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Bloch waves 1

each electron moves in a cloud of charge that is formed by other electrons in
the solid
the potential energy of each electrons has the periodicity of the crystal lattice
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Bloch waves 1 Comment 1

The Sommerfeld model assumes that the potential energy of an electron is
completely independent of the position.

The potential energy is a constant that is assigned the value zero.

Only the boundaries of the crystal lattice present a potential barrier, so the
electrons need an activation energy to leave the crystal.

The electrons are described by harmonic waves that are limited only by the
periodic boundary condition.

The next step in the approximation is therefore to include to periodicity of the
potential energy due to the crystal lattice.
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Bloch waves 1 Comment 2

It is assumed that each electron can move independently of the other electrons in
a charge cloud which is formed by the other electrons. This charge cloud has the
periodicity of the crystal lattice.

The independent electron approximation has already been used successfully to
determine the orbitals of atoms.

The figure tells the following story:

There are electrons that are tightly bound to their atoms.

The potential barrier between the atoms becomes narrower as the energy of the
electrons increases and there is a certain probability that the electrons can tunnel
through the barriers.
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Bloch waves 1 Comment 3

With increasing energy, the electrons begin to hop from atom to atom.

Finally, the transition probability between the atoms is so large that the atomic
orbitals merge into running waves.
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Bloch waves 2

time independent Schrödinger equation

Eφ(⃗r ) =

(
−ħ2∇ 2

2m
+ Epot(⃗r )

)
φ(⃗r )

and
Epot(⃗r ) = Epot(⃗r+ R⃗)

with
R⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3
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Bloch waves 2 Comment 1

The equation outlined in red shows the Schrödinger equation for an electron with
kinetic and potential energy in a crystal lattice.

The potential energy of the electron is determined by the positive nuclei and the
negative charge cloud of the other electrons of the crystal.

The potential energy depends on the electron in question.

The electrons are characterized by the type of atom and the particular orbital in
which they reside.

Since samples are considered whose dimensions are much larger than the mean
free path of the electrons, the special situation of atoms close to the surface can
be neglected when describing the electrical properties of the volume.
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Bloch waves 2 Comment 2

In the case of copper, the potential energy for each electron has to be determined
from the 1s to the 4s orbital.

Of course, the potential energy of the 1s electrons is very different from the
potential energy of the 4s electrons, which are the conduction electrons in copper.

But regardless of the details, the potential energy for all electrons is a periodic
function of the crystal lattice.

As before, the vectors R denote the vectors of the Bravais lattice.
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Bloch waves3

cubic unit cell and a primitive unit cell (red rhombohedron) of the fcc lattice

a⃗1 =
a
2
(
e⃗x + e⃗z

)
a⃗2 =

a
2
(
e⃗y + e⃗x

)
a⃗3 =

a
2
(
e⃗z + e⃗y

)
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Bloch waves 3 Comment

Copper is used as an example below to illustrate the results.

The crystal lattice of copper is an fcc lattice.

The figure shows the cubic and a primitive unit cell of the fcc lattice.
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Bloch waves 4

cubic unit cell of the diamond structure
(fcc lattice with two atoms in the primitive unit cell)

(Diamantstruktur.mp4)

Diamantstruktur.mp4
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Bloch waves 4 Comment

To illustrate the results, silicon and germanium, which crystallize in the diamond
structure, are discussed below.

The sketches show the cubic unit cell of the diamond structure, which is an fcc
lattice with a diatomic base.

In the sketch on the right, the two types of atoms are marked in red and blue.

A primitive unit cell of the fcc lattice (e.g. the rhombohedron of the previous slide)
contains one atom marked in red and one in blue.
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Bloch waves 5
Solution of the Schrödinger equation

Eφ(⃗r ) =

(
−ħ2∇ 2

2m
+ Epot(⃗r )

)
φ(⃗r)

in principle: sum over plane waves

φ(⃗r ) =
∑
k⃗

ak⃗ exp(i⃗k⃗r)

better idea: Bloch waves (Felix Bloch 1928)

φk⃗(⃗r ) = u(⃗r )exp(i⃗k⃗r )

with u(⃗r ) = u(⃗r+ R⃗)
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Bloch waves 5 Comment 1

In principle it is possible to develop the solution of the Schrödinger equation in
plane waves.

