therefore, not the phase velocity of the infinite waves, but the velocity of the wave
packets is the relevant velocity to describe electron dynamics.

The speed of wave packets is the group velocity vg(k) = dω(k)
dk .

With E(k) = ħω(k) = ħ2k2/2m follows that vg(kF) = vF, i.e. the wave packets
formed with the wave vectors around kF move with the Fermi velocity.
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Fermi sphere 4

valency N/V [cm−3] kF [1010m−1] EF [eV] TF [K] vF [106 m/s]

Li 1 4.70 · 1022 1.11 4.72 54800 1.29

Rb 1 1.15 · 1022 0.70 1.85 21500 0.81

Cu 1 8.45 · 1022 1.36 7.00 81200 1.57

Au 1 5.90 · 1022 1.20 5.51 63900 1.4

Be 2 24.20 · 1022 1.93 14.14 164100 2.25

Zn 2 13.10 · 1022 1.57 9.39 109000 1.83

Al 3 18.06 · 1022 1.75 11.63 134900 2.03

Pb 4 13.20 · 1022 1.58 9.37 108700 1.83
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Fermi sphere 4 Comment

The table shows the valency, i.e. the number of conduction electrons per atom, the
density of conduction electrons and the Fermi wave number, energy, temperature
and velocity.

The Fermi wave number is comparable to the dimensions of the 1st Brillouin zone.

The Fermi temperature is very high compared to the melting temperatures of the
metals.

Therefore, the thermal energy has only a very small influence on conduction
electrons at ambient temperatures.

The Fermi speed is about a factor of 100 smaller than the speed of light.

Therefore, using the classical formula EF = ħ2k2F/2m = mv2F/2 for the kinetic
energy is justified.
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Fermi sphere 5

valency N/V [cm−3] EF [eV] vF [106 m/s] ρ [nΩ· m] ℓ [10−10 m]

Li 1 4.70 · 1022 4.72 1.29 92.8 100

Rb 1 1.15 · 1022 1.85 0.81 128.0 190

Cu 1 8.45 · 1022 7.00 1.57 16.8 171

Au 1 5.90 · 1022 5.51 1.4 22.1 147

Be 2 24.20 · 1022 14.14 2.25 36.0 90

Zn 2 13.10 · 1022 9.39 1.83 59.0 82

Al 3 18.06 · 1022 11.63 2.03 26.5 147

Pb 4 13.20 · 1022 9.37 1.83 208.0 23
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Fermi sphere 5 Comment 1

The table shows in the 6th column the electric resistivity ρ = σ−1 at 20 °C and in
the last column an   estimate of the mean free path ℓ = vF · τ when the electrons
move with the Fermi velocity.

For this purpose, the mean free time τ is estimated using the formula

σ =
e2

m
N
V
τ.

For the estimation, the mass of a free electron mc2 = 500 eV is assumed for the
mass of the electrons.
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Fermi sphere 5 Comment 2
The estimate of the mean free path shows that an electron wave packet on the
surface of the Fermi sphere can fly past many atoms before a scattering event
occurs.

Since waves can propagate through a perfect crystal lattice without scattering, the
long free paths of the conduction electrons are to be understood in the wave
image.

On the other hand, the estimate of the mean free path shows that the assumption
of periodic boundary conditions is no longer applicable in the context of
nanophysics.

This lecture deals exclusively with macroscopic samples, i.e. samples whose
dimensions are much larger than the mean free path of the electrons and the
influence of the surfaces can safely be neglected.
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Fermi sphere 6

one electron per primitive unit cell
of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2)
1
3

a
=

3.09
a

<
π
a

two electrons per primitive unit cell
of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2 · 2)
1
3

a
=

3.9
a

>
π
a
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Fermi sphere 6 Comment 1

It is helpful to get an idea of   how the Fermi sphere is embedded in the reciprocal
lattice.

Since the situation is somewhat complicated for real substances, a simple cubic
lattice with the lattice parameter a is considered as a model. (Examples of real
substances are discussed later.)

The lattice parameter of the cubic cell of the reciprocal lattice is 2π/a.

The figure on the left shows the case that there is one conduction electron in the
primitive unit cell of the lattice.

The right figure shows the case that there are two conduction electrons in the
primitive unit cell of the lattice.
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Fermi sphere 6 Comment 2

The Fermi wave number can be calculated with the density of the conduction
electrons.

