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Electric conductivity 1

drift velocity: v⃗ = μE⃗ → shift of the Fermi sphere ∆k⃗ = mv⃗
ħ = mμ

ħ E⃗

estimate of the shift:

μ = 4.4 · 10−3m2V−1s−1 for copper and
E = 100V/m

∆k =
2π500 · 103 eV4.4 · 10−3m2V−1s−1

4.14 · 10−15 eVs (3 · 108ms−1)2
100V/m

=3710m−1 <<<< kF ≈ 1010m−1

(electron mass m ≈ 500 keV/c2)
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Electric conductivity 1 Comment 1

When an electric field is applied to a conductor, the charge carriers begin to drift
along the direction of the electric field.

The drift velocity shifts the Fermi sphere somewhat along the direction of the
electric field.

The sketch shows, greatly exaggerated, the displacement of the Fermi sphere
when the electric field is applied in the x direction.

In the figure, the black dots denote the k states.

The blue circle indicates the Fermi sphere when no electric field is applied.

The red circle indicates the Fermi sphere when an electric field is applied.
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Electric conductivity 1 Comment 2

Most electron waves have a counter wave and only a small part of the occupied k
states near the Fermi surface on the right side of the Fermi sphere can contribute
to the transport of the electric charge.

The drift velocity can be calculated from the electrical mobility μ and the electric
field strength E.

The displacement of the Fermi sphere in k space can be calculated with the
momentum mv.

The calculation shows the estimate based on the mobility μ of copper and a field
strength of 100 V/m.

For the calculation it is assumed that the mass of the charge carriers corresponds
to the mass of a free electron, i.e. 500 eV/c2.
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Electric conductivity 1 Comment 3

This assumption is only approximately fulfilled for copper, but this has no influence
on the result of the estimate.

The displacement of the Fermi sphere due to the drift speed of the electrons in an
electric field is about 6 orders of magnitude smaller than the Fermi wave number
kF.
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Electric conductivity 2
Thermal softening of the Fermi surface

E = ħ2k2/2m → ∆E
E

= 2
∆k
k

with ∆E = kBT, T = 300K, E = EF = 7eV
(copper) and k = kF

∆kF =kF
1
2
kBT
EF

=kF
8.62 · 10−5 eVK−1 · 300K

2 · 7eV
=kF · 1.85 · 10−3

∆kF = 1.36 · 1010m−1 · 1.85 · 10−3 ≈ 2.5 · 107m−1 >> ∆k ≈ 3.7 · 103m−1
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Electric conductivity 2 Comment

The figure shows once again the influence of temperature on the Fermi distribution
function, greatly exaggerated.

In the case of Fermi energy, the step of the distribution function softens in an
energy range that corresponds to thermal energy.

In this way, the softening of the Fermi surface in the wavenumber space can also
be estimated.

Since the thermal energy at room temperature is about a thousandth of the Fermi
energy, the surface of the Fermi sphere is also smeared in this order of magnitude
in the wavenumber space.

The estimate for copper shows that the displacement of the Fermi sphere by an
electric field is generally much smaller than the thermal smearing of the Fermi
surface.
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Electric conductivity 3

ideal resistivity of various metals
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Electric conductivity 3 Comment

The temperature dependence of the specific resistance of the metals follows a
universal curve if the temperature is normalized to the Debye temperature ΘD and
the specific resistance to a suitable value.

The temperature dependence is essentially determined by the fact that the
conduction electrons can absorb and emit phonons.

In addition, there is a temperatureindependent component that arises from the
scattering of the conduction electrons at imperfections, i.e. impurity atoms and
other lattice defects.

This contribution determines the temperatureindependent resistance at low
temperatures, which is subtracted in the figure.
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Electric conductivity 4

electronphonon scattering k⃗ = k⃗ ′ ± q⃗ and E(⃗k) = E(⃗k ′)± ħω(q⃗)

Only electrons in the range of the Fermi
surface participate in the scattering
E(⃗k), E(⃗k ′) >>> ħω(q⃗), i.e. quasi elastic
scattering
the scattering rate is proportional to the
phonon number

n̄ =
1

exp(ħω(q⃗)/kBT)− 1
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Electric conductivity 4 Comment 1

The temperature dependence of the electric resistance is due to electronphonon
scattering

In the first line the law of momentum and energy conservation for the emission (+)
and absorption () of a phonon by a conduction electron is formulated.

