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Stern-Gerlach experiment 1
In the Stern-Gerlach experiment an atom beam made of Ag atoms passes through
a inhomogeneous magnetic field (Otto Stern and Walther Gerlach 1922)
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Stern-Gerlach experiment 1 Comment 1

An important result of Bohr’s theory of the atom is that the angular momentum of
the electrons is quantized in units of ħ.

This emerges from comparing Bohr’s theory with the results of optical
spectroscopy of the hydrogen atom.

The Zeeman effect shows that the projection of the angular momentum onto the
direction of the magnetic field is also quantized.

The directional quantization of angular momentum and the related magnetic
moment follows easily from the Schrödinger equation but not at all from Bohr’s
model of the atom.
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Stern-Gerlach experiment 1 Comment 2

Therefore in the time before the Schrödinger equation, the direction quantization
was an astonishing effect that Otto Stern and Walter Gerlach wanted to investigate
independent of optical spectroscopy with an atomic beam experiment in 1921 and
1922.

The figure shows a sketch of the famous experiment.

A beam of Silver atoms is guided through an inhomogeneous magnetic field.

The inhomogeneity of the magnetic field is determined by the shape of the
polepieces of the magnet.

With this experimental set-up, Stern and Gerlach observed that the beam of the
silver atoms splits into two partial beams after the inhomogeneous magnetic field.



Stern-Gerlach-Exp. Spin Dirac notation Spin-Orbit Coupling Revision

Stern-Gerlach experiment 2

(SternGerlachexperiment.mp4)

SternGerlachexperiment.mp4
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Stern-Gerlach experiment 2 Comment

The video shows an animation of the experiment with both classical magnetic
moments and a magnetic moment, which has two setting options with regard to
the direction of the magnetic field.
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Stern-Gerlach experiment 3

force on a magnetic moment in an inhomogeneous magnetic field

F⃗ = (μ⃗∇)B⃗

simplifying assumptions are B⃗ ∥ ẑ and ∂B
∂z ̸= 0

Fz = μz
∂B
∂z

with a classical magnetic moment, all orientations in relation to the directions
of the magnetic field are possible, i.e. μz = |⃗μ| cos θ, and a beam splitting is
not expected at all.
A beam of silver atoms is split into two components.
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Stern-Gerlach experiment 3 Comment 1

The underlined equation indicates the force on a magnetic moment in an
inhomogeneous magnetic field.

The formula results when ∇ is applied to the potential energy Epot = −μ⃗B⃗,
because the force due to the potential energy is F⃗ = −∇Epot.

e.g. Fx = μx∂xBx + μy∂xBy + μz∂xBz. With 4th Maxwell-equation without current and without a dynamic electric field, i.e. ∇ × B⃗ = 0 or explicitly

∂xBy = ∂yBx and ∂xBz = ∂zBx one finds the red underlined equation.

The formula is simplified if the magnetic field is only aligned along the z-direction
and only the partial derivative of the magnetic field for the z-coordinate differs from
zero.

Since a classic magnetic moment can have all orientations with respect to the
z-direction, no beam splitting is to be expected.
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Stern-Gerlach experiment 3 Comment 2

In Schrödinger’s theory, the angular momentum is quantized along the z-direction
and a beam splitting is not surprising.

The twofold splitting of the atom beam shows directly that there is a twofold
quantization for the magnetic moment of the silver atoms.

In fact, it has long been suspected that the electron must have a magnetic moment
and that this moment has a twofold direction quantization.

Reasons for this assumption are the doublet splitting of the spectral lines of the
alkali metals, the doublet splitting of the characteristic X-rays and the Zeeman
splitting of the spectral lines of the alkali metals into an even number of lines.
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Stern-Gerlach experiment 3 Comment 3

In fact, in 1924, Nils Bohr was able to explain the periodic table of the elements by
assuming that the electron has a twofold quantum number.

However, these findings raised many questions.

The direction quantization of angular momentum and magnetic moment has been
shown experimentally, but the reason for this was not known.

The intrinsic angular momentum of an electron can easily be explained, if one
imagines the electron as a charged sphere that rotates around an axis.

The experiments show that the magnetic moment of the electron must be in the
range of Bohr’s magneton μB.