If there is one conduction electron per primitive unit cell, the Fermi sphere lies
within the 1st Brillouin zone.

With two conduction electrons per primitive unit cell, the Fermi sphere is slightly
larger than the 1st Brillouin zone and there are wave vectors ending on the Bragg
planes that enclose the 1st Brillouin zone.
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Fermi distribution function
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Fermi distribution function

Fermi distribution function

f (E ) =
1

e(E−μ)/kBT + 1

the chemical potential μ equals nearly the Fermi energy EF

lim
T→0

μ(T ) = EF
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Fermi distribution function Comment 1

The Fermi distribution function indicates the probability that a k state with the
energy E is occupied by an electron.

If the temperature approaches zero, the Fermi distribution function changes into a
step function.

The step function is marked in the figure by the blue line.

For T → 0 all k states below the Fermi energy are occupied with probability 1, and
the probability for the occupation of a k state with a higher energy than the Fermi
energy is zero.

Since a k state can be occupied by two electrons, the probability below the Fermi
energy is 1 for ms = +1/2 and 1 for ms = −1/2, i.e. the spin quantum number
does not matter.
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Fermi distribution function Comment 2

The step will soften as the temperature rises. This is indicated by the red line in the
figure.

Since the Fermi energy is much greater than the thermal energy at normal
temperatures, only electrons in k states just below the Fermi energy can be
excited in k states just above the Fermi energy.

The energy range around the Fermi energy in which electrons can be thermally
excited is extremely small and exaggerated in the figure, e.g. for T ≈ 300K one
has kBT ≈ 26meV << EF.

In the case of k states that lie within the Fermi sphere, the Pauli principle prevents
electrons from being excited by thermal energies.
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Fermi distribution function Comment 3

The formula outlined in red gives the mathematical expression of the Fermi
distribution function.

The derivation of this formula can be looked up in textbooks on solid state physics.

The formula is somewhat similar to the formula of Planck’s law of radiation and the
formula of the heat capacity of phonons.

Since photons and phonons are bosons and electrons are fermions, there are two
important differences.

The first difference is that +1 is added to the exponential function in the
denominator instead of the −1 of Planck’s radiation law and the heat capacity of
phonons.

This +1 is the reason why the Fermi distribution function is almost a step function.
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Fermi distribution function Comment 4

The second difference is that in the exponent of the exponential function the
chemical potential μ is subtracted from the energy E.

In thermodynamics, the chemical potential μ describes the change in energy when
the number of particles dN changes, i.e. dE = μdN (dE is usually the free energy
F).

In the case of photons or phonons, the chemical potential is zero, since photons or
phonons only interact very weakly with one another.

In the case of an electron gas, the chemical potential corresponds almost to the
Fermi energy.
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Fermi distribution function Comment 5

Since the step of the Fermi distribution function softens somewhat with increasing
temperature, the chemical potential decreases somewhat with increasing
temperature.

The influence of temperature on the chemical potential is very small, so that the
temperature dependence of the chemical potential can be neglected in most
cases.
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Fermi distribution function Comment 6

The Fermi distribution function is the mathematical expression for the fact that
most electrons are blocked in their k states due to the Pauli principle.

Only those electrons that occupy k states very close to the surface of the Fermi
sphere can be thermally excited.

The Fermi sphere is an idealization that is only approximately realized in nature.

The generalization of the spherical surface of the Fermi sphere is the Fermi
surface.

The Fermi surface separates the occupied k states from the unoccupied k states
at T = 0.

The surface of the Fermi sphere is a special Fermi surface.
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Summary in Questions

1. What is the basic idea of the Drude model of metallic conductivity?
2. How does the Sommerfeld model differ from the Drude model of electric

conductivity?
3. Write down the Schrödinger equation of the Sommerfeld model.
4. How does the Schrödinger equation of the Sommerfeld model differ from the

Schrödinger equation of the box potential?
5. Which volume can be assigned to a k state in the Sommerfeld model?
6. What is meant by the Fermi sphere?
7. Calculate the radius of the Fermi sphere.
8. Calculate the Fermi wave number of copper.
9. Compare the Fermi number of copper with the 1st Brillouin zone of copper. (The

lattice parameter of the cubic unit cell of copper is a = 3.61 · 10−10m)
10. What is meant by a Fermi surface?
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