But since the atomic orbitals of the electrons are still important, this is not a good
idea.

The first step towards solving the problem of the wave function in a crystal lattice
was taken by Felix Bloch in 1928.

He proposed modulated plane waves to solve the Schrödinger equation.

His approach is so fundamental that the waves have been named after him ever
since.

The equation outlined in red shows a general Bloch wave.
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Bloch waves 5 Comment 2

The Bloch wave is a plane wave that is multiplied by an amplitude function u(⃗r).

The amplitude function u(⃗r ) has the periodicity of the crystal lattice.

The amplitude function u(⃗r ) makes it possible to establish the relationship
between the localized atomic orbitals on the one hand and the propagating wave
function of the crystal lattice on the other.

A strategy for determining the function u(⃗r ) was proposed in 1937 by J.C. Slater
with the augmented plane wave method.

In the augmented plane wave method, the crystal volume is divided into spherical
areas around the atoms.
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Bloch waves 5 Comment 3

The localized atomic orbitals are calculated in the spheres, which are then
connected by plane waves in the volume between the spheres.

The mathematical problems of the augmented plane wave method are great and
have been solved over time by the work of many scientists.

As soon as one has useful wave functions, the same procedure is used to solve
the Schrödinger equation that is used for solving a single atom.

The charge densities in the crystal are calculated using the wave functions.

With the charge densities, the potential energy of the selected electron can be
calculated.
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Bloch waves 5 Comment 4

The wave function of the selected electron is characterized by the quantum
numbers of the atomic orbital and by the wave vector of the Bloch wave.

The Schrödinger equation for the selected electron can be solved with the
potential energy.

These calculations have to be done for all orbitals occupied by electrons.

E.g. in the case of copper for the electrons of the 1s to 4s orbitals.

These calculations give an improved set of wave functions that reduce the total
energy of the electrons.

The process is repeated iteratively with the refined wave functions until the
minimum of the total energy is found.
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Bloch waves 5 Comment 5

In solid state physics, this is known as the band structure calculation.

The mathematical details are complicated, but fortunately only relevant for real
calculations of the wave functions in a crystal lattice.

The theoretical and numerical details of band structure calculations do not need to
be known in order to understand the essential electronic properties of solids.

The most important properties are already determined by the symmetry of the
Bloch waves.
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Bloch waves 6

the probability density to find an electron is φ∗
k⃗
· φk⃗

with
φk⃗(⃗r ) = u(⃗r )ei⃗k⃗r and u(⃗r ) = u(⃗r+ R⃗)

is
|φk⃗(⃗r )|

2 = |u(⃗r )|2 = |φk⃗(⃗r+ R⃗)|2

and the probability density is periodic in the crystal lattice

the solutions of the Schrödinger equation in a crystal lattice have the form of Bloch
waves

E(⃗k )φk⃗(⃗r ) =

(
−ħ2∇ 2

2m
+ Epot(⃗r )

)
φk⃗(⃗r )
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Bloch waves 6 Comment

The probability of finding an electron is given by the square of the wave function.

Only the amplitude function contributes to the calculation of the probability density,
since the exponential functions do not contribute to the square of the absolute
value.

Since the probability density has to show the periodicity of the potential energy, the
amplitude function has to be a periodic function in the crystal lattice.

The solutions of the Schrödinger equation in a crystal lattice have the form of Bloch
waves and the energy eigenvalues   depend on the wave vector of the Bloch wave.

There are also other quantum numbers that characterize the energy and the wave
function, e.g. the quantum numbers of the atomic orbitals, which are included in
the amplitude function.

For the sake of simplicity, I leave out these additional quantum numbers.
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Bloch waves 7
definition of the reciprocal lattice

K⃗R⃗ = 2πn

vectors of the Bravais lattice R⃗ = n1a⃗1 + n2a⃗2 + n3a⃗3
vectors of the reciprocal lattice K⃗ = hb⃗1 + kb⃗2 + ℓ⃗b3

b⃗1 =
2π
Vcell

(a⃗2 × a⃗3)

b⃗2 =
2π
Vcell

(a⃗3 × a⃗1)

b⃗3 =
2π
Vcell

(a⃗1 × a⃗2)

Vcell denotes the volume of the primitive unit cell Vcell = a⃗1(a⃗2 × a⃗3)



Bloch waves Quasifree electrons in the sclattice Revision

Bloch waves 7 Comment

Now it is necessary to recall the definition of the reciprocal lattice.

