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The spectrum of the hydrogen atom 1
Johannes Balmer (1885): spectral lines of hydrogen in the visible range of the
spectrum (WasserstoffSpektrallampe.mp4)
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The spectrum of the hydrogen atom 1 Comment 1

The video shows a discharge tube that is filled with hydrogen gas.

If a high voltage is applied, the H2 molecules disintegrate through electron impact
and atomic hydrogen is formed.

Excited hydrogen atoms give off their energy through spontaneous emission of
photons and return to the ground state.

The figure shows the spectral lines in the visible range of the electromagnetic
spectrum.

In 1885 Johannes Balmer found the simple formula underlined in red with which
the wavelengths of the spectral lines of hydrogen in the visible spectral range can
be calculated.
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The spectrum of the hydrogen atom 1 Comment 2

The comparison with the experimental data determines the constant A:
A = 364.568 nm.

The energy of the transitions can be calculated from the wavelength using
Planck’s law E = hν = hc/λ.

The constant Ry =
4hc
A = 13.6 eV is called the Rydberg energy.
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The spectrum of the hydrogen atom 2
Theodore Lyman (1906): hydrogen spectral lines in the ultraviolet range

λn =
A
4

n2

n2 − 1
and n = 2, 3, 4, 5...

With Balmer’s constant A = 364.568 nm and Planck’s law ∆En = hc/λn
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The spectrum of the hydrogen atom 2 Comment

In 1906 Theodore Lyman observed the spectral lines of the hydrogen atoms in the
ultraviolet region of the spectrum.

The wavelength of the spectral lines can be calculated with a small modification of
the Balmer formula.

If the transition energy is calculated from the wavelength using Planck’s law, the
formula below, underlined in red, results.

The infrared range of the spectrum was examined by Friedrich Paschen in 1908.

The wavelength of the spectral lines can also be calculated with a small
modification of the Balmer formula.

Obviously, the transition energy results from the difference between two energy
terms.
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The spectrum of the hydrogen atom 3

En = −13.6eV 1
n2

e.g. for the Paschen series
∆En = En − E3
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The spectrum of the hydrogen atom 3 Comment 1

With the energy of the photons, it is easy to find the underlying energy level
scheme of the hydrogen atom.

The formula outlined in red indicates the quantized energy of the electron in the
hydrogen atom.

This makes it easy to calculate the respective transition energy.

The transition energy of the Lyman series is given by ∆En = En − E1, the
transition energy of the Balmer series is given by ∆En = En − E2 and the Paschen
series by ∆En = En − E3.

The figure shows the energy levels scheme of the hydrogen atom with the various
series of spectral lines.

The ground state with the quantum number n = 1 has the lowest energy.
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The spectrum of the hydrogen atom 3 Comment 2

For n → ∞ the ionization energy results, which is 13.6 eV above the ground state.

The right scale of the figure gives the excitation energy above the ground state.

If the ionization energy is assigned the value zero, then the left-hand scale of the
figure results.

The energy of the ground state is then −13.6 eV.

If the excitation energy is increased above 13.6 eV, the electron is no longer bound
to the proton.

The blue double arrows show the transitions of the Lyman series in the ultraviolet
range of the spectrum.
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The spectrum of the hydrogen atom 3 Comment 3

The red double arrows show the transitions of the Balmer series in the visible
range of the spectrum.

The green double arrows show the transitions of the Paschen series in the infrared
range of the spectrum.

The second group of blue double arrows is the Brackett series, which is also in the
infrared range of the spectrum and was first detected in 1922.



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

Bohr’s model
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Bohr’s model of the hydrogen atom 1

What was known in 1913 about atoms?

1. Lorentz (1889): electromagnetic radiation of atoms is due to electrons.
2. Planck (1900): the energy of electromagnetic radiation is quantised:

E = hν = hc/λ

3. Balmer (1885), Lyman (1906), Paschen (1908): the binding energy of
electrons in hydrogen atoms is given by the formula

En = −13.6eV 1
n2

and n = 1, 2, 3...

4. Rutherford (1913): The mass and the positive charge are concentrated in the
atomic nucleus.



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

Bohr’s model of the hydrogen atom 1 Comment

The slide summarizes the state of knowledge from 1913.

Nils Bohr used this information to formulate a first theoretical model of the atom.

