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Orbital angular momentum 14
eigenfunctions of the angular momentum operators

Yℓ,m(θ,φ) = Pℓ,m(θ)eimφ

the eimφ are the eigenfunctions of L̂z
Pℓ,m(θ) are polynomials that are formed from sin θ and cos θ functions

the Yℓ,m(θ,φ) are the eigenfunctions of L̂z and
ˆ⃗L 2

L̂zYℓ,m(θ,φ) = mħYℓ,m(θ,φ)
ˆ⃗L2Yℓ,m(θ,φ) = ℓ(ℓ+ 1)ħ2Yℓ,m(θ,φ)
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Orbital angular momentum 14 Comment

The spherical harmonics are the eigenfunctions of the angular momentum.

The spherical harmonics are formed by the product of an eigenfunction of L̂z, i.e.
eimφ, and a polynomial that is formed from the sine and cosine functions of the
angle θ.

The formulas outlined in red give the eigenvalue equations of the two angular
momentum operators L̂z and

ˆ⃗L2.
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Orbital angular momentum 15

the spherical harmonics are normalized∫ π

θ=0

∫ 2π

φ=0
sin θdθdφYℓ,mY ∗

ℓ,m = 1

Yℓ,mY ∗
ℓ,m gives the probability that the position vector r⃗ of a particle points in the

direction θ and φ.
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Orbital angular momentum 15 Comment

The spherical harmonics are normalized functions.

The integral underlined in red gives the normalization condition.

The position r⃗ of a particle in spherical coordinates is described by the coordinates
r, θ and φ.

Yℓ,mY ∗
ℓ,m is the probability that the vector r⃗ points in the direction indicated by the

angles θ and φ.
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Orbital angular momentum 16

ℓ m Pℓ,m(θ)

0 0 ∝ 1

1 0 ∝ cos θ

1 ±1 ∝ sin θ

2 0 ∝ 3 cos2 θ− 1

2 ±1 ∝ sin θ cos θ

2 ±2 ∝ sin2 θ

(https://en.wikipedia.org/wiki/Table_of_spherical_harmonics)

https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
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Orbital angular momentum 16 Comment

The table lists the most important spherical harmonics that are used in atomic
physics.

Further information on spherical harmonics can be found on the specified www
page.
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Orbital angular momentum 17

only a small number of eigenfunctions of the orbital angular momentum are
necessary in atomic physics

s: ℓ = 0, p: ℓ = 1, d: ℓ = 2, f: ℓ = 3, ...

s orbital (ℓ = 0 and m = 0)

Y00 =
1√
4π
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Orbital angular momentum 17 Comment

The spherical harmonics with the quantum numbers ℓ = 0, 1, 2 and 3 are
particularly important.

The comparison with the optical spectra of the atoms shows that we denote the
eigenstates of the angular momentum with letters s (ℓ = 0), p (ℓ = 1), d (ℓ = 2) and
f (ℓ = 3), etc., to preserve the notations used in the era before the Schrödinger
equation.

If the angular momentum is zero then the quantum numbers are ℓ = 0 and m = 0.

The eigenfunction is Y00 is simply a constant since all differentiations with respect
to θ and φ are zero.

The normalization factor is equal to 1√
4π

since the integration over θ and φ results
in the surface of the unit sphere 4 π.
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Orbital angular momentum 18

p orbitals (ℓ = 1 and m = 0,±1)

pz orbital (m = 0)

Y1,0 ∝ cos θ
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Orbital angular momentum 18 Comment

The pz orbital is proportional to cosθ.

It is called pz-orbital, since cos θ in spherical coordinates is the projection of a unit
vector onto the z-axis.

The figure shows how the orbital is visualized.

One simply draws the endpoints of a vector of length |Yℓ,m(θ,φ)| for the different
angles θ and φ. Sometimes the sign of Yℓ,m(θ,φ) is indicated by color.

The figure shows the intersections of the resulting surface with the xy plane.
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Orbital angular momentum 19
px and py orbitals (m = ±1)

Y1,±1 ∝ sin θ e±iφ = sin θ cosφ± i sin θ sinφ

the px orbital is the real part of Y1,±1, i.e. ∝ sin θ cosφ ∝ x
the py orbital is the imaginary part of Y1,±1, i.e. ∝ sin θ sinφ ∝ y
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Orbital angular momentum 19 Comment

The real and imaginary part of Y1,±1 are called px and py orbitals.

