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Sodium 1

Sodium atoms form a bcc lattice ( and the reciprocal lattice is an fcc lattice)

The shortest distance between the center and the boundaries of the 1st

Brillouin zone is between the Γ and the N point with 1
2
√
22π

a = 4.44
a
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Sodium 1 Comment

Metallic sodium is considered as the first realistic example.

Sodium crystallizes in a bcc lattice.

The left figure shows the cubic unit cell.

The right figure shows the 1st Brillouin zone.

The reciprocal lattice of sodium is an fcc lattice.

The shortest distance between the Γ point and the surface of the 1st Brillouin zone
is the distance Γ­N with about 4.44/a.
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Sodium 2

The electron configuration of the free sodium atom is [Ne]3s1

The periodic variation of the potential energy of the 3s electron is small
Since the cubic cell of the bcc lattice contains 2 sodium atoms, the electron
density is 2/a3 and the Fermi wave number is

k3F = 3π2N
V

= 3π2 2
a3

→ kF =
3.9
a

<
4.44
a

The Fermi sphere of the 3s electrons is well enclosed in the 1st Brillouin zone
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Sodium 2 Comment

The 3s electron of the sodium atom is the conduction electron.

The variation in the potential energy of the 3s electron is small and the quasi­free
electron approximation is not that bad.

The Fermi wave number can be calculated with the electron density.

The Fermi sphere is enclosed by the 1st Brillouin zone.

The following figure shows the Fermi sphere within the 1st Brillouin zone of sodium.
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Sodium 3

Fermi sphere and 1st Brillouin zone of sodium
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Sodium 4
band structure of metallic sodium
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Sodium 4 Comment 1

The figure on the left shows the band structure of metallic sodium along the
indicated directions within the 1st Brillouin zone.

The right figure shows the 1st Brillouin zone of the bcc lattice with the symmetry
points.

The band structure of sodium is very close to the band structure of the quasi­free
electron approximation.

The figure shows that even the free electron approximation in three dimensions
leads to an astonishingly complex band structure, although it results from the
parabolas of the kinetic energy of a quasi­free electron.

The properties of metallic sodium are determined by the electrons on the Fermi
surface.
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Sodium 4 Comment 2

The thermal energy at room temperature (300 K) is only kBT ≈ 26 mK and is much
smaller than the Fermi energy.

The red lines indicate the occupied k states.

The occupied k states with the highest energy determine the Fermi surface, which
is a sphere to a good approximation.

As expected, the N point of the 1st Brillouin zone has the smallest distance to the
Fermi surface (indicated by the small arrow).
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Copper 1

band structure of Copper

The electron configuration of metallic copper is [Ar]4s13d10

The energy levels of the 4s and 3d electrons are close to each other
The 4s electron is the conduction electron
Since the cubic cell of the fcc lattice contains 4 copper atoms, the density of
the 4s electrons is 4/a3 and the Fermi wave number is

k3F = 3π2N
V

= 3π2 4
a3

→ kF =
4.9
a
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Copper 1 Comment

The periodic table shows that the 4s orbital is first occupied by two electrons
before the 3d orbitals of the transition metals are filled with electrons.

However, if it is possible to use the 4s electrons to create a half or fully filled 3d
shell, then 4s electrons will end up in the 3d orbitals.

The energies of the 4s orbital and the 3d orbital are close to each other.

In the case of copper, this results in the [Ar]4s13d10 configuration.

The 4s electron is the conduction electron for which the Fermi wave number
kF = 4.9/a results.
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Copper 2
cubic unit cell and 1st Brillouin zone of copper

The distance between the Γ point and X is 2π/a ≈ 6.2/a
The distance between the Γ point and L is 1

2
2π
a
√
3 ≈ 5.4/a

The Fermi sphere of the 4s electrons is enclosed by the 1st Brillouin zone
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Copper 2 Comment

The left figure shows the cubic fcc unit cell of copper and the right figure the 1st

Brillouin zone.