Bohr’s model is very simple and yet allows precise predictions of atomic properties.
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Bohr’s model of the hydrogen atom 2

Bohr’s famous assumptions about the atom in 1913
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Bohr’s model of the hydrogen atom 2 Comment

Bohr’s model of the atom is based on some assumptions commonly known as
Bohr’s postulates.

Since Bohr’s postulates are formulated in very different ways, I will simply show
what he himself writes in his essay published in July 1913.

Stationary states can be described by ordinary mechanics, while the transition
between stationary states is only possible through the emission or absorption of
the energy quanta of Planck’s theory.
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Bohr’s model of the hydrogen atom 3
Summary of Bohr’s model of the hydrogen atom

1. electrons move in circular orbits around the nucleus.

2. Stable orbits are only possible when the angular momentum L = rmv is
quantized according to

L = nħ and n = 1, 2, ...

3. Photons are emitted or absorbed in a transition between the stable orbits. The
energy of the photons equals

E = hν = |En − Em| and En ̸= Em
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Bohr’s model of the hydrogen atom 3 Comment 1

Since the wave-particle dualism was not yet established in 1913, Bohr assumes
that the electrons behave similarly to planets orbiting the atomic nucleus.

For simplicity, circular orbits are assumed. This restriction was relaxed in Arnold
Sommerfeld’s atomic model in 1915 which included elliptical orbits.

Since the energy of the electrons is quantized, there must be special circular orbits
for which the angular momentum assumes the value nħ.

Since electrons moving in circular orbits normally emit electromagnetic waves,
radiation must be forbidden for the special circular orbits for some reason.
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Bohr’s model of the hydrogen atom 3 Comment 2

Electromagnetic waves are only emitted or absorbed when the electron changes
stable orbits. In accordance with Max Planck’s ideas, energy quanta ħω are
emitted or absorbed.
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Bohr’s model of the hydrogen atom 4
circular orbit:

Coulomb force = centrifugal force

i.e.
1

4πε0
e 2

r 2
= m

v 2

r
small calculation
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Bohr’s model of the hydrogen atom 4 Comment

On the circular orbit, the centripetal force is caused by the Coulomb force between
the atomic nucleus and the electron or in other words: the centrifugal force of the
circular motion is compensated by the Coulomb force.

After a little calculation, the equation outlined in red results.

The radius of the circular path is proportional to the square of the orbital angular
momentum.
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Bohr’s model of the hydrogen atom 5
energy of the electron

E = Ekin + Epot

kinetic energy

Ekin =
1
2
mv2

potential energy between two charges Q1 and Q2

Epot =
1

4πε0
Q1Q2
r

with the charge of the proton Q1 = e and the charge of the electron Q2 = −e

Epot = − 1
4πε0

e2

r
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Bohr’s model of the hydrogen atom 5 Comment 1

The energy of the electron results from the sum of kinetic energy and potential
energy.

The formula outlined in red gives the potential energy of two point charges Q1 and
Q2.

If both charges have the same sign, then the potential energy increases when the
distance between the charges is reduced.

This corresponds to a spring that is compressed.

If the compressed spring is released, the potential energy of the spring leads to an
accelerated movement.
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Bohr’s model of the hydrogen atom 5 Comment 2

In the case of the two point charges, the stored potential energy is converted into
kinetic energy of the two charges.

The charge of the atomic nucleus and the electron have opposite signs.

The potential energy increases when the distance between the atomic nucleus
and the electron is increased.

If the electron is pulled away from the atomic nucleus and then released, it rushes
towards the atomic nucleus.

If the electron has a momentum at right angles to this movement, the electron
generally follows an elliptical trajectory around the atomic nucleus.
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Bohr’s model of the hydrogen atom 5 Comment 3

The electron rushes towards the nucleus and misses it because it is deflected to
the side by the transverse momentum.

In the further course of the movement, the kinetic energy of the electron is reduced
and the potential energy increases again, etc.

The second formula outlined in red gives the potential energy of an electron in the
Coulomb field of a proton.
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Bohr’s model of the hydrogen atom 6

with the balance between

Coulomb force = centrifugal force
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Bohr’s model of the hydrogen atom 6 Comment

In the case of circular motion, the equilibrium between Coulomb force and
centrifugal force shows that the kinetic energy is proportional to the potential
energy.

This results in the equation underlined in red and the total energy of the electron is
proportional to the potential energy.

The total energy of the electron is therefore inversely proportional to the radius of
the circular path.