Stern-Gerlach-Exp. Spin Dirac notation Spin-Orbit Coupling Revision

Stern-Gerlach experiment 3 Comment 4

However, this assumption leads to a value in the range of 10−13 m for the radius of
the electron sphere, which is by far too large and cannot agree with Rutherford’s
scattering experiments.

The problems were finally solved in 1927 by Paul Dirac.
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Spin
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Spin of the electron 1

relativistic energy-momentum relation

E2 − c2p⃗ 2 = m2
0c

4

−iħ∂ψ
∂x

= pxψ and iħ
∂ψ
∂t

= Eψ

and
E2 − c2p⃗ 2 = m2

0c
4 → (E2 − c2p⃗ 2)ψ = m2

0c
4ψ

Klein-Gordon equation

ħ2
∂2ψ
∂t 2

− c2ħ2∇2ψ = m2
0c

4ψ
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Spin of the electron 1 Comment

The equation outlined in red gives the relativistic energy-momentum relationship of
a particle with no potential energy.

The Klein-Gordon equation results when energy and momentum are replaced by
the corresponding partial derivatives of the wave function.

In 1926, however, the Klein-Gordon equation was not accepted as the wave
equation of matter waves, since in this differential equation the number of particles
is not a conserved quantity.

The Klein-Gordon equation is a second order differential equation.

Paul Dirac solved this problem by reducing the Klein-Gordon equation to a set of
first-order differential equations.
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Spin of the electron 2

Dirac equation for a free particle with no potential energy

iħ
∂ψ
∂t

= (cα⃗ˆ⃗p+ βm0c2)ψ

the Klein-Gordon equation results when the Dirac equation is applied twice

the coefficients α⃗ and β must meet the conditions

αiαj + αjαi = 2δij
αiβ+ βαi = 0

β2 = 1

the coefficients αi=x,y,z and β are 4× 4-matrices formed by Pauli matrices
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Spin of the electron 2 Comment 1
The underlined equation is the Dirac equation of a relativistic electron with no
potential energy.

The Klein-Gordon equation results when the operators on the left and right side of
the Dirac equation are applied twice.

This only works if the coefficients αi and β are 4 × 4 matrices that meet the
conditions outlined in red.

These matrices are formed by the Pauli matrices (next slide)

αi=x,y,z =

(
0 σi
σi 0

)
and β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
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Spin of the electron 2 Comment 2

This leads to a lot of math.

However, few conclusions from Dirac’s theory are really important unless one
wants to become a specialist in relativistic quantum mechanics.
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Spin of the electron 3

Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

spin operator of the electron

ˆ⃗s =
ħ
2

σx
σy
σz
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Spin of the electron 3 Comment 1

The formulas framed in red give the Pauli matrices.

The intrinsic angular momentum of the electron is called spin.

The underlined equation gives the operator of the spin.

The Pauli matrices multiplied by ħ/2 are the components of the spin operator.

In contrast to the orbital angular momentum, the spin operator is not a differential
operator that acts on spatial coordinates.

The spin operator does not act on spatial coordinates and therefore has nothing to
do with an electrically charged rotating sphere.
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Spin of the electron 3 Comment 2

The spin is consequently not caused by a rotating charged sphere.

There is no experiment in which a finite radius of the electron could be proven.
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Spin of the electron 4

z-component of the spin operator

ŝz =
ħ
2

(
1 0
0 −1

)

eigenvalue equations of ŝz

ħ
2

(
1 0
0 −1

)(
1
0

)
= +

ħ
2

(
1
0

)

ħ
2

(
1 0
0 −1

)(
0
1

)
= −ħ

2

(
0
1

)
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Spin of the electron 4 Comment 1

Schrödinger’s wave mechanics defines angular momentum using differential
operators that lead to eigenvalue equations that determine the vector of the orbital
angular momentum.

These eigenvalue equations are now the key to generalizing wave mechanics to
quantum mechanics.

The essence of generalization can be illustrated using the spin.

In quantum mechanics, a physical quantity is called an angular momentum if it
fulfills the eigenvalue equations of angular momentum.

The equation outlined in red gives the z-component of the spin operator.
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Spin of the electron 4 Comment 2

The following two matrix equations give the eigenvalue equation of the z
component.