The distance between the L point on the hexagonal surface of the 1st Brillouin
zone and the Γ point is with 5.4/a the smallest between the surface of the 1st

Brillouin zone and the Γ point.

The Fermi sphere of the 4s electrons lies within the 1st Brillouin zone.
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Copper 3 Comment 1
The left part of the figure shows the density of states of the electrons that occupy
the 3d orbitals and the 4s orbital.

The electrons of the 4s and the 3d orbitals share the same energy range.

The middle part of the figure shows the band structure of copper.

The 1st Brillouin zone is sketched on the right to show the directions in which the
band structure was measured and calculated.

The 4s electrons show roughly the behavior of the free electrons.

For comparison I have drawn a red dotted parabola for the kinetic energy of the
quasi­free 4s electrons.

Compared to the band of 4s electrons, the bands of 3d electrons are narrow.
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Copper 3 Comment 2

This suggests that the mobility of the 3d electrons is rather low.

Although the 3d electrons are not bound to the copper atoms, they cannot
contribute to the conductivity of copper.

The energy of the 3d electrons is well below the Fermi energy of the 4s electrons.

There are five 3d bands and ten 3d electrons per copper atom.

All k states are therefore occupied by two 3d electrons, so that the 3d bands
cannot contribute to the conductivity of copper.

Since there are five comparatively narrow 3d bands, the density of states of the 3d
electrons is concentrated in a small energy range and therefore large compared to
the density of states of the 4s electrons.
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Copper 3 Comment 3

The energy band of the 4s electrons must pass through the area of   the 3d energy
bands.

This leads to avoided level crossings and there are no electron states on the
idealized parabola in this energy range.

The 4s electrons with the highest energy define the Fermi surface.

The occupied k states reach the Fermi energy near the X and K points

I have marked these points in the band structure with blue arrows.
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Copper 3 Comment 4

The Fermi surface is slightly closer to the X point than to the K point. (The distance
Γ­K is 3π√

2a
≈ 6.66/a)

The band structure in the area of the L   point is remarkable.

The energy of the k states of the 4s electron is smaller than the Fermi energy, i.e.
there is no Fermi surface in the area of   the L point.

(Remember that the Fermi surface is defined by the occupied k states with the
Fermi energy. Only electrons that occupy these k states can easily be excited
thermally or by an external electric field.)
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Copper 4 Comment 1

The left figure shows the Fermi surface of copper and the right figure again the 1st

Brillouin zone of the fcc lattice.

The Fermi surface is almost spherical with the remarkable deviations at the L
points.

The energy of the k states within the black circles at the L points is smaller than
the Fermi energy.

Only at the edge of the black circles does the energy of the k states reach the
Fermi energy.

The Fermi surface is shown in gray.
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Copper 4 Comment 2

The contour lines around the L point indicate that the Fermi surface rises above
the level of a spherical Fermi surface.

The contour lines in the area of   the K point indicate that the Fermi surface is
slightly below the level of a spherical Fermi surface.
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Copper 5

Fermi surface of copper in the reduced (left) and the periodic zone scheme (right)
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Copper 5 Comment

The figure on the left shows the Fermi surface in a reduced zone scheme.

The figure on the right shows the Fermi surface in the periodic zone scheme.

The lines with the arrows in the figure on the left cannot be explained with the
current status of the discussion.

They indicate closed electron orbits in a magnetic field.

The periodic zone scheme shows that there can also be open electron orbits in
copper that pass the boundaries of the 1st Brillouin zone.

What electron orbits are is explained in the Electron Dynamics section.
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Silicon
band structure of Silicon
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Silicon Comment 1
The figure shows the band structure of Silicon.

The diamond structure of Silicon is due to the 3sp3 hybrid orbitals.

The crystal structure is an fcc lattice with two silicon atoms inside the primitive unit
cell.

The 1st Brillouin zone of the fcc lattice is shown on the right.

The band structure shows the quasi­free electron parabolas, i. e. the electrons of
the 3sp3 hybrid orbitals are not localized at all but are very mobile.