From the experimental results of Balmer, Lyman and Paschen it is known that the
binding energy of the electron is proportional to the inverse square of the quantum
number n.
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Bohr’s model of the hydrogen atom 7

With r = 4πε0
e 2mL

2 is the energy

E =
1
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e 2

r
= − 1

(8πε0)(4πε0)
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L = nħ and n = 1, 2, ...
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Bohr’s model of the hydrogen atom 7 Comment

With the formula for the radius of the circular orbit, the underlined equation results
and it is obvious that the orbital angular momentum must be proportional to the
quantum number n.

With the numerical values   it follows that the proportionality constant must be ħ.
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Bohr’s model of the hydrogen atom 8

the radius of the orbit is ( r = 4πε0
e 2mL

2)

rn=
4πε0ħ2

e 2m
·n2

Bohr’s radius

aB =
4πε0ħ 2

e 2m
→ aB = 0.529 · 10−10m

and

rn = aB · n 2
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Bohr’s model of the hydrogen atom 8 Comment

With the quantized orbital angular momentum, the radius of the Bohr orbits result.

The formula underlined in red gives the radius of the Bohr orbits.

The radius of the orbit is proportional to the quantum number n.

The constant of proportionality results from the numerical values.

The constant of proportionality is called the Bohr radius.

The Bohr radius defines the relevant length scale in atomic physics.

The formulas outlined in red give the Bohr radius and the radius of the Bohr orbits.
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Bohr’s model of the hydrogen atom 9

generalisation for nuclei with the atomic number Z:

orbital radius
rn =

aB
Z
n2

energy

En = −13.6eVZ
2

n 2
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Bohr’s model of the hydrogen atom 9 Comment

The two equations framed in red give the generalization of the radius and the
energy if the nuclear charge is Ze.

The radius of the orbit decreases with increasing atomic number and the energy
|En| increases with the square of the atomic number.
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Alkali Spectra
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The spectra of the alkali metals 1

The optical spectrum of the helium and neon atoms
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The spectra of the alkali metals 1 Comment 1

As an example, the figure shows the emission spectrum of the helium and neon
atoms in the discharge tube of a He-Ne laser.

The spectrum is complicated so that no information about the energy levels of the
helium and neon atoms can be obtained.

Bohr’s model of the atom does not help with this spectrum.

For most atoms, the spectra cannot be evaluated without the help of the
Schrödinger equation.

The optical spectra of the alkali metals are an exception.
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The spectra of the alkali metals 1 Comment 2

The optical spectra of alkali metals are similar to the spectrum of the hydrogen
atom. As with the hydrogen atom, the spectra of alkali metals contain series that
are due to the excitation of a valence electron.

Furthermore, the transition energy between the energy levels can be described by
the difference between two energy terms that deviate from the hydrogen energy
terms only by small modifications.
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The spectra of the alkali metals
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The spectra of the alkali metals 2



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

The spectra of the alkali metals 2 Comment 1

The figure shows the energy level schemes of lithium and sodium as an example.

First there are the sharp series (George Liveing   and James Dewar 1890), which
are characterized by sharp spectral lines.

There is one principal series that can be observed in absorption and a there are
side series that can only be observed in emission.

The principal series is marked in red. The side series with the greatest transition
energies is marked in orange.

Similar to the hydrogen atom, an energy level scheme can be set up using the
spectral lines.
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The spectra of the alkali metals 2 Comment 2

In absorption, the transitions of the principal series start from a level which is
marked with the letter ‘s’.

The transitions lead to energy levels marked with the letter ‘p’ (for principal series).

The spectral lines of the side series, which can only be observed in emission, start
at the energy levels marked with the letter ‘s’ (for side series) and end at the
energy levels marked with the letter ’p’.

Similar to the hydrogen atom, the energy levels can be assigned a quantum
number and the transition energy results from the formula ∆E = E(n)− E(m)

(Rydberg Schuster law 1896).

The functions E(n) are called energy terms. The energy terms of the alkali metals
are generalizations of the energy terms of the hydrogen atom.
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The spectra of the alkali metals 2 Comment 3

In addition, the diffuse series was discovered together with the sharp series.

In the figures, the transitions of the diffuse series with the largest transition
energies are marked in green.

On emission, the transitions start at energy levels marked with the letter ‘d’ (for
diffuse series).

