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Schrödinger equation of the hydrogen atom 6

radial wave functions
Rn,ℓ(r ) = fn,ℓ(r) · e−r/naB

fn,ℓ(r) denotes a polynomial which is determined by the quantum numbers n and ℓ

for n = 1 and ℓ = 0 is the radial wave function an exponential function

R10(r) ∝ e−r/aB

and
E1 = −13.6eV
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Schrödinger equation of the hydrogen atom 6 Comment 1

Now the radial wave functions have to be considered.

The radial wave function is the product of an exponential function and a
polynomial.

This is reminiscent of the harmonic oscillator solution.

The polynomials are well known in mathematics and are called Laguerre
polynomials.

The polynomials depend on the quantum number n and ℓ.

The formula outlined in red provides the general solution to the radial Schrödinger
equation. It results from the product of a polynomial and an exponential function.
The decay length of the exponential is a multiple of Bohr’s radius.
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Schrödinger equation of the hydrogen atom 6 Comment 2

The radial wave function of the ground state is a simple exponential function.

The solution of the Schrödinger equation shows that the decay length of the
exponential function is given by the Bohr radius.

The numerical value −13.6 eV results for the energy of the ground state, which
agrees perfectly with the experimental result.

Therefore, the principal quantum number takes on the value   n = 1 and there is no
rotational energy i.e. ℓ = 0.
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Schrödinger equation of the hydrogen atom 7

for n = 2 there is one s orbital and three p orbitals

R21(r) ∝ r e−r/2aB and E2 = −13.6eV
22

R20(r) ∝ (1− r
2aB

)e−r/2aB and E2 = −13.6eV
22
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Schrödinger equation of the hydrogen atom 7 Comment 1

If one increases the angular momentum to ℓ = 1, one finds a solution of the
Schrödinger equation, if one multiplies the exponential function with the distance r
between electron and proton.

Due to the centrifugal force the radial wave function vanishes for r → 0.

The first underlined equation gives the result of the calculation.

The decay length of the exponential function is twice the Bohr radius and the
energy is equal to −13.6/22.

This is the energy of the first excited state with the principal quantum number
n = 2.

ℓ = 1 denotes a p orbital and there are three eigenfunctions with m = −1, 0,+1.
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Schrödinger equation of the hydrogen atom 7 Comment 2

If ℓ is reduced to zero for an s-electron, the radial wave function must start at r = 0
with a finite value.

Since the energy due to the angular momentum is zero, the energy of the radial
movement has to be increased by adding a node to the standing wave.

The second underlined equation shows the polynomial that results from solving
the Schrödinger equation.

The energy of the s orbital is the same as that of the p orbital, i.e.
En=2 = −13.6/22 eV.

Both the s- and the p orbital have the same energy.
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Schrödinger equation of the hydrogen atom 8
for n = 3 there is one s orbital, three p orbitals and five d orbitals

R32(r) ∝ r 2e−r/3aB and E3 = −13.6eV
32

R31(r) ∝
r
aB

(
1− r

6aB

)
e−r/3aB and R30(r) ∝

(
27− 18r

aB
+

2r 2

a2B

)
e−r/3aB
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Schrödinger equation of the hydrogen atom 8 Comment 1

If the angular momentum is increased to ℓ = 2, one can start with the underlined
wave equation.

The exponential function is multiplied by r 2.

The solution of the Schrödinger equation shows that the decay length of the
exponential function is given by 3aB.

The formula outlined in red gives the energy of this wave function.

The principal quantum number of this solution is n = 3 and the energy of the
orbital is −13.6/32 eV.
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Schrödinger equation of the hydrogen atom 8 Comment 2

If ℓ is reduced to 1, the radial energy has to be increased by adding a node.

The radial wave function has to start at zero, since the effective potential for r → 0
becomes strongly repulsive.

The solution of the Schrödinger equation is the wave function R31 and the energy
is also −13.6/32 eV.