The figure shows an illustration of the px, py, and pz orbital.

These orbitals have the same shape because they can be transformed into one
another by rotating the coordinate axes.
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Orbital angular momentum 20
d orbitals ℓ = 2 and m = 0,±1,±2

d3z 2−1 orbital (m = 0)

Y20 ∝ (3 cos2 θ− 1)

for θm = 54.74°: 3 cos2 θm − 1 = 0
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Orbital angular momentum 20 Comment

For ℓ = 2 there are 5 eigenfunctions.

The figure shows Y20.

The length of the vectors that define the surface is |3 cos2 θ− 1|.

Y20 is called the d3z2−1 orbital since cos θ ∝ z.
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Orbital angular momentum 21

all d orbitals

Y2,0 ∝ 3 cos2 θ− 1 ∝ 3z 2 − 1
Y2,±1 ∝ sin θ cos θ e±iφ ∝ xz± iyz
Y2,±2 ∝ sin2 θ e±2iφ ∝ x 2 − y 2 ± i 2xy

spherical coordinates

→ d3z2−1, dxz, dyz, dx2−y2 , dxy orbitals
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Orbital angular momentum 21 Comment

The formulas outlined in red indicate the spherical surface functions for all d
orbitals with the decomposition into real and imaginary parts.

The sine and cosine functions are replaced by the projection of a unit vector onto
the x, y and z axes.

This results in the usual designation of this orbital as d3z2−1, dxz, dyz, dx2−y2 , and
dxy orbitals.
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Orbital angular momentum 22

(Drehimpulsorbitale.mp4)

Drehimpulsorbitale.mp4
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Orbital angular momentum 22 Comment

Most d orbitals have a cloverleaf shape.

The video gives a spatial impression of these orbitals.
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Diatomic Molecule
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Rotation of a diatomic molecule 1

rotation of a point mass

Erot =
L⃗ 2

2mr 2

rotation of a diatomic molecule

Erot =
L⃗ 2

2I

moment of inertia I =
∑

i=1,2miri 2

Erot =
ℓ(ℓ+ 1)ħ2

2I
→ Erot = Bℓ(ℓ+ 1)

(Video: Rotation around the axes of inertia: Hauptträgheitsachsen.mp4)

Hauptträgheitsachsen.mp4
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Rotation of a diatomic molecule 1 Comment 1

The angular momentum quantization can be observed directly in the rotational
spectra of diatomic molecules in the gas phase.

The first formula underlined in red gives the rotational energy for a particle of mass
m at a distance r from the axis of rotation.

In general there are three principal orthogonal axes of rotation and the video
shows that free rotation can be complicated.

In the case of a diatomic molecule, only rotations perpendicular to the molecular
axis can be excited. Since all axes perpendicular to the molecular axis are
identical, there is only one type of rotation.

This results in the second formula underlined in red.
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Rotation of a diatomic molecule 1 Comment 2

In the formula for the moment of inertia, ri=1,2 denotes the distance between the
two atoms and the center of gravity of the molecule.

With the rotational energy, the Hamilton operator for the rotation of the molecule
results when the angular momentum is replaced by the angular momentum
operator.

The eigenfunctions of the time-independent Schrödinger equation are the
spherical harmonics.

The formula outlined in red shows the energy eigenvalues   of the time-independent
Schrödinger equation.

The energy is quantized and proportional to ℓ(ℓ+ 1).
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Rotation of a diatomic molecule 2

Erot = Bℓ(ℓ+ 1)
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Rotation of a diatomic molecule 2 Comment

The figure shows the expected energy level scheme for the rotation of a diatomic
molecule.

For electric dipole radiation, the Schrödinger equation yields the selection rule
∆ℓ = ±1.

With this selection rule, the red marked transitions between the energy levels
result.

The transition energy of the radiation increases in steps of 2B = ħ2/I.
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Rotation of a diatomic molecule 3
microwave spectrum of the CO molecule
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Rotation of a diatomic molecule 3 Comment 1

The figure shows the microwave spectrum of carbon monoxide.

The experimental observations confirm the theoretical results.

The intensity of the transitions is determined on the one hand by the transition
probability, which increases with increasing values   of the quantum number ℓ.

On the other hand, the thermal occupation of the energy levels must be taken into
account.

The intensity of the spectral lines increases on the left side of the spectrum due to
the increasing transition probability (increasing ℓ quantum number) and decreases
due to the thermal occupation of the energy levels on the right side of the
spectrum.