Because the number of valence electrons within the primitive unit cell is even,
silicon is not a metal (electron configuration of silicon [Ne] 3s2, 3p2).

The shaded energy bands are fully occupied.
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Silicon Comment 2

All k states of the energy bands with in the 1st Brillouin zone are occupied with two
electrons (spin up and down).

The bottom of the next excited unoccupied energy band is separated by an energy
gap of approximately 1 eV from the top of the highest occupied energy band.

The energy gap correspond to a temperature of about 11600 K (1 eV = kBT).

Consequently only a very small number of electrons can be excited over the
energy gap at room temperature.

Silicon is known as a semiconductor, i.e. it is not a very good insulator but certainly
a very bad conductor.
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Silicon Comment 3

Electrons from the top of the highest occupied energy band at the Γ point have to
gain momentum in addition to energy in order to reach the bottom of the first
excited band in the range of the X point of the 1st Brillouin zone.

Therefore Silicon is called an indirect semiconductor.

In a direct semiconductor the bottom of the lowest excited energy band can be
reached from the top of the highest occupied energy band without an additional
momentum.
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Electron dynamics

up to now: time independent Schrödinger equation

Eφk⃗(⃗r ) =

(
−ħ2∇ 2

2m
+ Epot(⃗r )

)
φk⃗(⃗r ) with Epot(⃗r ) = Epot(⃗r+ R⃗)

Solution: Bloch waves

φk⃗(⃗r ) = u(⃗r )exp(i⃗k⃗r ) with u(⃗r ) = u(⃗r+ R⃗)

and
E(⃗k) = E(⃗k+ K⃗) and φk⃗(⃗r ) = φk⃗+K⃗(⃗r )
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Electron dynamics Comment 1

So far only the idealized Hamiltonian of the electrons in a perfect periodic crystal
lattice has been considered.

The electrons were assumed to move independently in a mean potential formed
by all other electrons and the atomic nuclei.

The Schrödinger equation can be solved using Bloch waves, which can be
determined with great accuracy.

Nevertheless, the Bloch wave does not describe the real conditions in a crystalline
solid.

The electron waves are scattered by lattice vibrations, impurities, and other lattice
defects, and the electron waves respond to applied electric and magnetic fields or
to bombardment with photons, electrons, or other particles.
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Electron dynamics Comment 2

The first steps in describing the response of electrons in a crystal to external fields
were taken by Rudolf Peierls in 1929.

Leaving aside all the complicated theoretical considerations, the result of his work
can be summarized as follows:

Electrons are described by wave packets formed by the Bloch waves.

Neither the energy nor the momentum of the electrons are precisely defined in the
sense that they are eigenvalues   of the Hamiltonian or the momentum operator.

But both the energy and the momentum are reasonably well determined by the
wave packets.
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Electron dynamics 1
wave packets

wave packets move with the group velocity

vx(⃗k0) =
∂ω(⃗k)
∂kx

∣∣∣∣∣⃗
k=k⃗0

=
1
ħ
∂E(⃗k)
∂kx

∣∣∣∣∣⃗
k=k⃗0
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Electron dynamics 1 Comment 1

Although the formation of wave packets from Bloch waves is a mathematically
well­defined procedure, it is nevertheless very demanding.

Within the framework of Peierl’s theory, however, it turns out that only properties of
wave packets that are already known from classical wave physics are important.

The figure shows a classic wave packet in position and momentum space.

The wave packets are created by the superimposition of many waves with slightly
different wave vectors.

The figure on the left shows a wave packet in position space and the figure on the
right shows the amplitude function F(k) of the waves contributing to the
superposition.
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Electron dynamics 1 Comment 2

Most important is the fact that wave packets propagate with the group velocity.

The equation outlined in red gives the formula used to calculate the group velocity.

The group velocity results from the derivation of the frequency with respect to the
components of the wave vector.

The frequency ω(⃗k) can be replaced by the band energy E(⃗k) of the Bloch wave.