The eigenstates of the spin operator are obviously the 2-tuples

(
1
0

)
and

(
0
1

)
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Spin of the electron 5
square of the spin operator

ˆ⃗s 2 =

(
ħ
2

)2
(σ2x + σ2y + σ2z) with σ2

x=σ2y = σ2z =

(
1 0
0 1

)

the 2-tuple

(
1
0

)
and

(
0
1

)
are the eigenstates of ˆ⃗s 2 and

ˆ⃗s 2 =
3
4
ħ2
(
1 0
0 1

)
=

1
2

(
1
2
+ 1
)
ħ2
(
1 0
0 1

)
quantum numbers of the spin operator

s =
1
2

and ms = ±1
2
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Spin of the electron 5 Comment

The first equation outlined in red gives the operator for the square of the spin.

The square of each Pauli matrix gives the unit matrix.

Therefore the 2-tuples

(
1
0

)
and

(
0
1

)
are also eigenstates of the squared spin

operator.

The underlined equation shows that the eigenvalue 3/4 ħ2 can be written with the
spin quantum number s = 1/2 like the eigenvalue of the squared orbital angular
momentum.

The formulas outlined in red indicate the quantum numbers of the spin.
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Spin of the electron 6

s =
1
2

and ms = ±1
2

magnetic moment of the electron

μ⃗e = −gμBs⃗/ħ

g-factor of the electron

g = 2.00231930436256(35)
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Spin of the electron 6 Comment 1

The vector of the spin is determined with the eigenvalues   of the spin operator
underlined in red.

The figure shows the vector of the spin, which, like the vector of the orbital angular
momentum, lies on conical surfaces.

The z-component of the vector has the length ±1
2ħ.

The length of the vector is
√

1
2(

1
2 + 1)ħ =

√
3
4ħ.

Like the orbital angular momentum, the electron spin is connected to a magnetic
moment.

The equation outlined in red gives the formula that results from the Dirac equation
for the magnetic moment of the electron.
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Spin of the electron 6 Comment 2

Except for the g-factor, this formula corresponds to the formula for the magnetic
moment of the orbital angular momentum.

The Dirac theory gives the exact value g = 2 for the g-factor of the electron.

In 1927 the results of the Dirac equation agreed exactly with the measurements of
the spectra of the hydrogen atom.

Therefore, similar to Wien’s radiation formula, the question arose whether the
Dirac theory is actually exact, or whether it is only an approximation.

Great efforts have been made to measure the spectra of the hydrogen atom and
the magnetic moment of the electron as precisely as possible.

During the 1940s it became clear that the Dirac equation is an approximation.
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Spin of the electron 6 Comment 3

The formula underlined in red gives the currently known value of the g-factor of the
electron.

The g-factor is determined experimentally up to 12 digits behind the decimal point.

This accuracy is also achieved when calculating the g-factor in the context of
quantum electrodynamics, i.e. when solving the time-dependent Schrödinger
equation.

Experiment and theory match perfectly.
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Dirac notation
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Dirac notation 1
Dirac notation for quantum states

|1st quantumnumber, 2nd quantumnumber, ...⟩

spin eigenstates (
1
0

)
→ |1/2,+1/2⟩ and

(
0
1

)
→ |1/2,−1/2⟩

orbital angular momentum eigenstates

Yℓ,m(θ,φ) → |ℓ,m⟩

eigenstate of the hydrogen atom

Rn,ℓ(r)Yℓ,m(θ,φ) → |n, ℓ,m⟩
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Dirac notation 1 Comment

Dirac discovered that quantum states are not only determined by wave functions.

The 2-tuples of the spin eigenstates are also quantum states.

Dirac therefore introduced an abbreviated notation for quantum states, which is
outlined in red in the first line.

The symbol |...⟩ is called a “ket”.

This is a special bracket that encloses the quantum numbers.