The scalar product of a reciprocal lattice vector with a vector of the Bravais lattice
is equal to a multiple of 2π.

The basis vectors of the reciprocal lattice can easily be calculated with the basis
vectors of the Bravais lattice and vice versa.
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Bloch waves 8
Bloch waves are periodic in the reciprocal lattice

φk⃗(⃗r ) =u(⃗r )e
i⃗k⃗r

=u(⃗r )e−iK⃗⃗rei⃗k⃗re+iK⃗⃗r

=u ′(⃗r )ei(⃗k+K⃗)⃗r with u ′(⃗r) = u(⃗r)e−iK⃗⃗r

small auxiliary calculation

u ′(⃗r ) =uk⃗(⃗r )e
−iK⃗⃗r with u(⃗r) = u(⃗r+ R⃗)

=u(⃗r+ R⃗)e−iK⃗⃗r with K⃗R⃗ = 2πn

=u(⃗r+ R⃗)e−iK⃗(⃗r+R⃗) = u ′(⃗r+ R⃗)

therefore
φk⃗+K⃗(⃗r ) = u ′(⃗r )ei(⃗k+K⃗)⃗r = φk⃗(⃗r )
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Bloch waves 8 Comment 1

A very important property of Bloch waves is that they are periodic in the reciprocal
lattice.

It is always possible to add a vector of the reciprocal lattice K⃗ to the wave vector of
a Bloch wave.

This shows a small calculation.

The Bloch wave of the first line is multiplied by one in the second line, i.e.
1 = e−iK⃗⃗re+iK⃗⃗r.

In the third line the function u(⃗r )e−iK⃗⃗r is denoted by u ′(⃗r ).

The little auxiliary calculation shows that u ′(⃗r ) is also a periodic function in the
crystal lattice, i.e. u ′(⃗r ) = u ′(⃗r+ R⃗).
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Bloch waves 8 Comment 2

So the function φk⃗+K⃗(⃗r ) = u ′(⃗r )ei(⃗k+K⃗)⃗r is also a Bloch wave according to the
definition but now for the wave vector k⃗+ K⃗.

The Bloch wave for the wave vector k⃗+ K⃗ is identical to the Bloch wave for the
wave vector k⃗, since this Bloch wave was simply multiplied by the number one, i.e.
1 = e−iK⃗⃗re+iK⃗⃗r.

Bloch waves are periodic functions in the reciprocal lattice.

But neither the vectors k⃗ nor the functions u(⃗r) are unique, i.e. k⃗ → k⃗+ K⃗ and
u(⃗r) → u(⃗r )e−iK⃗⃗r.



Bloch waves Quasifree electrons in the sclattice Revision

Bloch waves 9

Bloch waves are periodic functions in the reciprocal lattice

φk⃗(⃗r ) = φk⃗+K⃗(⃗r )

the energy eigenvalues of the Schrödinger equation are therefore also periodic in
the reciprocal lattice

E(⃗k) = E(⃗k+ K⃗)

the functions E(⃗k) are called energy bands
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Bloch waves 9 Comment 1

The first underlined equation formulates the periodicity of the Bloch waves in the
reciprocal lattice.

Due to the periodicity of the wave function in the reciprocal lattice, the energy
eigenvalues   of the Schrödinger equation in the reciprocal lattice are also periodic
functions.

The functions of the energy eigenvalues   E(⃗k ) are called energy bands.

The k⃗ vectors that are necessary to describe electron waves in a crystal lattice can
be restricted to a primitive unit cell of the reciprocal lattice.

This is pleasant, as one can restrict oneself to a primitive unit cell of the reciprocal
lattice when calculating the energy bands.
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Bloch waves 9 Comment 2

The wave vector k⃗ characterize the translation properties of the Bloch wave:

φk⃗(⃗r+ R⃗) = u(⃗r+ R⃗)ei⃗k(⃗r+R⃗) = u(⃗r)ei⃗kR⃗ei⃗k⃗r = ei⃗kR⃗φk⃗(⃗r).