In 1907 Arno Bergmann discovered a fourth series. The corresponding energy
levels are marked with the letter ‘f’.
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X-rays



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

Early atomic physics

The electron and the elementary charge
The nucleus
The spectrum of the hydrogen atom
Bohr’s model of the hydrogen atom
The spectra of the alkali metals
X-ray spectra
The Frank-Hertz experiment



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

X-ray spectra 1

Wilhelm Conrad Röntgen took an X-ray
of the hand of his wife Anna Berta
Röntgen in 1895.
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X-ray spectra 1 Comment

X-rays are generated in cathode ray tubes.

Wilhelm Conrad Röntgen was not the first to experiment with X-rays. But he was
the first to see the great potential of X-rays.

In 1901 he was awarded the first Nobel prize in physics “in recognition of the
extraordinary services he has rendered by the discovery of the remarkable rays
subsequently named after him.”

In Germany X-rays are still called “Röntgenstrahlen”.
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X-ray spectra 2

Characteristic X-rays were discovered by
Charles Glover Barkla in 1909
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X-ray spectra 2 Comment 1

The figure shows the X-ray spectrum of a cathode made of tungsten.

The electrons are accelerated with voltages of 60, 90 and 120 kV.

The figure shows the broad spectrum of bremsstrahlung, which is caused by the
deceleration of electrons in the cathode.

The sharp spectral lines of the characteristic radiation protrude from the broad
spectrum of bremsstrahlung.

Similar to the optical spectra of the alkali metals, the characteristic lines of the
X-rays form series.
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X-ray spectra 2 Comment 2

When Barkla discovered the characteristic lines, the reason for the characteristic
X-rays was not known.

Therefore Barkla named the series of characteristic lines with the letters K, L, M, ...

Since Barkla wasn’t sure whether there were series with higher energies, he
started the lettering with letter ‘K’ to leave room for future discoveries.

The lines in a series are designated with increasing energy with the Greek letters
α, β etc.

The figure shows only the lines of the K-series.
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X-ray spectra 2 Comment 3

It turns out that the characteristic lines are usually split into many components.

The characteristic lines were explored in great detail by Karl Manne Georg
Siegbahn.

He introduced the notation of characteristic X-ray lines, which is still in use - also it
is inconsistent due to the lack of understanding at that time.

Charles Glover Barkla was awarded the Nobel prize in 1917 “for his discovery of
the characteristic Röntgen radiation of the elements’, another important step in the
development of X-ray spectroscopy”.

Karl Manne Georg Siegbahn was awarded the Nobel prize in 1924 “for his
discoveries and research in the field of X-ray spectroscopy”
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X-ray spectra 3

The strongest lines of the K-, L-,
and M-series of every third
element from 8 (oxygen) to 92
(uranium)
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X-ray spectra 3 Comment

The figure gives an overview of the strongest spectral lines of the K-, L-, and M-
series.

In contrast to the optical spectra of the elements, the X-ray spectra are
comparatively simple.

Each element can be identified by the small number of its characteristic X-ray lines.

In 1912 Max von Laue showed experimentally that X-rays are electromagnetic
waves with a very short wavelength.
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X-ray spectra 4

Walther Kossel 1913:
characteristic X-rays lines are emitted
when atoms are ionized

Simplified scheme of characteristic
X-rays based on Bohr’s model of the
atom
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X-ray spectra 4 Comment 1

The emission of characteristic X-ray radiation is always related to the emission of
electrons.

Based on this experimental observation, Walther Kossel recognized in 1913 that
the characteristic X-ray radiation can be traced back to the ionization of the atoms.

In analogy to the spectra of the alkali metals, one can try to describe the
characteristic radiation by the difference in the energy terms.

Based on Bohr’s model of the atom Walther Kossel assumed that the electrons of
an atom are arranged in shells that are determined by the quantum number n.

The K-series results when an electron is knocked out of the shell with the quantum
number n = 1.



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

X-ray spectra 4 Comment 2

The L-series results when an electron is knocked out of the shell with the quantum
number n = 2, and the M-series accordingly when an electron is knocked out of
the shell with the quantum number n = 3.

The figure illustrates this idea.

It turns out that the reality is a bit more complicated.