Only electrons can take part in the scattering processes whose wave vectors k⃗ lie
in the thermally softened area around the Fermi surface.

The energy of the phonon is always very much smaller than the Fermi energy of
the electrons.

Therefore, the electronphonon scattering is quasielastic.

The influence of electronphonon scattering on the electrical resistance depends
on the number of phonons.



Electric conductivity Density of states Heat capacity of the electron gas Revision

Electric conductivity 4 Comment 2

Therefore, it can be expected that the electrical resistance decreases with
decreasing temperature.

The figure outlines two scattering processes.

In one scattering process there is a large angle between the wave vectors of the
electrons, in the other scattering process the angle is small.

If the temperature is higher than the Debye temperature, then all phonon modes
within the 1st Brillouin zone are excited.

Since the dimensions of the Fermi sphere roughly correspond to the dimensions of
the 1st Brillouin zone, the scattering with phonons at the edge of the 1st Brillouin
zone can lead to large scattering angles.
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Electric conductivity 4 Comment 3

Such scattering processes hinder effectively the charge transport and increase the
electrical resistance.

For kBT >> ħmax, i.e. T > ΘD, n̄ is proportional to temperature, which explains the
linear increase in electrical resistance with temperature, i.e. ρ ∝ T.

If the temperature is much lower than the Debye temperature, only acoustic
phonons in the vicinity of the Γ point can be excited.

These phonons have a small momentum and therefore cannot change the
direction of propagation of the electron wave significantly.

For this reason, the influence of the electronphonon scattering on the electrical
resistance becomes very small when the temperature is much lower than the
Debye temperature and vanishes for T → 0.
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Electric conductivity 4 Comment 4

Remark on the temperature dependence of the electrical resistance at low
temperatures.

The temperature dependence of the heat capacity of the crystal lattices is simply
proportional to the number of phonons at low temperatures, i.e ∝ T3.

The temperature dependence of electrical resistance is quite complicated at low
temperatures.

At low temperatures only smallangle scattering is possible and the number of
phonons is proportional to q2. Compare the figure: It is not the phonons inside a
sphere with the radius q that contribute, only phonons on a circular disk with the
radius q contribute because of energy and momentum conservation.

The electronphonon coupling is proportional to q for small qvalues. Electrons can
more easily excite lattice vibrations with short than with long wavelengths.
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Electric conductivity 4 Comment 5

The scattering theory shows that the influence of forward scattering is proportional
to q2

Since qmax ∝ T one expects a low temperature dependence ∝ T 5.
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Density of states
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Sommerfeld model 3

Fermi sphere
Fermi distribution function
Electric conductivity
Density of states
Heat capacity of the electron gas
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Density of states 1

definition of the density of states (DOS)

D(E) =
1
V
dN
dE

DOS
number of electron states dN in an energy
interval dE around the energy E
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Density of states 1 Comment

The equation outlined in red gives the definition of the density of states.

The density of states gives the number of electron states in an energy interval dE
around the energy E.

The figure illustrates the situation for the Fermi sphere.

All k states that are in the blue ring contribute to the density of states at the energy
E in the interval dE.

The density of states for the Fermi energy D(EF) is particularly important because
it indicates the number of electrons that can be excited and take part in scattering
events.
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Density of states 2
number of k states in a spherical shell with the thickness dk and the radius k is

4πk2dk
(2π)3
V

the number of electron states within the shell is

dN = 2
4πk2dk
(2π)3
V

= V
k
π2 kdk

with E = ħ2k2/2m and dE = ħ2kdk/m

D(E) =
1
V
dN
dE

=

√
2m3

π2ħ3
√
E
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Density of states 2 Comment

The density of states can easily be calculated for the Fermi sphere of the
Sommerfeld model.

The number of k states results when the volume of a spherical shell 4πk2dk is
divided by the volume of a k state 2π3/V.