For the s-electron the radial wave function has to start with a finite value for r = 0
and a second node has to be added to increase the radial energy.

The wave function R30 is the solution and the energy is also −13.6/32 eV.
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Schrödinger equation of the hydrogen atom 9

probability to find the electron within the volume dV is

ψ(⃗r )ψ(⃗r )∗dV

volume element in spherical coordinates

dV = r 2dr sin θdθdφ

probability when using spherical coordinates

ψψ∗dV = r 2R 2
n,ℓ dr·Yℓ,mY ∗

ℓ,m sin θdθdφ

usually r 2R 2
n,ℓ is plotted
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Schrödinger equation of the hydrogen atom 9 Comment

The first underlined equation gives the probability of finding the electron in the
volume element dV.

The second underlined equation gives the volume element when spherical
coordinates are used.

The equation outlined in red gives the probability of finding the electron of the
hydrogen atom in the specified volume element.

The part of the formula written in gray gives the probability that the position vector
r⃗ points in the direction determined by the angles θ and φ.

The part of the formula written in blue gives the probability that the distance
between the proton and electrons is r.

The last underlined equation gives the radial probability density of the electron.
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Schrödinger equation of the hydrogen atom 10
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Schrödinger equation of the hydrogen atom 10 Comment

The figure shows the radial probability density of the ground state and the first and
second excited s orbital.

The decay length of the exponential function is 1aB for n = 1, 2aB for n = 2 and
3aB for n = 3.
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Schrödinger equation of the hydrogen atom 11
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Schrödinger equation of the hydrogen atom 11 Comment

The figure compares the radial probability density for the ground state and the s
and p orbital of the first excited state.

The maximum of the probability density of the 2s orbital is somewhat shifted to
larger r values than for the 2p orbital.

This effect becomes more pronounced with increasing n quantum number.

This is shown in the following figure.

In the s orbital, all of the energy is due to the radial movement, while in the other
orbitals a fraction of the energy is due to the rotational movement.

The more energy there is in the radial movement, the further the maximum of the
wave function shifts away from the atomic nucleus.
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Schrödinger equation of the hydrogen atom 12
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Schrödinger equation of the hydrogen atom 12 Comment

The figure compares the radial probability density of the ground state and the first
and second excited states.

Perhaps it is instructive to compare these results with the prediction of Bohr’s
model of the atom. The radii of Bohr’s orbits are rn = aB · n2.

For n ≥ 2, the probability of finding the electron is mainly enclosed by the Bohr
radius.

Only for n = 1 does the maximum of the probability density lie at a value greater
than that corresponding to the Bohr radius.
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Schrödinger equation of the hydrogen atom 13

energy eigenvalues:
(in agreement with experiment)

En = −13.6eV 1
n2

and n = 1, 2, ...

angular momentum

ℓ < n
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Schrödinger equation of the hydrogen atom 13 Comment 1

On this page I summarize the results of the Schrödinger equation for the hydrogen
atom.

The Hamilton operator contains the kinetic energy of the electron and the potential
energy due to the movement in the electric field of the nucleus.

The first equation outlined in red gives the total energy, which is in perfect
agreement with the experimental results of Balmer, Lyman, Paschen, etc.

The new information obtained from the Schrödinger equations concerns the
angular momentum ℓ of the electron and, above all, the knowledge of the electron
wave function.

The figure shows the resulting energy level diagram.
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Schrödinger equation of the hydrogen atom 13 Comment 2

There are many more energy levels than would be expected from Bohr’s atomic
model.

If these energy levels are shifted slightly, one can quite easily get the energy level
scheme of the alkali metals and recognize the energy levels of the side series, the
principal series, the diffuse series, and the fourth forth series.

Then it is quite clear that one likes to fall back on the old notation of the energy
terms s, p, d, f in order to characterize the quantum number of the orbital angular
momentum of the electron.