More details are shown when atoms with many electrons are discussed.
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X-ray spectra 5

Henry G. J. Moseley (1913)

hνnm =13.6eV
∣∣∣∣ 1n2 − 1

m2

∣∣∣∣
× (Z− β)2

β: screening of the nuclear charge

Moseley plot of characteristic X-rays

Z ∝
√
νnm

for certain elements in a certain fre-
quency range
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X-ray spectra 5 Comment 1

Moseley tested the idea that the characteristic X-rays can be described by the
difference between two energy terms.

He found out that this approach is particularly simple of many elements.

Straight lines result when the atomic number is plotted against the root of the
transition frequency of the characteristic X-ray radiation.

The illustration shows the Moseley plot.

Bohr’s formula can be used, when the atomic number Z is reduced by a shielding
constant β.

The figure shows all elements with the associated frequencies for which the
approach works.
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X-ray spectra 5 Comment 2

The approach only works for a relatively small selection of the characteristic X-ray
lines.

Many characteristic X-ray lines are determined by interactions that are not
contained in Bohr’s atomic model and can only be captured with the Schrödinger
equation.

Finally, one can ask why the characteristic X-ray radiation can be described by the
difference between two energy terms, while this approach only works for the
hydrogen atom and the atoms of the alkali metals in the optical spectra.

The reason is the transition energy of the characteristic X-ray radiation.
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X-ray spectra 5 Comment 3

The transition energy of the optical radiation is in the range between 1 eV and 3
eV.

The transition energy of the characteristic X-ray radiation is at least three to four
orders of magnitude larger.

The large transition energy of the characteristic X-ray radiation means that
interaction between the electrons of the atom are nearly negligible.

This roughly corresponds to the situation of a single valence electron.

In contrast, in optical transitions, the interaction between the electrons cannot be
neglected at all.

Therefore, the entire electron configuration must be considered.
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Frank-Hertz experiment
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The Frank-Hertz experiment 1

With the Frank-Hertz experiment (1911-14) the energy loss of accelerated
electrons is measured

U1 voltage between the cathode and the
collecting electrode
U2 acceleration voltage
U3 retarding potential



Spectrum Hydrogen Atom Bohr’s model Alkali Spectra X-rays Frank-Hertz experiment Schrödinger equation Revision

The Frank-Hertz experiment 1 Comment 1

The experiments by James Frank and Gustav Hertz observe the loss of energy
that electrons experience when they collide with an atom.

These experiments were conducted between 1911 and 1914 and were of some
importance in the early days of atomic physics.

In addition to optical spectroscopy, they provided another clue to the quantization
of atomic energy levels.

The figure shows a sketch of the experiment.

The electrons are vaporized at a cathode, collected with a first grid electrode and
accelerated with a second grid electrode.

After the second grid electrode, the electrons are captured by an electrode to
which a negative voltage is applied, which decelerates the electrons.
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The Frank-Hertz experiment 1 Comment 2

The electrons therefore need a certain minimum energy in order to be able to get
to this collecting electrode.

The tube is filled with a gas.

On the way from the cathode to the anode, the electrons can collide with the
atoms of the gas and transfer part of their kinetic energy to the atoms.
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The Frank-Hertz experiment 2
The Frank-Hertz experiment with Neon

anode current and light emission of excited Neon atoms

(FrankHertzVersuch.mp4)

FrankHertzVersuch.mp4
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The Frank-Hertz experiment 2 Comment

The first figure shows the current through the anode.

The current shows minima when the electron can excite the Neon atoms efficiently.

A fraction of the excitation energy is emitted by radiation.

The luminous clouds show the regions where the excitation of the Neon atoms is
efficient.

The video explains the experiment in more detail.
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The Frank-Hertz experiment 3
simplified energy level scheme of Neon
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The Frank-Hertz experiment 3 Comment 1

The figure shows a simplified energy level scheme of the neon atom.

The broad minima of the anode current at a distance of approx. 19 V show that the
neon atoms can be excited by the collision with electrons.

However, the collision with the electron does not excite a certain energy level, but
rather all levels between the first excited state at 16.7 eV and the ionization energy
of 21.6 eV.

If a neon atom is excited, it can spontaneously emit a photon. This explains the
reddish glowing clouds that are visible in the tube.

Note that the energy level scheme is highly simplified and there are many more
levels and transitions not included in the sketch.
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The Frank-Hertz experiment 3 Comment 2

With a small modification of the experiment, the ionization energy of the neon
atoms can also be measured.

To do this, the negative voltage U3 at the anode must be increased to such an
extent that no more electrons can overcome the potential barrier.