The following lines give examples of the use of the short notation.
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Dirac notation 2

eigenvalue equation of the spin

ˆ⃗s 2 |s,ms⟩ = s(s+ 1)ħ2 |s,ms⟩
ŝz |s,ms⟩ = msħ |s,ms⟩

eigenvalue equation of the orbital angular momentum with the Dirac notation

ˆ⃗L2Yℓ,m(θ,φ) = ℓ(ℓ+ 1)ħ2Yℓ,m(θ,φ) → ˆ⃗L2 |ℓ,m⟩ = ℓ(ℓ+ 1)ħ2 |ℓ,m⟩

L̂zYℓ,m(θ,φ) = mħYℓ,m(θ,φ) → L̂z |ℓ,m⟩ = mħ |ℓ,m⟩
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Dirac notation 2 Comment

The boxed formulas give the eigenvalue equations of the spin using the Dirac
notation and the same symbolic notation for the eigenvalue equations of the orbital
angular momentum.
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Dirac notation 3
time independent Schrödinger equation of the hydrogen atom
(abbreviation of ψn,ℓ,m(⃗r, t) = Rn,ℓ(r)Yℓ,m(θ,φ)e−iEnt/ħ → |n, ℓ,m⟩)

Ĥ ψn,ℓ,m(⃗r, t) = Enψn,ℓ,m(⃗r, t) → Ĥ |n, ℓ,m⟩ = En |n, ℓ,m⟩

normalization of the wave function∫
V
ψ∗
n,ℓ,m(⃗r, t)ψn,ℓ,m(⃗r, t)dV = 1

the “bra”
ψ∗
n,ℓ,m(⃗r, t) → ⟨n, ℓ,m|

∫
V
ψ∗
n,ℓ,m(⃗r, t)ψn,ℓ,m(⃗r, t)dV = 1 → ⟨n, ℓ,m|n, ℓ,m⟩ = 1
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Dirac notation 3 Comment

The Schrödinger equation of the hydrogen atom can also be formulated using the
Dirac notation.

The wave function is abbreviated with the ket |n, ℓ,m⟩.

The equation underlined in red gives the integral for the normalization of the wave
function.

Dirac introduced the “ bra ” symbol for the complex conjugate wave function ψ∗
n,ℓ,m.

The equation outlined in red gives the bra of the quantum state ψ∗
n,ℓ,m(⃗r).

The last equation framed in red gives the short notation for the integral.

The symbol ⟨n, ℓ,m|n, ℓ,m⟩ is called a bracket and abbreviates the integral.
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Dirac notation 4

expectation value e.g. ⟨x⟩

⟨x⟩ =
∫
V
ψ∗
n,ℓ,m(⃗r, t)xψn,ℓ,m(⃗r, t)dV

Dirac notation
⟨x⟩ = ⟨n, ℓ,m| x |n, ℓ,m⟩
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Dirac notation 4 Comment

Sometimes one likes to calculate the average of a physical quantity.

The example shows the integral for calculating the mean value of the coordinate x.

The mean value over the wave function of a physical quantity is called the
expectation value of the physical quantity.

The expectation value can be determined by measuring many similar quantum
systems.

When examining a single quantum system, the measurement must be carried out
several times and the result averaged.

The equation outlined in red gives the abbreviated form of the integral in Dirac
notation for the expectation value of the coordinate x.
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Spin-Orbit Coupling
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Spin-orbit coupling 1

the magnetic moment of the electron aligns itself in the magnetic field that is
created by the movement of the electron around the nucleus
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Spin-orbit coupling 1 Comment 1

The left figure shows the movement of an electron around the nucleus on a
circular orbit.

Although the electron can also travel through other orbits on its way around the
atomic nucleus, a circular path is used in the following for the sake of simplicity.

A circular orbit is unlikely, but not forbidden either.

The illustration on the right shows the same movement.

The reference system is now attached to the electron, i.e. the electron is at rest
and the nucleus is in motion.

The electron is surrounded by a ring current that creates a magnetic field
according to Ampere’s law.
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Spin-orbit coupling 1 Comment 2

The potential energy of the magnetic moment of the electron in this magnetic field
can easily be calculated.