In contrast to the energy levels of the alkali metals, the energy levels of the
hydrogen atom have the same energy with the same principal quantum number. (If
you take a closer look, small energy shifts can also be observed in the hydrogen
atom.)



Hydrogen atom Normal Zeeman Dia- and Paramagnetism Revision

Schrödinger equation of the hydrogen atom 13 Comment 3

The reason for this is the 1/r dependence of the potential energy of the electron in
the electric field of the proton.

In the case of the valence electron of an alkali metal, the electrical potential is not
only determined by the nucleus, but also by the shielding of the atomic nucleus by
the core electrons and deviates from the 1/r dependence.

The energy of the valence electron therefore depends not only on the principal
quantum number n but also on the angular momentum quantum number ℓ.
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Normal Zeeman
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Normal Zeeman effect 1

Pieter Zeeman (1896): splitting of the sodium D lines in a strong magnetic field
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Normal Zeeman effect 1 Comment

The Zeeman effect describes the splitting of spectral lines in a magnetic field.

The figure shows the historical measurement of Pieter Zeeman in 1896.

The doublet of the yellow sodium line is split into many components when a
magnetic field is applied.

One line is split into six components while the other is split into four components.

The splitting is proportional to the strength of the applied magnetic field.
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Normal Zeeman effect 2

the orbital motion of the electron leads to a magnetic moment

μ = AI

I = −e
T
= −e v

2πr

μ = πr 2·−ev
2πr

= −e r v
2

= −e rmv
2m

μ= − eL
2m

= − eħL
2mħ

=−μB
L
ħ
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Normal Zeeman effect 2 Comment 1

The motion of an electron around the nucleus creates an electrical current.

According to the Ampere law, this current leads to a magnetic field.

This magnetic field can be traced back to a magnetic moment caused by the
orbital movement of the electron.

The formula outlined in red gives the classic definition of the magnetic moment.

The current multiplied by the area A enclosed by the current gives the magnetic
moment, i.e. μ = I · A.

Due to the wave-particle dualism, all types of orbits that are compatible with the
wave function are allowed.
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Normal Zeeman effect 2 Comment 2

The figure shows a circular path that was used in Bohr’s model of the atom.

The probability that the electron will move in a circular orbit is small, but a circular
orbit is certainly not forbidden.

Hence, the circular orbit can be used to study the effects.

The first underlined equation gives the current due to an electron.

T denotes the period of rotation.

The rotation period results from the quotient of the circumference and the speed of
the electron.

The equation outlined in red gives the magnetic moment of the orbit.
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Normal Zeeman effect 2 Comment 3

The magnetic moment is proportional to the angular momentum.

Since the angular momentum is measured in units of ħ, the equation is expanded
with ħ.

The constants are combined to Bohr’s magneton μB.
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Normal Zeeman effect 3
Bohr’s magneton

μB =
eħ
2m

= 9.274 · 10−24 J/T = 9.274 · 10−24 Am2 = 5.8 · 10−5 eV
T

potential energy of a magnetic moment μ⃗ in a homogeneous B⃗-field is

Epot = −μ⃗B⃗ = μB
L⃗
ħ
B⃗

Hamilton Operator (replace p⃗ by −iħ∇ and thereby L⃗ by ˆ⃗L)

Ĥ Zee = μB
ˆ⃗L
ħ
B⃗



Hydrogen atom Normal Zeeman Dia- and Paramagnetism Revision

Normal Zeeman effect 3 Comment 1

Bohr’s magneton is the fundamental quantity that determines the magnetism
caused by electrons.

The numerical values   of Bohr’s magneton are outlined in red in the first line.

The equation underlined in red gives the potential energy of a magnetic moment in
a magnetic field.

The potential energy is smallest when the magnetic moment is aligned parallel to
the magnetic field.