A factor of 2 must be taken into account for the number of electron states, since
every k state can be occupied by two electrons.

From the kinetic energy of a quasi free electron and the differential of the kinetic
energy it follows that the density of states is proportional to the square root of the
energy of the electron.
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Density of states 3
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Density of states 3 Comment

The figure shows the square root behavior of the density of states of quasi free
electrons.

The density of states is particularly important for the Fermi energy EF.

A little calculation shows that D(EF) is proportional to the density of the conduction
electrons and inversely proportional to the Fermi energy.



Electric conductivity Density of states Heat capacity of the electron gas Revision

Heat capacity of the electron gas
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Sommerfeld model 4

Fermi sphere
Fermi distribution function
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Heat capacity of the electron gas 1
the definition of the heat capacity is

C =
∂E
∂T

the number of electrons in an energy interval ∆E = kBT at the Fermi energy is with
the definition of the density of states D(E) = V−1dN/dE

∆N ∝ VD(EF)kBT

the additional energy due to an excitation with the energy kBT is

∆E ∝ VD(EF)(kBT)2
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Heat capacity of the electron gas 1 Comment

If one neglects the thermodynamic details, such as measurements at constant
pressure or constant volume, then the heat capacity is given simply by the change
in the energy of the conduction electrons with temperature, as indicated in the
formula in the first line.

The number of thermally excitable conduction electrons is determined by the
density of states at the Fermi energy.

The number of excitable electrons can be estimated with ∆E = kBT and the
density o states D(EF).

The equation underlined in red gives the number of these electrons.

Since the mean excitation energy is also given by kBT, the equation outlined in red
results for the change in energy due to thermal excitations.
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Heat capacity of the electron gas 2
the exact result of the Sommerfeld theory for the energy of an electron gas is

E(T) = E(T = 0) + V
π2

6
D(EF)(kBT)2

the heat capacity of an electron gas is

C = V
π2

3
D(EF)k2BT = NkB

π2

2
kBT
EF

= γT

heat capacity of metals at low temperatures

C = γT+ βT 3
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Heat capacity of the electron gas 2 Comment 1

The equation underlined in red gives the exact temperature dependence of the
energy of an electron gas in the Sommerfeld model.

This formula confirms the estimate on the previous page.

The first equation outlined in red gives the heat capacity of the conduction
electrons in the Sommerfeld model.

The heat capacity is proportional to the temperature and proportional to the
density of states for the Fermi energy.

This formula applies in general and also applies if the restrictions of the
Sommerfeld model are relaxed.
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Heat capacity of the electron gas 2 Comment 2

The following formula results when the density of states of the Sommerfeld model
is used.

The heat capacity of the electron gas is proportional to the ratio between the
thermal energy kBT and the Fermi energy EF.

The constant of proportionality between the heat capacity of the electron gas and
the temperature is denoted by γ.

The second equation outlined in red gives the heat capacity of a metal at low
temperatures.

The heat capacity is composed of the contribution of the conduction electrons,
which is proportional to the temperature, and the contribution of the phonons,
which is proportional to T3.
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Heat capacity of the electron gas 3
low temperature heat capacity of Copper
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Heat capacity of the electron gas 3 Comment 1

The left figure shows the heat capacity of Copper between 2 and 4 K.

The right figure shows the same experimental data.

Now Cp/T is plotted over T2.

The result is a straight line.

The slop of the straight line determines the contribution of the phonons β.

The intersection of the straight line with the Cp/Taxis results in the contribution of
the conduction electrons γ ≈ 0.7mJmol−1K−2.
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Heat capacity of the electron gas 3 Comment 2

It is worthwhile to compare these lowtemperature measurements of the specific
heat capacity of copper with the measurements of the specific heat capacity
shown in the last lecture.

The hightemperature DulongPetit limit case of the specific heat capacity is about
25 Jmol−1K−1 and there is a factor of about 1000 between the measurement at
low and high temperatures.

The contribution of the conduction electrons to the specific heat capacity at a
temperature of 100 K is in the range of 0.07 Jmol−1K−1.