It is not the phase velocity of the Bloch waves that is important for electron
dynamics, but the group velocity of the wave packets.

The speed of the band electrons is determined by differentiating the band energy
E(⃗k) according to the components of the wave vector.



Sodium Copper Silicon Electron dynamics Revision

Electron dynamics 1 Comment 3

If the energy is constant, i.e. independent of the wave vector, the group velocity is
zero and the electrons are localized.

The greater the derivative of the band energy with respect to the components of
the wave vector, the greater the speed of the wave packets.
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Electron dynamics 2
equation of motion of a wave packet

ħ ˙⃗k = F⃗ = qE⃗+ qv⃗× B⃗ with q = −e

acceleration of a wave packet

a =
dv
dt

=
d
dt

(
1
ħ
∂E(k)
∂k

)
=

1
ħ2

(
∂2E(k)
∂k2

)
ħk̇

comparison with Newton’s equation of motion

a = m−1F

effective mass tensor

m−1 =
1
ħ2

∂2E(k)
∂k2
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Electron dynamics 2 Comment 1

A truly remarkable result of Peierl’s theory is that the equation of motion of a wave
packet in an electromagnetic field is formally identical to Newton’s equation of
motion.

The theory of Peierls is therefore known as semi­classical electron dynamics.

The first equation, outlined in red, provides this amazingly simple result of a fairly
sophisticated calculation.

The wave vector k⃗ refers to the center of gravity of the wave packet, which was
named k⃗0 in the first slide.

The index 0 is omitted below.
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Electron dynamics 2 Comment 2

The time derivative of the crystal momentum ħk⃗ is equal to the sum of the electric
force qE⃗ and the Lorentz force qv⃗× B⃗.

In Newtonian mechanics, the time derivative of the momentum corresponds to the
force F⃗.

If you calculate the acceleration of a wave packet, i.e. the derivation of the speed
over time, it turns out that the acceleration is determined by an effective mass.

The reciprocal of the effective mass is proportional to the second derivative of the
band energy with respect to the components of the wave vector.
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Electron dynamics 2 Comment 3

The inverse effective mass is a tensor.

To simplify the notation, I use the scalar notation and omit the subscripts of the
tensor.

The equation below, outlined in red, gives the formula for the reciprocal of the
effective mass.
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Electron dynamics 3
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Electron dynamics 3 Comment 1

The figure shows the reduced band scheme of nearly free electrond in a simple
cubic lattice.

At the Γ point of the lowest band, the second derivative of the energy is positive
and the effective mass is also positive.

At the peak of the second band, the second derivative of the energy is negative
and the effective mass of the wave packets is negative.

Since the motion of a particle with negative mass is highly unusual in Newtonian
mechanics, Newton’s equation of motion is extended by −1:

a =
1
ħ2

(
∂2E(k)
∂k2

)
ħk̇ =

1
ħ2

(
∂2E(k)
∂k2

)
·q(E⃗+v⃗×B⃗) = − 1

ħ2

(
∂2E(k)
∂k2

)
·(−q)(E⃗+v⃗×B⃗)
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Electron dynamics 3 Comment 2

This changes the sign of the charge.

The wave packets at the top of the second band respond to the force of an applied
electric or magnetic field with a negative mass, or alternatively with a positive
charge.

The fact that positive charge carriers can be detected when measuring the Hall
effect has a simple explanation in the context of semi­classical electron dynamics.
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Electron dynamics 4
aluminum: electron configuration [Ne] 3s23p1



Sodium Copper Silicon Electron dynamics Revision

Electron dynamics 4 Comment 1
Aluminum has valence 3. The valence electrons occupy the 3s and 3p orbitals.

The three valence electrons can move almost freely.

Aluminum crystallizes in an fcc lattice.

The left figure shows the kinetic energy parabolas of free electrons along the
symmetry directions of the fcc lattice.

The 1st Brillouin zone of the fcc lattice is shown on the right. The letter W denotes
the corners of the the square face.