The potential energy is part of the Hamilton function and the Hamilton function
becomes the Hamilton operator when the momentum of the electron is replaced
by the momentum operator −iħ∇.
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Normal Zeeman effect 3 Comment 2

This turns the orbital angular momentum of the electron into the angular
momentum operator.

This contribution of the Hamilton operator is called the Zeeman operator.

The equation outlined in red gives the Zeeman operator, which must be included in
the Schrödinger equation when a magnetic field is present.

Although the discussion started with a very particular orbit of the electron, the
result is general.
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Normal Zeeman effect 4

eigenvalue equation (B defines the z-direction and with L̂zYℓ,m = mħYℓ,m)

Ĥ ZeeYℓ,m = μB
L̂z
ħ
BYℓ,m = mμBBYℓ,m

energy eigenvalues
EZee = mμBB

and m = 0,±1,±2, ....
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Normal Zeeman effect 4 Comment

The eigenvalue equation of the Zeeman operator is very simple when the magnetic
field is applied along the z-direction or the magnetic field defines the z-direction.

In this case the eigenvalue equation of the Zeeman operator is proportional to the
eigenvalue equation of the z-component of the angular momentum.

The eigenfunctions are the spherical harmonics.

The equation outlined in red shows the eigenvalues   of the Zeeman operator.

Independent of the details of the atomic eigenstates, the shift of the energy is
determined by the quantum number m of the angular momentum.

The quantum number m is therefore sometimes also called the magnetic quantum
number.
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Normal Zeeman effect 5

selection rules for electrical dipo-
le transitions

∆ℓ =± 1
∆m = 0,±1

splitting of the spectral line in 3
components

∆m = −1 : ∆E = −μBB
∆m = 0 : ∆E = 0

∆m = +1 : ∆E = +μBB
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Normal Zeeman effect 5 Comment 1

The figure shows the splitting of a 2p and a 3d orbital.

The 2p orbital is split into three components.

The 3d orbital is split into five components.

The arrows indicate the allowed electrical dipole transitions.

The selection rules for electrical dipole transitions are ∆ℓ = ±1 and ∆m = 0,±1.

The figure shows that the transition between the 2p and 3d orbitals should split
into three spectral lines in a magnetic field.

This result does not agree with the observation of Pieter Zeeman.
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Normal Zeeman effect 5 Comment 2

Since the analysis of Hendrik Lorentz of the Zeeman effect in 1897 predicted a
splitting into three spectral lines, a threefold splitting of spectral lines in a magnetic
field is called the normal Zeeman effect.

Zeeman’s original observation is somewhat anomalous. A splitting of spectral lines
in more or less than three lines is therefore called the anomalous Zeeman effect.

It is obvious that the Schrödinger theory is not complete at the current state of the
discussion.

What is missing is the intrinsic magnetic moment of the electron, which is
independent of the orbital motion.

The intrinsic magnetic moment of the electron is related to an intrinsic angular
momentum of the electron called the spin of the electron.
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Normal Zeeman effect 5 Comment 3

The fact that the electron has a magnetic moment and its own angular momentum
was first demonstrated in 1922 with the “Stern-Gerlach experiment”.

However, the attempt to understand the magnetic moment of the electron in the
context of classical physics leads to absolutely unrealistic results.
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Normal Zeeman effect 6
Zeeman effect of the red Cadmium line (λ = 643.8 nm)

(ZeemanCdLinie.mp4)

ZeemanCdLinie.mp4
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Normal Zeeman effect 6 Comment

The splitting of spectral lines into three components when a magnetic field is
applied can be observed in nature.

The video shows the splitting of the red Cadmium line.

The measurement with a Fabry-Perot interferometer clearly shows a split into
three lines.
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Normal Zeeman effect 7

Zeeman effect of the green Mercury line (λ = 546.1 nm)

(ZeemanGüneHgLinie.mp4)

ZeemanGüneHgLinie.mp4
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Normal Zeeman effect 7 Comment 1

The video shows the Zeeman splitting of the green Mercury spectral line.