If the acceleration voltage U2 exceeds 21.6 V, the neon atoms can be ionized by
the electron impact.

If the ionized neon atoms get into the range of the voltage U3 due to their thermal
motion, they are accelerated towards the anode and a current begins to flow.
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Schrödinger equation
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Atoms

1 Early atomic physics
The electron and the elementary charge
The nucleus
The spectrum of the hydrogen atom
Bohr’s model of the hydrogen atom
The spectra of the alkali metals
X-ray spectra
The Frank-Hertz experiment

2 The Schrödinger equation as a wave equation
3 Quantum mechanics
4 Atoms with many electrons
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The Schrödinger equation as a wave equation

Schrödinger equation
Box potential
Harmonic oscillator
Orbital angular momentum
Rotation of a diatomic molecule
Schrödinger equation of the H-atom
normal Zeeman-effect
Dia- and paramagnetism
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Schrödinger equation 1
de Broglie: the action S is proportional to the phase of a matter wave

φ =
S
ħ

with
dS = p⃗d⃗r− Hdt

and the phase of a plane wave

φ = k⃗⃗r−ωt → dφ = k⃗d⃗r−ωdt

follows Planck’s law (at least when energy is conserved H = E)

E = ħω

and the de Broglie wavelength

p⃗ = ħk⃗ → λ =
h
p
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Schrödinger equation Comment 1

Louis de Broglie discovered that the phase of a matter wave is proportional to the
action S of a particle.

The equation outlined in red shows the relationship between the phase and the
action.

Even if the function of the action differs from case to case, classical mechanics
shows that the action changes according to the formula underlined in red when the
end point of the path is varied in space and time.

The differential dS results from the differential d⃗r of the end point of the path
multiplied by the momentum of the particle and the differential of the time dt
multiplied by the Hamilton function.
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Schrödinger equation Comment 2

The Hamilton function results from the energy of the particle when the velocity is
expressed by the momentum p = mv, i.e. 12mv

2 → p 2

2m .

The comparison between the differential of the action and the differential of a
plane wave gives Planck’s law and the de Broglie wavelength.
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Schrödinger equation 2
Schrödinger: simplest matter wave

ψ(⃗r, t) = ψ0ei
S
ħ

with differential of the action dS = p⃗d⃗r− Hdt are the partial derivatives of the action

∂S
∂x

= px,
∂S
∂y

= py,
∂S
∂z

= pz und
∂S
∂t

= −H

partial derivatives of the wave function

∂ψ
∂x

= ψ0
i
ħ
∂S
∂x

ei
S
ħ =

i
ħ
pxψ

∂ψ
∂t

= ψ0
i
ħ
∂S
∂t
ei

S
ħ = − i

ħ
Hψ
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Schrödinger equation 2 Comment

In 1926 Erwin Schrödinger was looking for a differential equation with which the
wave function of a matter wave can be calculated.

It starts with the simplest version of a wave function i.e. a constant amplitude
multiplied by the complex exponential function of the phase of a matter wave.

With the formula underlined in red for the change in the action if the end point and
the end time are shifted, one finds the partial derivatives of the action.

The partial derivative of the action according to the coordinates x, y, z gives the
corresponding components of the momentum.

The partial derivative of the action with respect to time gives the Hamilton function
multiplied by -1.

With the partial derivatives of the action, the partial derivatives of the wave
function can be written down.
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Schrödinger equation 3

relativistic energy-momentum relation

E2 − c2p⃗ 2 = m2
0c

4

−iħ∂ψ
∂x

= pxψ und iħ
∂ψ
∂t

= Eψ

and
E2 − c2p⃗ 2 = m2

0c
4 → (E2 − c2p⃗ 2)ψ = m2

0c
4ψ

Klein-Gordon equation

−ħ2 ∂
2ψ
∂t 2

+ c2ħ2∇2ψ = m2
0c

4ψ
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Schrödinger equation 3 Comment

In a first attempt to find a wave equation, one can begin with the relativistic
energy-momentum relation.

With the partial derivatives of the wave function, the energy-momentum relation
can be converted into a differential equation.

The underlined equation is nowadays called the Klein-Gordon equation.

Schrödinger ruled out this equation because in 1926 it was not yet known that
particles can transform into other particles.

He assumed that the probability of finding a particle must obey a conservation law.