Because of K⃗R⃗ = n2π the proportionality factor ei⃗kR⃗ characterizing the translation
is the same for all vectors k⃗+ K⃗.

Note: In free space ψ(⃗r) = ψ0ei⃗k⃗r is an eigenfunction of the momentum operator
ˆ⃗p = −iħ∇. With ψ(⃗r+ R⃗) = ψ0ei⃗k(⃗r+R⃗) = ei⃗kR⃗ψ(⃗r) the eigenfunction of the
momentum operator behave similar to the Bloch function φk⃗(⃗r+ R⃗) = ei⃗kR⃗φk⃗(⃗r).
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Bloch waves 9 Comment 3

The vector k⃗ of a Bloch wave φk⃗ describes the properties of the wave function
under translation similar to the vector k⃗ of the eigenfunction of the momentum
operator.

However, since φk⃗(⃗r) is not an eigenfunction of the momentum operator, the vector
k⃗ of the Bloch waves does not give the momentum of the particles described by
the wave function.

The momentum of a particle described by a Bloch wave is not fixed.

Therefore the vector k⃗ of a Bloch wave is called crystal or quasimomentum.

This is somewhat misleading, since the vector k⃗ of the Bloch wave only describes
the translational properties of the wave function and not the momentum of the
particles.
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Quasifree electrons in the sclattice
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Energy bands and Fermi surfaces 1

Quasifree electrons in the sclattice
Sodium
Copper
Silicon



Bloch waves Quasifree electrons in the sclattice Revision

Quasifree electrons in the sclattice 1

Consider an electron in a simple cubic lattice with nearly negligible potential energy

1st Brillouin zone of the sc lattice: a⃗1 = ae⃗x, a⃗2 = ae⃗y, a⃗3 = ae⃗z

and b⃗1 = 2π
Vcell

(a⃗2 × a⃗3), b⃗2 = 2π
Vcell

(a⃗3 × a⃗1), b⃗3 = 2π
Vcell

(a⃗1 × a⃗2)

b⃗1 =
2π
a3

(ae⃗y × ae⃗z) =
2π
a
e⃗x

b⃗2 =
2π
a
e⃗y

b⃗3 =
2π
a
e⃗z
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Quasifree electrons in the sclattice 1 Comment

As an example, consider an electron in a simple cubic lattice.

The figure shows the 1st Brillouin zone of a simple cubic lattice.

The basis vectors b⃗i of the reciprocal lattice are parallel to the basis vectors of the
Bravais lattice a⃗i.

The Bragg planes which enclose the 1st Brillouin zone intersect the basis vectors
of the reciprocal lattice in the middle over a length of π/a away from the Γ point
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Quasifree electrons in the sclattice 2

E(⃗k) =
ħ2k⃗2

2m
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Quasifree electrons in the sclattice 2 Comment

The figure shows the parabola of the kinetic energy of the free electrons e.g. along
the x, y, or zaxis of the simple cubic lattice, when the influence of the crystal
lattice can be completely neglected.

This is the situation of the Sommerfeld model.
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Quasifree electrons in the sclattice 3: periodic zone scheme

k⃗ || b⃗1,2, or 3
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Quasifree electrons in the sclattice 3 Comment

If the modulation of the potential energy is still small, but no longer completely
negligible, the solution of the Schrödinger equation in a periodic potential must be
considered.

The energy is periodic in the reciprocal lattice, i.e. E(⃗k) = E(⃗k+ K⃗).

The figure shows the resulting band structure if the kvector is parallel to one of
the basis vectors of the reciprocal lattice b⃗1,2,3.

By adding reciprocal lattice vectors, the parabola of the kinetic energy is shifted.

This representation of the band structure is called the periodic zone scheme.
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Quasifree electrons in the sclattice 4: reduced zone scheme
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Quasifree electrons in the sclattice 4 Comment

The shaded area in the picture shows the band structure within the 1st Brillouin
zone.

This section of the band structure is sufficient because the entire band structure
results from the translation of the 1st Brillouin zone.