The middle figure shows the band structure of aluminum, which agrees very well
with the band structure of free electrons.

The periodic potential energy induces small energy gaps.
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Electron dynamics 4 Comment 2

The first energy band with the lowest energy is completely occupied by electrons
and cannot contribute to conductivity.

The conductivity is caused by the electrons in the 2nd and 3rd energy band.

The third energy band has electron character, while a detailed investigation shows
that the second energy band has hole character, i.e. the second derivative E(⃗k) is
negative in the range of the Fermi energy.

The Fermi surface of the 2nd energy band is shown at the bottom right.

The effective mass of the electrons on this Fermi surface is negative.

The conductivity of aluminum is dominated by the positive charges of the 2nd

energy band.
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Electron dynamics 5
three electrons per primitive unit cell of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2 · 3)
1
3

a
=

4.46
a

>
π
a
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Electron dynamics 5 Comment 1

It may be helpful to consider the case of three free conduction electrons in a
simple cubic lattice.

The Fermi wave number is easy to calculate.

The figure on the right shows the Γ­X plane of the reciprocal lattice with the 1st

Brillouin zone, 2nd Brillouin zone and 3rd Brillouin zone for the simple cubic lattice.

The circle indicates the Fermi sphere.

The k states of the 1st Brillouin zone are completely occupied and the k states of
the 2nd Brillouin zone are partially occupied by electrons.

Therefore, the first energy band cannot contribute to conductivity.
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Electron dynamics 5 Comment 2

The figure on the left shows the energy bands in the periodic zone scheme in the
Γ­X direction.

The occupied k states are marked in red.

As long as the influence of a periodic potential energy is not taken into account,
the second derivative of E(⃗k) is always positive and all bands have electron
character in the range of the Fermi energy.
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Electron dynamics 6

periodic zone scheme 2nd band
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Electron dynamics 6 Comment

The figure on the left again shows the band structure in the Γ­X direction.

The figure on the right shows the occupied k states of the 2nd energy band marked
in red in the periodic zone scheme.

The red areas enclose white areas of unoccupied k states.

The unoccupied states are usually called electron­hole states.

The Fermi surface of the 2nd energy band of aluminum resembles the white area
of the unoccupied states k states in the simple cubic lattice.

The Fermi surface of the 2nd energy band of aluminum encloses the electron­hole
states that dominate electrical conductivity.
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Electron dynamics 7: “electron holes”
current density of a band

j⃗ = −2e
V

∑
all occupied
k states

v⃗(⃗k)

and
0 = −2e

V
∑

all k states
of 1stBrillouinzone

v⃗(⃗k)

0 = −2e
V

∑
all occupied
k states

v⃗(⃗k)− 2e
V

∑
all unoccupied

k states

v⃗(⃗k) = j⃗− 2e
V

∑
all unoccupied

k states

v⃗(⃗k)

and
j⃗ = +

2e
V

∑
all unoccupied

k states

v⃗(⃗k)
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Electron dynamics 7 Comment 1

The current density is defined as the charge carrier density multiplied by the
charge carrier velocity: i.e. j = ρv.

According to this definition, the current density of an energy band can be
calculated by summing up all occupied k states.

Since each k state is occupied by two electrons, the charge of each k state is
twice the negative elementary charge, i.e. −2e.

To get the current density, the sum of the velocities must be divided by the volume
of the crystal.

These considerations lead to the first underlined formula for the current density of
an energy band.



Sodium Copper Silicon Electron dynamics Revision

Electron dynamics 7 Comment 2
The electric current density is zero when no electric field is applied to the solid
because for every wave packet there is a wave packet propagating in exactly the
opposite direction.

If a band is not completely occupied by electrons, then this equilibrium can be
disturbed by an external electric field and an electric current flows.

If a band is completely occupied by electrons, no current can flow even when an
electric field is applied due to the periodicity of the band energy in the reciprocal
lattice.