However, this requirement cannot be met with the solutions of the Klein-Gorden
equation.
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Schrödinger equation 4
Schrödinger equation

iħ
∂ψ
∂t

= Hψ → iħ
∂ψ
∂t

= Ĥ ψ

momentum operator

p̂x = −iħ ∂
∂x

→ ˆ⃗p = −iħ∇

Hamilton function → Hamilton operator

H =
p⃗ 2

2m
+ Epot → Ĥ =

(
−ħ 2∇ 2

2m
+ Epot

)
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Schrödinger equation 4 Comment 1
A look into electrodynamics shows how the problem of particle conservation can
be solved.

The following equation describes charge conservation

∂t ρ = −∇⃗j.

Here ρ denotes the charge density and j⃗ the current density.

From a mathematical point of view, first-order time differentiation is decisive for
charge conservation.

Therefore Schrödinger starts with the time derivation of the wave function, i.e.
iħ ∂ψ∂t = Hψ.

To get a differential equation, he transforms the Hamilton function into a differential
operator: the Hamilton operator or Hamiltonian.
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Schrödinger equation 4 Comment 2

For this purpose, Schrödinger defines the momentum operator with the spatial
derivatives of the wave function.

With the momentum operator he converts the Hamilton function into the Hamilton
operator by replacing the momentum with the momentum operator.

The equation underlined in red is the Hamilton function of a classical particle with
kinetic and potential energy and the equation in the box is the associated Hamilton
operator.
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Schrödinger equation 4 Comment 3

It soon became apparent that the Schrödinger equation is the fundamental
equation of quantum physics.

Paul Dirac derived the relativistic wave equation for the electron in 1927.

In 1933 Erwin Schrödinger and Paul Dirac were awarded the Nobel Prize “for the
discovery of new productive forms of atomic theory”.
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Schrödinger equation 5
Summary:

The general Schrödinger equation

iħ
∂ψ
∂t

= Ĥ ψ

The Schrödinger equation of a classical particle with potential energy

iħ
∂ψ
∂t

=

(
−ħ 2∇ 2

2m
+ Epot

)
ψ
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Schrödinger equation 5 Comment

The slide summarizes the general Schrödinger equation and the Schrödinger
equation for a non-relativistic particle with potential energy.

Only this Schrödinger equation is used in this lecture.
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Schrödinger equation 6

inspired by electromagnetic waves one defines the probability density

ψψ∗ = |ψ|2

the probability of finding a particle in the volume dV is

|ψ|2dV

if the particle is located in the volume V, the normalization condition reads∫
V
|ψ|2d 3r = 1
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Schrödinger equation 6 Comment

In electromagnetic waves, the energy density is proportional to the square of the
wave function. This corresponds to the photon density.

Similarly, the square of the magnitude of the wave function of a matter wave
determines the probability density that particles can be found.

With a particle beam, the underlined equation can be normalized to the particle
density of the beam.

The equation outlined in red then gives the number of particles in the volume
element dV.

If the particles are restricted to the volume V, the underlined equation gives the
normalization condition of the wave function.
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Schrödinger equation 7
1st example: The eigenvalue equation of the momentum operator ˆ⃗p = −iħ∇

With a plane matter wave

ψ = ψ0ei(⃗k⃗r−ωt) = ψ0ei(⃗p⃗r−Et)/ħ

one gets

ˆ⃗pψ = −iħ∇ψ = −iħ


∂
∂x
∂
∂y
∂
∂z

ψ = p⃗ ψ

eigenvalue equation of the momentum operator

ˆ⃗pψ = p⃗ ψ

the eigenvalue of the momentum operator is the momentum p⃗
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Schrödinger equation 7 Comment

The momentum operator is considered as a first example for the application of
Schrödinger’s theory.

If the momentum operator is applied to a plane wave, then e.g. the derivation
according to the x-coordinate brings the x-component of the momentum in front of
the wave function.

Overall, the eigenvalue equation outlined in red results for the momentum.

The eigenvalue of the momentum operator ˆ⃗p gives the numerical value for the
momentum that can be determined in a measurement.
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Schrödinger equation 8
uncertainty relations

∆x∆px ≥
ħ
2
, etc.

a plane wave is infinite: because of ∆x → ±∞ the position of a particle is
completely indetermined

Due to the uncertainty relation, the momentum uncertainty ∆px is zero, i.e. the
momentum has a defined numerical value.

the mathematical formulation of this fact is the eigenvalue equation

ˆ⃗pψ = p⃗ ψ
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Schrödinger equation 8 Comment
The statement of the eigenvalue equation can be compared with the
space-momentum uncertainty relation.