The resolution of the interferometer in the video is low, giving the impression that
the green spectral line is also split into three components.

The figure shows the measurement with a better Fabry-Perot interferometer.

The resolution of the experiment is much greater.

The green spectral line splits into 9 components.

Region A shows the rings when no magnetic field is applied.

The region B shows the rings when a magnetic field is applied.

Only 7 of the expected rings are clearly visible.
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Normal Zeeman effect 7 Comment 2

A polarization filter is used in area C, which blocks the light from the inner three
rings.

For this purpose, the polarization filter is set so that only light can pass that is
polarized perpendicular to the direction of the magnetic field.

The light of the inner three rings is obviously polarized parallel to the direction of
the magnetic field.

The same effect can also be observed for the red Cadmium line.

Since the spectrum of the red Cadmium line agrees with the theory at hand, one
can conclude that the selection rule ∆m = ±1 leads to light polarized
perpendicular to the magnetic field, while transitions that follow the selection rule
∆m = 0 are polarized parallel to the magnetic field.
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Normal Zeeman effect 8

(Circularpolarization.mp4)

Circularpolarization.mp4
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Normal Zeeman effect 8 Comment 1

The sketch shows the experimental setup.

π describes the polarization of light in which the electric field of the wave oscillates
parallel to the magnetic field.

σ describes the polarization of light in which the electric field oscillates
perpendicular to the magnetic field.

If the light is observed parallel to the magnetic field, it is circularly polarized.

The video shows that a phase shift of π/2 between two mutually perpendicular
components of the electric field leads to circular polarization.
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Dia- and Paramagnetism
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Dia- and paramagnetism 1

paramagnetism: magnetic moment due to the orbital angular momentum

ˆ⃗μL = −μB
ˆ⃗L
ħ

The paramagnetic mo-
ment results from the
thermal average

μpara = ⟨μL⟩
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Dia- and paramagnetism 1 Comment 1

The equation outlined in red gives the operator of the magnetic moment.

If the applied magnetic field defines the z-direction, then the eigenvalues   for the
operator of the magnetic moment can easily be given.

The left figure shows the splitting of a quantum state with the orbital angular
momentum ℓ = 1.

If there are many atoms, then the thermal occupation of the energy levels can be
calculated using the Boltzmann factor.

A magnetic moment can be assigned to each energy level according to the
magnetic quantum number m.
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Dia- and paramagnetism 1 Comment 2

In the figure, the thermal occupation of the energy levels is indicated by red dots
and the magnetic moment by green arrows.

The total magnetic moment of the atoms is obtained by adding up the magnetic
moments of all atoms.

If the total magnetic moment is divided by the number of atoms, the result is an
averaged magnetic moment per atom, which is aligned parallel to the magnetic
field.

The magnitude of the magnetic moment depends on the strength of the magnetic
field and the temperature.

This phenomenon is called paramagnetism.
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Dia- and paramagnetism 2

the paramagnetic moment is (in thermal equilibrium)

proportional to the strength of B: μpara ∝ B,
as long as kBT >> μBB
proportional to the reciprocal temperature: μpara ∝ 1/T,
as long as kBT >> μBB (Curie-law)
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Dia- and paramagnetism 2 Comment 1

The paramagnetic moment is determined by the ratio between the thermal energy
kBT and the magnetic energy, since μBB determines the energy of the Zeeman
splitting.

The left figure shows the variation of the paramagnetic moment as a function of
the applied magnetic field B.

The paramagnetic moment is zero when the magnetic field is zero.

As long as the magnetic energy is smaller than the thermal energy, the increase in
the magnetic moment is proportional to the magnetic field strength.

If the magnetic energy is much greater than the thermal energy, only the ground
state is occupied and the paramagnetic moment reaches its maximum value
μpara = ℓμB.
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Dia- and paramagnetism 2 Comment 2

The paramagnetic moment is saturated in strong magnetic fields.