Orbital angular momentum Diatomic Molecule Hydrogen atom Revision

Rotation of a diatomic molecule 3 Comment 2

With the distance between the spectral lines of about 116 GHz, the moment of
inertia of carbon monoxide and from this the distance between the two atoms can
be determined.

Final remark about the eigenfunction of the angular momentum operators
Yℓ,m(θ,φ): For a diatomic molecule the two atoms can be replaced by one particle
with the reduced mass μ−1 = m−1

1 +m−1
2 .

The motion of the molecule is equivalent to the motion of the reduced mass at the
distance r from the axis of rotation.

r corresponds to the distance between the two atom and Yℓ,mY ∗
ℓ,m is the probability

that the vector r⃗ points in the direction indicated by the angles θ and φ.
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Hydrogen atom
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Schrödinger equation of the hydrogen atom 1

the hydrogen atom consists of an electron bound to a proton

Hamilton function

H =
p⃗ 2

2m
− 1
4πε0

e2

r

Hamilton operator (p⃗ → −iħ∇)

Ĥ = −ħ2∇2

2m
− 1
4πε0

e2

r

Schrödinger equation

iħ
∂ψ
∂t

= Ĥ ψ



Orbital angular momentum Diatomic Molecule Hydrogen atom Revision

Schrödinger equation of the hydrogen atom 1 Comment

The underlined equation gives the Hamilton function of a classical particle with
potential energy.

The potential energy of the electron is caused by the electric field of the proton.

The Hamilton operator results when the momentum in the Hamilton function is
replaced by the momentum operator −iħ∇.

The equation in the bottom line shows the Schrödinger equation again.
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Schrödinger equation of the hydrogen atom 2
Ansatz to solve the time-dependent Schrödinger equation

ψ(⃗r, t) = φ(⃗r )e−iEt/ħ

time independent Schrödinger equation

Eφ(⃗r) = Ĥ φ(⃗r)

the potential energy is only a function of the radius r

Ĥ = −ħ2∇2

2m
− 1
4πε0

e2

r
→ spherical coordinates for the Laplace operator

∇2 =
1
r 2

∂
∂r

(
r 2

∂
∂r

)
+

1
r 2

{
1

sin θ
∂
∂θ

sin θ
∂
∂θ

+
1

sin2 θ
∂2

∂φ2

}
(https://de.wikipedia.org/wiki/Laplace-Operator)

https://de.wikipedia.org/wiki/Laplace-Operator


Orbital angular momentum Diatomic Molecule Hydrogen atom Revision

Schrödinger equation of the hydrogen atom 2 Comment

Since the Hamilton operator does not explicitly contain the time, the solution of the
Schrödinger equation is a standing wave.

The equation underlined shows the standing wave. The spatial and temporal
variations are described by different functions.

This results in the time-independent Schrödinger equation.

Spherical coordinates can be used for the Laplace operator, since the potential
energy of the electron only depends on the distance r to the atomic nucleus, i.e. to
the proton.
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Schrödinger equation of the hydrogen atom 3

Ĥ =− ħ2∇2

2m
− 1
4πε0

e2

r

=− ħ2

2m
1
r 2

∂
∂r

(
r 2

∂
∂r

)
+

1
2mr 2

(−ħ2)

{
1

sin θ
∂
∂θ

sin θ
∂
∂θ

+
1

sin2 θ
∂2

∂φ2

}

− 1
4πε0

e2

r

Eigenvalue equation of the angular momentum operator

ˆ⃗L2Yℓ,m(θ,φ) = −ħ2
{

1
sin θ

∂
∂θ

sin θ
∂
∂θ

+
1

sin2 θ
∂2

∂φ2

}
Yℓ,m(θ,φ) = ħ2ℓ(ℓ+ 1)Yℓ,m(θ,φ)
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Schrödinger equation of the hydrogen atom 3 Comment

The Hamilton operator can thus be broken down into a radial and an
angle-dependent part.

The angle-dependent part is determined by the square of the angular momentum.

This contribution is marked in blue in the equation outlined in red.

The last line gives the eigenvalue equation for the square of the angular
momentum.