Plane waves are defined throughout space without any limitations.

Plane waves are therefore an abstraction that can never be realized in nature.

Nevertheless, plane waves are often used because the mathematical description
is so simple.

If a particle is described by a plane wave, it cannot be localized.

Its position is not determined and the momentum uncertainty is zero, i.e. the
momentum is exactly defined.

This fact is expressed by the eigenvalue equation of the momentum operator.
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Schrödinger equation 9
2nd example: the eigenvalue equation of the Hamilton operator

uncertainty relation for time and energy

∆t∆E ≥ ħ
2
, etc.

the energy is exactly defined, i.e. ∆E → 0 when the time is not at all defined, i.e.
∆t → ∞

ansatz for wave function when energy is conserved

ψ(⃗r, t) = φ(⃗r )e−iEt/ħ
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Schrödinger equation 9 Comment 1

The first equation outlined in red gives the time-energy uncertainty relation.

The energy uncertainty decreases as the time uncertainty increases.

If the energy uncertainty is zero, then the time uncertainty is infinitely large.

This means that the energy will never change in all times.

In other words: the energy is preserved.

The second equation outlined in red gives the solution of the Schrödinger equation
when the energy is conserved.
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Schrödinger equation 9 Comment 2

The solution is a standing wave.

The wave function is the product of a function that describes the spatial variation
and a function that only depends on time.

The time dependency is described by a harmonic oscillation that never stops.
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Schrödinger equation 10

application of the Schrödinger equation on the wave function ψ(⃗r, t) = φ(⃗r )e−iEt/ħ

iħ
∂ψ
∂t

= Ĥ ψ → iħ
∂
∂t
φ(⃗r )e−iEt/ħ = Eφ(⃗r )e−iEt/ħ = Ĥ φ(⃗r )e−iEt/ħ

If the Hamilton operator does not depend on time, then the exponential functions
can be canceled and an eigenvalue equation for the energy results

time independent Schrödinger equation

Ĥ φ(⃗r ) = Eφ(⃗r )
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Schrödinger equation 10 Comment 1

If this ansatz is used for the wave function in the Schrödinger equation, then the
calculation of the first line results

The equation is only valid if the Hamilton operator is not an explicit function of
time. Then the exponential functions can be canceled.

The remaining equation is the eigenvalue equation for the time-independent
Hamilton operator.

This equation is called the time-independent Schrödinger equation.

The energy is the eigenvalue of the time-independent Hamilton operator and the
energy does not depend on time.
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Schrödinger equation 10 Comment 2

This result corresponds to the assumption made by de Broglie.

He assumed that the frequency does not depend on the time and that the
Hamilton function can be replaced by the energy.

This result also corresponds to the classical mechanics.

In Hamiltonian mechanics it is shown that the energy is conserved if the Hamilton
function is not an explicit function of time.

The time-independent Schrödinger equation formulates this result of classical
mechanics in the language of quantum mechanics.
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Schrödinger equation 11

Generally applies in quantum mechanics:

There is an eigenvalue equation for physical quantities that have a fixed value.

operator× eigenfunction = eigenvalue× eigenfunction
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Schrödinger equation 11 Comment

In general, the following applies in quantum mechanics:

If a physical quantity has a fixed value, there is also an eigenvalue equation.

The wave function for an eigenvalue is called an eigenfunction.

For every eigenvalue there is at least one eigenfunction.

If an operator is applied to one of its eigenfunctions, the result is the eigenvalue
multiplied by the eigenfunction.
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Revision
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Summary in questions 1

1. Calculate the shortest wavelength of the Lyman-, the Balmer, and the Paschen
series.

2. Give Bohr’s postulates.

3. Give the numerical value of Bohr’s radius and the general formula for the radius
of Bohr’s orbits.

4. Write down Moseley’s formula for the energy of the characteristic X-rays.

5. What does the Kα-line mean?

6. Calculate the energy of the Kα- and Kβ-line of manganese.
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Summary in questions 2

7. Give the eigenvalue equation of the x-component of the momentum.

8. Write down the eigenfunctions of the momentum operator.

9. Write down the general Schrödinger equation.

10. Give the Hamilton operator of a classical particle with potential energy.

11. Write down the time-independent Schrödinger equation.
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