The figure on the right side shows the temperature dependence of the
paramagnetic moment.

The paramagnetic moment begins with the maximum value at low temperatures
and decreases with increasing temperature, since more and more energy levels
are occupied with smaller or even antiparallel magnetic moments.

If the thermal energy is much greater than the magnetic energy, the temperature
dependence of the paramagnetic moment is given by Curie’s law.

The paramagnetic moment is proportional to T−1.
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Dia- and paramagnetism 3

(ParamagnetischerSauerstoff.mp4)

ParamagnetischerSauerstoff.mp4
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Dia- and paramagnetism 3 Comment 1

The left figure shows a macroscopic magnetic moment.

A magnetic moment has a magnetic north and a south pole.

The magnetic field lines start at the magnetic north pole and end at the south pole.

The upper figure on the right shows the behavior of a paramagnetic moment
between the poles of a magnet.

The paramagnetic moment is oriented parallel to the magnetic field of the magnet.

Since there is a force of attraction between opposing magnetic poles, there is a
force that holds the paramagnetic moment in the field of the magnet.

The video shows an experiment with liquid nitrogen and liquid oxygen.
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Dia- and paramagnetism 3 Comment 2
The boiling temperature of N2 is 77 K and the boiling temperature of O2 is 90 K.

A pair of magnets with a small gap between them is cooled in liquid nitrogen.

Nothing special happens when the pair of magnets is pulled out of the liquid
nitrogen.

When the cold magnet pair is immersed in liquid oxygen, a droplet of oxygen is
held between the magnets when they are removed from the liquid oxygen.

O2 is paramagnetic while N2 is diamagnetic.

In diamagnetism, the magnetic moment of the atoms is oriented antiparallel to the
magnetic field.

This is shown in the second figure on the right.
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Dia- and paramagnetism 3 Comment 3

Since there is a repulsive force between magnetic poles of the same type, no
diamagnetic moment can be held between the poles of a magnet.

The N2 molecule is diamagnetic.
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Dia- and paramagnetism 4

diamagnetism: magnetic moment due to Lenz’s law (1834)
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Dia- and paramagnetism 4 Comment 1

The figures illustrate the reason for the diamagnetic moment.

Lenz’s law states that a current is induced which counteracts the change in the
magnetic flux through an area when a magnetic field is applied.

The figure illustrates the effect for a circular orbit of an electron.

The speed of the electron is indicated by a red arrow.

The closed magnetic field lines Bi indicate the internal magnetic field of an atom
that is caused by the motion of the electron according to Ampere’s law.

Rule of the right hand: The thumb points parallel to the speed of the electron. The
other fingers point in the opposite direction of the magnetic field due to the
negative sign of the charge.
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Dia- and paramagnetism 4 Comment 2

The magnetic field B⃗ denotes an external magnetic field that is turned on.

The blue vectors δv⃗ indicate the speed change of the electron due to Lenz’s law.

In the left figure, the magnetic flux through the area enclosed by the electron orbit
is reduced by the applied magnetic field.

Therefore the speed of the electron has to be increased to compensate for the
effect.

In the right figure, the magnetic flux is increased by the applied magnetic field and
the speed of the electron has to be reduced to compensate for the effect.

The direction of the induced magnetic moment is opposite to the applied magnetic
field in both cases.



Hydrogen atom Normal Zeeman Dia- and Paramagnetism Revision

Dia- and paramagnetism 4 Comment 3

The induced diamagnetic moment is much smaller than the paramagnetic
moment.

If the paramagnetic moments compensate each other because the electrons
rotate in opposite directions, the diamagnetic moment remains.
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Dia- and paramagnetism 5

change of the centrifugal force Fv due to δv

δFv
δv

=
d
dv

(
mv 2

r

)
=

2mv
r

and δFv =
2mv
r

δv

the change of the centrifugal force due to δv is compensated by the Lorentz force
FL = evB

δFv = FL → 2mvδv
r

= evB

and

δv =
erB
2m
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Dia- and paramagnetism 5 Comment
When a magnetic field is applied, the speed of the electron must change due to
Lenz’s law.