The representation of the band structure within the 1st Brillouin zone is called the
reduced zone scheme.
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Quasifree electrons in the sclattice 5
periodic boundary conditions:

volume of a single k state
(2π)3

V
volume of the 1st Brillouin zone is

(2π)3

VCell

VCell volume of the primitive elementary cell of the Bravais lattice

The number of k states in the 1st Brillouin zone equals the number of primitive
unit cells of the crystal lattice

(2π)3/VCell
(2π3)/V

= V/VCell = N
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Quasifree electrons in the sclattice 5 Comment 1

Since finite crystal lattices are always considered, periodic boundary conditions
must also be used for the Bloch waves.

The wave vectors do not change continuously, but in discrete steps.

The first formula underlined in red indicates the volume in k space that a wave
vector can occupy.

V denotes the volume of the crystal.

The second formula underlined in red gives the volume of the 1st Brillouin zone.

For a simple cubic lattice, the formula (2π)3/a3 results.
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Quasifree electrons in the sclattice 5 Comment 2

Similar to the lattice vibrations, with the Bloch waves the total number of different
wave vectors in the 1st Brillouin zone is equal to the number of primitive unit cells
in the crystal lattice.

Due to the Pauli principle, each Bloch wave can be occupied with a maximum of
two electrons.
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Quasifree electrons in the sclattice 6
one quasifree electron per primitive unit cell of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2)
1
3

a
=

3.09
a

<
π
a
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Quasifree electrons in the sclattice 6 Comment 1

If the influence of the periodicity of the potential energy is very small, the kinetic
energy of the electrons E(⃗k) = ħ2k⃗ 2/2m remains almost unchanged.

As in the Sommerfeld model, the occupied k states at T = 0 are enclosed by the
Fermi sphere.

The formula calculates the radius of the Fermi sphere for the case that there is
one electron in a primitive cubic unit cell with the lattice parameter a.

The left figure shows the band structure of the Bloch waves for quasifree
electrons in the periodic zone scheme.

The wave vector k⃗ lies parallel to the connecting line between the Γ point and the
X point of the 1st Brillouin zone.
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Quasifree electrons in the sclattice 6 Comment 2

The red marked area of   the parabolas shows the occupied k states at T = 0 .

The figure on the right shows the Fermi sphere in the periodic zone scheme.

The red circular areas indicate the k states that are occupied at T = 0.
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Quasifree electrons in the sclattice 7
two electrons per primitive unit cell of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2 · 2)
1
3

a
=

3.9
a

>
π
a
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Quasifree electrons in the sclattice 7 Comment

Now consider the case where there are two conduction electrons in the primitive
unit cell of a simple cubic crystal lattice.

The formula calculates the radius of the Fermi sphere.

The left figure shows the band structure for quasifree electrons in the periodic
zone scheme.

The wave vector k⃗ lies parallel to the connecting line between the Γ point and the
X point of the 1st Brillouin zone.

The parabolas drawn in red denote the occupied k states at T = 0.

The right figure now shows the Fermi sphere, which is partly in the 1st Brillouin
zone and partly in the 2nd Brillouin zone.
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Quasifree electrons in the sclattice 8

the reduced zone scheme for two electrons per primitive unit cell of a simple cubic lattice
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Quasifree electrons in the sclattice 8 Comment 1

In the reduced zone scheme, only the 1st Brillouin zone is taken into account.

The left figure shows the part of the Fermi sphere that lies in the 1st Brillouin zone.

The middle figure shows the part of the Fermi sphere that lies in the 2nd Brillouin
zone.

By adding a vector of the reciprocal lattice, the spherical segments are shifted into
the 1st Brillouin zone.

The right figure shows the energy bands when the k vector points from the Γ point
of the 1st Brillouin zone to the X point.

In the reduced zone scheme, only the area highlighted in gray is considered.
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Quasifree electrons in the sclattice 8 Comment 2

The occupied states are marked in red.

There is an energy band for the k states originally located in 1st Brillouin zone and
a second energy band for the k states shifted in 1st Brillouin zone.
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Quasifree electrons in the sclattice 9

Fermi surfaces for two electrons per primitive unit cell of a simple cubic lattice

The occupied k states of the 1st energy band in the reduced zone scheme (left)
and the periodic zone scheme (right)
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Quasifree electrons in the sclattice 9 Comment

The left figure shows in the reduced zone scheme the occupied k states of the
lowest energy band.

The right figure shows in the periodic zone scheme the occupied k states of the
lowest energy band.