In order to finally get the Hamilton operator of the spin-orbit coupling, orbital
angular momentum and spin have to be replaced by their operators.
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Spin-orbit coupling 2

Magnetic field B in the center of a circular current I

B = μ0
I
2r

Current caused by a nucleus with atomic number Z on a circular orbit around the
electron

I =
Zev
2πr

B = μ0
Zev
4πr 2

= μ0
Zev
4πr 2

rm
rm

= μ0
Ze

4πr 3m
L

with Bohr’s magneton μB = eħ
2m results B = μ0

ZμB
2πr 3

L
ħ
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Spin-orbit coupling 2 Comment

The first underlined equation gives the magnetic field in the center of a ring-current
I.

The second underlined equation gives the current due to the movement of the
nucleus with the atomic number Z around the electron.

The resulting formula for the magnetic field B can be expanded with the product
rm.

m denotes the mass of the electron.

The magnetic field is proportional to the orbital angular momentum of the electron,
since the speed of the nucleus around the electron is equal to the speed of the
electron around the nucleus.

The formula outlined in red results when the constants are combined to form
Bohr’s magneton.
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Spin-orbit coupling 3
potential energy of the magnetic moment μe of the electron in the magnetic field,
which is caused by the atomic nucleus

Epot = −μ⃗eB⃗ with B = μ0
ZμB
2πr 3

L
ħ

and
μ⃗e = −gμBs⃗/ħ

Epot = gμ2B
μ0
2π

Z
r 3

s⃗L⃗
ħ2

Hamilton operator of the spin-orbit coupling

Ĥ SL = ξ
ˆ⃗s · ˆ⃗L
ħ2
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Spin-orbit coupling 3 Comment 1

With the formula for the potential energy of a magnetic moment in the magnetic
field and with the magnetic moment of an electron, the formula underlined in red
results for the potential energy of the spin-orbit coupling.

The Hamilton operator of the spin-orbit coupling results when the orbital angular
momentum and spin of the electron are replaced by the orbital angular momentum
operator and the spin operator.

The prefactor is abbreviated with the letter ξ and is usually determined
experimentally.
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Spin-orbit coupling 3 Comment 2

The prefactor of the underlined formula written in green is correct except for a
factor of 1/2.

The underlined equation agrees with the Dirac equation if the additional factor 1/2
is included.

The combination of Bohr’s atomic model with the quantization rules of Schrödinger
obviously allows almost exact results to be achieved.

In contrast to the Dirac equation, Bohr’s atomic model enables a very intuitive
description of quantum physics, which is obviously not completely misleading.
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Spin-orbit coupling 4

formula of the spin-orbit coupling constant

ξ = gμ2B
μ0
4π

Z
r 3

estimation with the Bohr radius
rn =

aB
Z
n2

ξ ∝ Z 4

n 6
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Spin-orbit coupling 4 Comment

The formula underlined in red shows the exact result for the coupling constant of
the spin-orbit coupling ξ.

If the radius of the Bohr orbits is used, it turns out that the coupling constant
increases with the fourth power of the atomic number Z and decreases with the
sixth power of the principal quantum number n.

The effect of the atomic number Z is overestimated because the influence of the
shielding of the atomic charge due to other electrons is not taken into account.

The experimental data show that the strength of the spin-orbit coupling increases
strongly with the atomic number.

If the atomic number is greater than Z = 70, then the energy of the spin-orbit
coupling is greater than the energy of the electrical repulsive force between the
electrons.
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Revision
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Summary in Questions 1

1. Write down the Pauli matrices.

2. Calculate the squares of the Pauli matrices.

3. Sketch the possible orientations of the spin vector.

4. Which quantum numbers describe the spin of the electron and which numerical
values   do these quantum numbers have?

5. Explain the Dirac notation for quantum states.

6. Write down the eigenvalue equations for the spin in Dirac notation.
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Summary in Questions 2

7. Use the Dirac notation to write down the eigenvalue equations of the orbital
angular momentum.

8. What is meant by spin-orbit coupling?

9. Write down the Hamilton operator of the spin-orbit coupling.

10. Why does the strength of the spin-orbit coupling increase strongly with the
atomic number?

11. Why does the strength of the spin-orbit coupling decrease with increasing
principal quantum number?

12. Give the magnetic moment due to the orbit of the electron.
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Summary in Questions 3

13. Give the magnetic moment due to the spin of the electron.

14. Explain why the interaction energy of the spin-orbit coupling is smallest when
the orbital angular momentum and the spin are aligned antiparallel.
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