The reaction of the centrifugal force to the change in speed δv is given by the
underlined equation.

Assuming that the electron’s orbit does not change due to the applied magnetic
field, the change in centrifugal force must be compensated for by the Lorentz force.

The compensation is illustrated in the following figure.

This effect results in the formula outlined in red for the change in speed as a
function of the magnetic field.

(e denotes the elementary charge, i.e. ≈ +1.6 · 10−19 As and the forces their
absolute values.)
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Dia- and paramagnetism 6
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Dia- and paramagnetism 7
magnetic moment of a charge on a circular orbit

μ = −erv
2

with

δv =
erB
2m

is the response of the magnetic moment due the applied magnetic field

δμ = −erδv
2

= −e2r 2

4m
B
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Dia- and paramagnetism 7 Comment

With the formula for the magnetic moment of an electron on a circular path, the
induced diamagnetic moment in a magnetic field results.

This result for a circular path can be generalized for any path that is described by a
wave function.

The square of the radius r has to be replaced by the mean value, which can be
calculated with the wave function.

As with the circular path, only the component of r that is perpendicular to the
magnetic field has to be taken into account.
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Dia- and paramagnetism 8

the diamagnetic moment is

μ⃗dia = − e2

4m
⟨⃗r 2⊥⟩B⃗

induced by the B⃗ field
it is proportional to the area of the atom / molecule perpendicular to B⃗
it is independent of the temperature
and it is always antiparallel to the direction of the B⃗-field
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Dia- and paramagnetism 8 Comment 1

The formula outlined in red shows the exact result for the magnetic moment,
although the derivation is anything but exact.

Like the paramagnetic moment, the diamagnetic moment is also induced by a
magnetic field.

Without a magnetic field there is no paramagnetic or diamagnetic moment.

The diamagnetic moment increases with the diameter of an atom and the number
of electrons.

In molecules, the diamagnetic moment depends on the direction of the magnetic
field in relation to the molecular coordinates.

In contrast to the paramagnetic moment, the diamagnetic moment is almost
independent of temperature.
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Dia- and paramagnetism 8 Comment 2

For the paramagnetic moment the relevant energy scale is given by the magnetic
energy μBB.

This energy scale is usually comparable to the thermal energy scale kBT.

The relevant energy scale for the diamagnetic moment is given by the excitation
energy of the electronic eigenstates.

These energies are much larger than the thermal energy and the influence of the
thermal excitation on the diamagnetic moment is usually negligible.

Due to Lenz’s law, the diamagnetic moment always points in the opposite direction
of the applied magnetic field, while the paramagnetic moment is parallel to the
applied magnetic field.
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Summary in Questions 1

1. Give the quantum numbers which characterize an orbital of the hydrogen atom.

2. Give all quantum number of an orbital with the main quantum number n = 3.

3. Sketch the radial wave functions with the quantum numbers n = 4, ℓ = 3 and
n = 4, ℓ = 0.

4. Give arguments for these plots.

5. Sketch the radial probability density for the quantum numbers n = 4, ℓ = 0.

6. Show that the wave function e−r/aB is a solution of the Schrödinger equation of
the hydrogen atom.

7. Calculate the numerical value of the corresponding eigenvalue.
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Summary in Questions 2

8. Give the Zeeman Hamilton operator.

9. Give the eigenvalue equation of the Zeeman Hamilton operator.

10. Sketch the level-splitting of a p orbital in a magnetic field.

11. Give the magnetic moments of the Zeeman levels.

12. Explain the difference between para- and diamagnetism.

13. Give the paramagnetic moment for T → 0.

14. Give the temperature dependence of the paramagnetic moment when
kBT >> μBB.
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