To illustrate this fact, consider the integral∫ 2π

x=0
sin(x)dx = 0 =

∫ 2π+a

x=a
sin(x)dx
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Electron dynamics 7 Comment 3

When integrating over the period of the function, the integration interval can be
shifted without changing the value of the integral.

The equation in the second line formulates this fact for the k states.

This equation always holds, even when an external electric field is applied and the
Fermi surface is shifted in k­space.

The sum over all k states can be divided into the occupied and the unoccupied k
states.

The current density can thus be calculated by summing over all occupied k states,
but also by summing over the unoccupied k states.



Sodium Copper Silicon Electron dynamics Revision

Electron dynamics 7 Comment 4

In this case the charge of the charge carriers is not twice the negative elementary
charge but twice the positive elementary charge.

If the second derivative of the energy E(⃗k) turns out to be negative due to the
influence of the periodic potential, the electrons can be assigned a positive
charge, so it is convenient to consider the unoccupied electron hole states instead
of the occupied one electron states to calculate the electric current.

For this reason, the 2nd energy band of aluminum can also be called the
electron­hole band and the Fermi surface encloses the unoccupied k states of the
electron holes.
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Electron dynamics 8
Electron configuration of zinc: [Ar]4s23d10

According to the Hall­effect, zinc is a metal with positive charge carriers

two nearly free conduction electrons in a simple cubic lattice

first band second band
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Electron dynamics 8 Comment

In the table with the hall constants in the 23nd lecture, zinc also has a positive hall
constant.

Zinc is next to copper on the periodic table.

The 3d orbitals are fully occupied by 10 electrons and also the 4s orbital is fully
occupied by 2 electrons.

According to the number of electrons, all occupied energy bands in the 1st Brillouin
zone can be completely occupied by electrons.

If that were true, zinc would be an insulator, which is not the case.

Comparison with the simple cubic lattice shows that this need not be the case if
the bands are not fully occupied.
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Electron dynamics 9
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Electron dynamics 9 Comment 1

Zinc crystallizes in an hcp lattice that is slightly stretched along the c axis
compared to the hexagonal closest packing and there are two zinc atoms per
primitive unit cell.

The figure on the left shows the 1st Brillouin zone of the hexagonal lattice.

a = 0.266nm and c = 0.495nm denote the lattice constants.

The middle panel shows the band structure of zinc.

For comparison, the figure on the right shows the band structure of copper again.

In contrast to copper, zinc has an extra electron.
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Electron dynamics 9 Comment 2

In both band structures, the narrow 3d bands crossing the 4s band can be seen at
low energies.

The parabolic segments of the kinetic energy of the 4s electrons are marked in red
(Ekin = ħ2k⃗2

2m ).

For copper, the kinetic energy of the 4s electrons reaches the Fermi energy just
above the energy of the 3d bands.

For zinc, the Fermi energy is well above the energy of the 3d bands and the band
structure is relatively complicated, although the behavior of quasi­free electrons
can still be clearly seen.

The 1st Brillouin zone shows that the Bragg planes have smaller distances along
the z­direction than in the directions perpendicular to it.
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Electron dynamics 9 Comment 3

As a result, the 4s band is split into three sub­bands along the path Γ­A in the
energy range under consideration.

The first bandgap at the A point is in the energy range of the 3d bands, which is
confusing because of the interaction between the 4s and 3d electrons.

The second band gap at the Γ point can be clearly seen.

Perpendicular to the z­direction, the Bragg planes have larger distances, so that
the energy between the band gaps is larger (remember again Ekin = ħ2k⃗2

2m ).

This circumstance introduces a new feature of the band structure that has not
occurred before.

In addition to the energy splittings at the Γ point and the Bragg planes, there are
now avoided level crossing within the 1st Brillouin zone.
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Electron dynamics 10
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Electron dynamics 10 Comment

The energy bands marked in red between the symmetry points Γ­M and Γ­K show
that level­anticrossings can occur not only on the Bragg planes, but also within the
1st Brillouin zone.