The eigenfunctions of the squared angular momentum operator are the spherical
harmonics Yℓ,m(θ,φ) and the ℓ quantum number takes on the values   0, 1, 2 etc. .
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Schrödinger equation of the hydrogen atom 4
time independent Schrödinger equation of the hydrogen atom

Eφ(⃗r ) =

− ħ2

2m
1
r 2

∂
∂r

(
r 2

∂
∂r

)
+

ˆ⃗L2

2mr 2
− 1
4πε0

e2

r

φ(⃗r )

ansatz for the wave function

φ(⃗r ) → φn,ℓ,m(r, θ,φ) = Yℓ,m(θ,φ)Rn,ℓ(r)

eigenvalue equation for the radial wave function

En,ℓRn,ℓ(r) =

(
− ħ2

2m
1
r 2

∂
∂r

(
r 2

∂
∂r

)
+

ℓ(ℓ+ 1)ħ2

2mr 2
− 1
4πε0

e2

r

)
Rn,ℓ(r)

E = Ekin + Epot =
p⃗r 2

2m
+

L⃗2

2mr 2
+ Epot
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Schrödinger equation of the hydrogen atom 4 Comment 1

The equation underlined in red gives the Schrödinger equation with the angular
momentum operator.

The orbital wave function φ(⃗r) can be decomposed into the spherical harmonic
Yℓ,m and a radial function that only depends on r.

The equation outlined in red shows the eigenvalue equation for the radial wave
function.

The angular momentum operator is replaced by its eigenvalues ℓ(ℓ+ 1)ħ2. The
eigenvalue equation depends on the angular momentum quantum number ℓ. The
radial wave function is additionally determined by a second quantum number n,
which is called the main quantum number.



Orbital angular momentum Diatomic Molecule Hydrogen atom Revision

Schrödinger equation of the hydrogen atom 4 Comment 2

For comparison, the last equation shows the classical energy of a particle moving
in a radial potential.

Each term of classical energy has its counterpart in the time-independent
Schrödinger equation.
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Schrödinger equation of the hydrogen atom 5
the effective potential energy

Epot, ℓ(r) =
ħ2ℓ(ℓ+ 1)
2mr 2

− 1
4πε0

e 2

r
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Schrödinger equation of the hydrogen atom 5 Comment 1

The potential energy due to the Coulomb potential of the nucleus and the kinetic
energy due to the angular momentum of the electron together form an effective
potential energy.

When the angular momentum is zero, there is only the attractive force due to the
nucleus, i.e. the proton in case of the hydrogen atom.

The electron can penetrate the nucleus without resistance.

In classical physics, the electron would perform an oscillating motion through the
nucleus.

The energy oscillates between the radial kinetic energy of the electron and the
potential energy due to the attractive force of the nucleus.
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Schrödinger equation of the hydrogen atom 5 Comment 2

In classical physics, the electron would lose energy through the emission of
electromagnetic radiation.

The Schrödinger equation shows that no electromagnetic radiation can be emitted
due to this motion.

The probability density to find the electron results from the square of the wave
function.

The wave function itself assumes a finite value for r → 0 and the probability of
finding the electron within the atomic nucleus is not zero.

Although the angular momentum is zero, application of the uncertainty principle
shows that the particle cannot move in a straight line since the uncertainty of
momentum perpendicular to the line of motion would be zero.
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Schrödinger equation of the hydrogen atom 5 Comment 3

Since the spherical harmonic of an s orbital is a constant, all directions of motion
are equally likely.

If the angular momentum of the electron is not equal to zero, the effective potential
energy for r → 0 becomes very large due to the angular momentum of the electron.

A strong repulsive force acts between the atomic nucleus and the electron, since
the centrifugal force becomes very strong at small distances from the atomic
nucleus.

The wave function of the electron becomes zero for r → 0.

The probability of finding the electron in or near the nucleus is zero for electrons
with angular momentum.
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Schrödinger equation of the hydrogen atom 5 Comment 4

There is a big difference between so-called s-electrons and electrons with ℓ ̸= 0:
s-electrons penetrate the nucleus, while electrons with angular momentum are
kept away from the nucleus due to the centrifugal force.

This is why s-electrons are particularly sensitive to the properties of the nucleus.
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Summary in Questions

1. Spherical harmonics are the eigenfunctions of the angular momentum operator.
Explain the structure of the spherical harmonics.

2. Give the formulas of the spherical harmonics Y1,−1 , Y1,0 and Y1,+1 without the
normalization factor.

3. Give the energy eigenvalues   for the rotation of a diatomic molecule.

4. Show that cos θ is an eigenfunction of the angular momentum operators and
determine the quantum number ℓ and m.
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