This is very small compared to the specific heat capacity of 25 Jmol−1K−1 that is
reached at high temperatures.
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Heat capacity of the electron gas 3 Comment 3

The value β = 0.05mJmol−1K−4 for the parameter β can be determined from the
slope of the straight line in the picture on the right.

With the formula C = NkB 12π4

5 ( T
ΘD

)3 the Debye temperature of copper ΘD = 340 K
results.
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Heat capacity of the electron gas 4
C/T = γ + βT 2
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Heat capacity of the electron gas 4 Comment

As a second example, the figure shows the diagram Cp /T over T2 for potassium.

The intersection of the straight line with the Cp/Taxis results in the contribution of
the conduction electrons γ ≈ 2.08mJmol−1K−2.



Electric conductivity Density of states Heat capacity of the electron gas Revision

Heat capacity of the electron gas 5
Sommerfeld model

C = V
π2

3
D(EF)k2BT = NkB

π2

2
kBT
EF

→ γ = NkB
π2

2
kB
EF

e.g. copper EF = 7 eV

γ = 6 · 10−23mol−1π2

2
(8.617 · 10−5)2 eVK−2

7eV
1.6 · 10−19 AsV = 0.5mJmol−1 K−2

e.g. potassium EF = 2.12 eV

γ = 6 · 10−23mol−1π2

2
(8.617 · 10−5)2 eVK−2

2.12eV
1.6 · 10−19 AsV = 1.66mJmol−1 K−2
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Heat capacity of the electron gas 5 Comment

The numerical value of γ can easily be calculated using the Sommerfeld model.

The calculation gives the value γ = 0.5mJmol−1 K−2 for copper and
γ = 1.66mJmol−1 K−2 for potassium.

For both examples, the Sommerfeld model yields smaller numbers for γ than
those found in the experiment (γ = 0.7mJmol−1 K−2 for copper and
γ = 2.08mJmol−1 K−2 for potassium).
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Heat capacity of the electron gas 6

effective thermal electron mass m∗

since γ = NkB
π2

2
kB
EF

= NkBπ2 me

ħ2k2F
→ γ∗ = γ

m∗

me

γ∗ [mJmol−1 K−2] m∗

me

K 2.08 1.2

Cu 0.69 1.4

Fe 4.98 10

CeAl3 1500 200
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Heat capacity of the electron gas 6 Comment 1

The Sommerfeld model systematically underestimates the value of γ.

The measurements show that the density of states in the Fermi energy is greater
for all substances than can be expected from the Sommerfeld model.

Since the density of states according to the Sommerfeld model is proportional to
the mass of the charge carriers, instead of the mass of a free electron me, an
effective mass m∗ is introduced, which describes the increased γ values.

The table shows the experimentally determined γ values   for some elements and
an intermetallic compound.

The last column shows the ratio between the effective mass m∗ and the electron
mass me.
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Heat capacity of the electron gas 6 Comment 2

The numbers for potassium and copper can be checked directly from the
measurements and calculations on the previous pages.

Especially for the intermetallic compound CeAl3 the numerical value of γ is
remarkably large.

Since electrons are fermions and electrons have to be involved in some way in
transporting the charge, substances like CeAl3 called heavy fermion compounds.
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Heat capacity of the electron gas 6 Comment 3

The reason for the increased density of states at the Fermi energy lies in the
interaction of the conduction electrons with the crystal lattice.

The interaction between the conduction electrons and the crystal lattice is
neglected in the Sommerfeld model.

The effects of the interaction of the conduction electrons with the (static) crystal
lattice were explained in 1929 by Rudolf Peierls in collaboration with Heisenberg,
Sommerfeld and Pauli.

The theory is so fundamental that it is simply referred to as the semiclassical
model of electron dynamics.
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Summary in Questions

1. Why is the Debye temperature a characteristic temperature for the electrical
resistance of a metal?

2. What is the displacement of the Fermi sphere when an electric field strength of
1000 V/m is applied to a metal?

3. How is the density of states of an electron gas defined?
4. Calculate the density of states at the Fermi energy of copper.
5. Explain why the heat capacity of an electron gas is proportional to temperature.
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