The band peaks between Γ­M and Γ­K can be approximated by parabolas with
negative B values.

Therefore, these bands correspond to electrons that have negative effective
masses or positive charges.

There are also energy bands that correspond to a positive mass and whose
charge carriers can therefore be assigned a negative charge.

The electron band between the symmetry points Γ­A is marked in red as an
example.



Sodium Copper Silicon Electron dynamics Revision

Electron dynamics 11
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Electron dynamics 11 Comment

The left side of the figure shows the 1st Brillouin zone of the hexagonal lattice and
below it the Fermi surface of the 3rd Brillouin zone, which has been shifted back
into the 1st Brillouin zone.

The right side shows the construction of the Fermi surface.

The radius of the Fermi sphere takes into account that there are four 4s electrons
in the primitive unit cell of zinc (There are two zinc atoms per primitive unit cell of
the quasi hcp­lattice).

The energy bands that contribute to the Fermi surface are marked in red.

The Fermi energies of these bands are marked with blue arrows and the Fermi
surface envelops occupied electron states.
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Electron dynamics 12
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Electron dynamics 12 Comment 1

The figures on the left show the 1st Brillouin zone of a hexagonal crystal lattice at
the top and below the Fermi surface of the second energy band.

The Fermi surface envelops the unoccupied electron states.

This Fermi surface results when the areas of the Fermi sphere that are in the 2nd

Brillouin zone are shifted into the 1st Brillouin zone.

These operations are shown in the figures on the right.

The top figure shows the A­Γ­K plane.

The blue areas denote the occupied electronic states.
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Electron dynamics 12 Comment 2

The white areas in the 1st Brillouin zone are the unoccupied electron states.

The displacements take place along the Γ­A­direction (large sections of the Fermi
sphere) and along the Γ­K­direction (small sections of the Fermi sphere).

The middle figure shows the A­Γ­M plane.

Since the distance Γ­M is smaller than the distance Γ­K, the segments of the Fermi
sphere shifted in the Γ­M direction are larger than in the A­Γ­K plane.

Therefore, the areas of unoccupied electron states in the A­ Γ­M plane are smaller
than in the A ­Γ­K plane (Compare the spatial representation of the Fermi surface
on the left.).
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Electron dynamics 12 Comment 3

The bottom figure shows the K­Γ­M plane, which is perpendicular to the hexagonal
axis of the crystal lattice.

The blue circular area in the middle of the 1st Brillouin zone results from the
displacements of the 2nd Brillouin zone into the 1st Brillouin zone along the Γ­A
direction.

The blue segments at the edge of the 1st Brillouin zone arise when the areas of
the Fermi sphere that lie in the areas of the 2nd Brillouin zone (marked in green)
are shifted into the 1st Brillouin zone.

The electron­hole bands in the Γ­M and Γ­K directions are marked in red in the
middle figure.

The blue arrows mark the points where the band energy equals the Fermi energy.
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Electron dynamics 12 Comment 4

With these simple constructions one can visualize, at least qualitatively, how the
complicated Fermi surface of the electron­hole band comes about in a hexagonal
crystal lattice.

In addition to the two Fermi surfaces just discussed, there are other Fermi
surfaces that enclose smaller areas of the reciprocal lattice.
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Summary in Questions

1. Sketch the band structure of quasi­free electrons in a simple cubic crystal
lattice for the path Γ­X­M­Γ for the 1st and 2nd energy bands.

2. Compare your sketch to the band structure of sodium for the path Γ­H­P­Γ.
3. Sodium crystallizes in bcc lattice. Calculate the distance between P and Γ of

the 1st Brillouin zone (12
√
32π

a ).
4. How is a wave packet formed?
5. With what speed does a wave packet move?
6. What experimental evidence suggests that band electrons travel in wave

packets?
7. How do electric and magnetic fields determine the movement of band

electrons?
8. Why do band electrons sometimes behave like positive charge carriers?


	Sodium
	Copper
	Silicon
	Electron dynamics
	Revision