In the periodic zone scheme, the Fermi surface of the lowest energy band
becomes visible.

The Fermi surface encloses the almost square white areas.
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Quasifree electrons in the sclattice 10
Fermi surfaces for two electrons per primitive unit cell of a simple cubic lattice

The occupied k states of the 2nd electron band in the reduced zone scheme (left)
and the periodic zone scheme (right)
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Quasifree electrons in the sclattice 10 Comment

The left figure shows the occupied k states of the second energy band in the
reduced zone scheme.

The right figure shows the occupied k states for this band in the periodic zone
scheme.

The Fermi surface for this band encloses the surfaces drawn in red, which in
threedimensional space have the shape of a discus.
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Quasifree electrons in the sclattice 11

energy gaps open at the intersection points of the energy bands
→ “avoided level crossing”
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Quasifree electrons in the sclattice 11 Comment 1

Energy gaps open when the periodicity of the potential energy is no longer
negligibly small.

The figure on the left side shows the 1st Brillouin zone of the simple cubic lattice.

Figure a) on the right shows the band structure between the Γ point and X when
the periodicity of the potential energy is negligibly small.

Figure b) shows what happens when the periodicity of the potential energy can no
longer be neglected.

Energy gaps open at the intersection of the energy bands.
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Energy bands and Fermi surfaces 11 Comment 2

It is a common feature of quantum mechanics that energy levels avoid crossing
points.

The energy gaps increase with increasing periodic variation of the potential energy.

The energy gaps get bigger and the energy bands get narrower.

The stronger the periodic variation of the potential energy, the better the electrons
are localized on their atoms and the narrower the energy bands are.

The width of an energy band indicates the mobility of the electrons.

The narrower a band, the better the electrons are localized on their atoms.
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Quasifree electrons in the sclattice 12
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Quasifree electrons in the sclattice 12 Comment 1

The left figure illustrates the situation of a metal.

Not all k states of an energy band are occupied by two electrons.

Only a small amount of energy is required to excite electrons.

When an electric field is applied to the solid, an electric current flows and the solid
is a metal.

The figure on the right shows the situation of an insulator.

If all k states of an energy band are occupied by two electrons, the excitation
energy is determined by the smallest energy gap to the next higher energy band.
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Quasifree electrons in the sclattice 12 Comment 2

If this energy gap is much larger than the thermal energy at room temperature, no
electric current can be induced by an applied electric field.

All electrons are blocked in their k states and the solid is an insulator.

The transition between an insulator and a semiconductor is gradual.

If the energy gap is small enough that electrons can be thermally excited at room
temperature via the energy gap, one speaks of a semiconductor or semimetal if
the energy gap is even smaller.

When the temperature is lowered, the conductivity of these materials becomes
lower because the number of excited electrons also becomes smaller.
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Quasifree electrons in the sclattice 12 Comment 3

This is in contrast to metals, where the electrical resistance is determined by
electronphonon scattering.

The conductivity of metals increases with decreasing temperature, as
electronphonon scattering freezes out.

The requirement that all k states of an energy band must be occupied for an
insulator, however, applies to the entire reciprocal lattice.

In the cubic model system considered at the beginning, the lowest band is
metallic, since there are unoccupied states for this band in the reciprocal lattice.

Usually there is an energy gap between the bands, which can cause the electrons
of the 2nd band to migrate to the lowest band and fill the free k states.
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Quasifree electrons in the sclattice 12 Comment 4

If the number of electrons in the primitive unit cell is even, all k states of the
occupied energy bands can be completely occupied by electrons and there is a
good chance that the solid is an insulator.
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Summary in Questions

1. Give the definition of a Bloch wave.
2. The kvector is a quantum number which characterizes the translation

symmetry of the Bloch waves. How?
3. The kvector of a Bloch wave is sometimes called a crystal or

quasimomentum. Why?
4. How many different wave kvectors are there within the 1st Brillouin zone.
5. Sketch the band structure of quasifree electrons in a simple cubic crystal

lattice for the path ΓXMΓ for the 1st and 2nd energy bands.
6. Calculate the Fermi wave number kF when 3 electrons are in the primitive unit

cell of the simple cubic lattice.
7. Sketch the Fermi surfaces for the 2nd and 3rd energy band in the reduced and

periodic zone scheme.
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