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Hyperfine interaction 1
magnetic moment of proton and neutron

μ⃗p = +gpμN
I⃗
ħ

and μ⃗n = +gnμN
I⃗
ħ

ˆ⃗I denotes the spin of the nucleons with the quantum numbers I = 1/2 and
MI = ±1/2
μN = eħ

2mp
denotes the nuclear magneton

μN =
me
mp

μB =
0.511MeV

938.272MeV
μB = 5.45 · 10−4 μB and μB = 5.8 · 10−5 eV

T

gp = +5.585694702(17) is the g-factor of the proton
gn = −3.82608545(90) is the g-factor of the neutron

most nuclei have a magnetic moment
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Hyperfine interaction 1 Comment 1

The magnetic moment of the nucleons, i.e. of the proton and neutron, is, like the
magnetic moment of the electron, proportional to the spin.

The spin of the nucleons has the quantum numbers I = 1/2 and MI = ±1/2.

The formula of the nuclear magneton corresponds to the formula of Bohr’s
magneton.

The mass of the electron is replaced by the mass of the proton.

The nuclear magneton is therefore much smaller than Bohr’s magneton.

In contrast to the electron, the g-factor of the nucleons deviates strongly from the
value 2.
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Hyperfine interaction 1 Comment 2

The g-factor of the proton is positive and the magnetic moment is aligned parallel
to the spin.

The g-factor of the neutron is negative and the magnetic moment is antiparallel to
the spin.

The nucleons consist of many charged particles, which cause the magnetic
moment through their motion and their intrinsic magnetic moments.

Although the neutron does not carry an electrical charge, it is formed by charged
particles that produce the total spin and magnetic moment of the neutron.

Since the nucleons are magnetic, it is not surprising that most atomic nuclei also
have a magnetic moment.
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Hyperfine interaction 2

the interaction between magnetic moments decreases strongly with distance
only s electrons reach the atomic nucleus and cause a strong hyperfine
interaction

Fermi contact interaction (1930):
hyperfine interaction of s electrons

Ĥ Is = A
ˆ⃗I ˆ⃗s
ħ2

constant A for the 1s orbital of the hydrogen A = 5.88μeV → A/h = 1420MHz
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Hyperfine interaction 2 Comment 1

As long as the atomic nuclei are spherical, the hyperfine interaction is only caused
by the magnetic moments of the atomic nucleus and the electrons.

The magnetic dipole interaction between the atomic nucleus and the magnetic
moment of the electron spin is proportional to 1/r 3 and therefore decreases very
strongly with the distance.

If the electron has an orbital angular momentum, it is pushed away from the
nucleus by centrifugal force and the direct dipole interaction between the magnetic
moments of the nucleus and the electron spin is very small.

The interaction between the magnetic moment of the electron orbit and the
magnetic moment of the atomic nucleus is also small.
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Hyperfine interaction 2 Comment 2

If the electron has no orbital angular momentum, then its orbit runs directly through
the atomic nucleus.

The magnetic dipole interaction then becomes very large.

However, this does not lead to an infinitely strong interaction, since the electron is
only in the atomic nucleus for a very short time.

At ≈ 10−15 m, the radius of the atomic nucleus is much smaller than the radius of
an s orbital of ≈ 10−10 m.

This magnetic interaction was investigated by Enrico Fermi in 1930.

In doing so, he found the Hamilton operator outlined in red.
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Hyperfine interaction 2 Comment 3

Since the interaction only takes place in the atomic nucleus, it has since been
called Fermi contact interaction.

Like the spin-orbit coupling, the Fermi contact interaction is determined by the
scalar product of two angular momentum operators.

In the case of spin-orbit coupling, it is the scalar product of spin and orbital angular
momentum of the electron.

In the case of the Fermi contact interaction, it is the scalar product of the nuclear
and electron spin.
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Hyperfine interaction 2 Comment 4

The figure illustrates the Fermi contact interaction.

The black arrow shows the magnetic moment of the atomic nucleus, which in most
cases is aligned parallel to the nuclear spin.

The green lines indicate the magnetic field lines that are caused by the nuclear
magnetic moment.

The red and blue arrows indicate the electron’s spin and magnetic moment.
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Hyperfine interaction 2 Comment 5

In the minimum of the potential energy, the magnetic moment of the electron
aligns itself parallel to the magnetic field, so that in the ground state the spin of the
electron and the spin of the atomic nucleus are aligned antiparallel to each other.

The coupling constant A of the Fermi contact interaction therefore has a positive
value.

The last line gives the coupling constant for the hydrogen atom in the ground state.
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Hyperfine interaction 3

Ĥ Is = A
ˆ⃗I ˆ⃗s
ħ2

→ total spin F⃗ = I⃗+ s⃗

with the coupled quantum states of the hyperfine interaction |F,MF, I, s⟩ one can
write the eigenvalue equation of the Fermi contact interaction

Ĥ Is |F,MF, I, s⟩ =
A
2ħ2

(
ˆ⃗F 2 − ˆ⃗I 2 − ˆ⃗s 2

)
|F,MF, I, s⟩ = E(F,MF, I, s) |F,MF, I, s⟩

energy eigenvalues

E(F,MF, I, s) =
A
2
(F(F+ 1)− I(I+ 1)− s(s+ 1))

hyperfine splitting in the ground state of hydrogen I = 1/2, s = 1/2 → F = 0, 1

∆E = E(F = 1)− E(F = 0) = A and A/h = 1420MHz
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Hyperfine interaction 3 Comment

The Fermi contact interaction couples the nuclear spin with the electron spin to
form a total spin, denoted by the letter F.

As with the spin-orbit coupling, the Hamilton operator of the Fermi contact
interaction can be transformed in such a way that only the squares of the angular
momentum operators appear.

The energy eigenvalues   can then easily be written down.

The ground state of the hydrogen atom splits into a hyperfine doublet.

The ground state has the quantum number F = 0 and the excited state has the
quantum number F = 1.

The excitation energy is equal to the coupling constant of the Fermi contact
interaction.
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Hyperfine interaction 4

hyperfine splitting of the sodium D2 line
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Hyperfine interaction 4 Comment 1

The figure shows the hyperfine splitting of the sodium D2 line.

The valence electron in the 3s orbital is excited into the state 32p3/2 state.

The quantum number of the nuclear spin of the sodium nucleus is I = 3/2.

The electron spin and the nuclear spin add in the ground state to the total angular
momentum F = 1, 2.

Due to the hyperfine interaction, the angular momentum j = 3/2 of the electrons in
the excited p orbital and the nuclear spin add up to F = 0, 1, 2, 3.

The hyperfine splitting of the 32s1/2 ground state is comparable to the hyperfine
splitting of the hydrogen atom.
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Hyperfine interaction 4 Comment 2

The hyperfine splitting of the 32p3/2 state is very much smaller, since a p-electron
cannot reach the nucleus and there is no direct Fermi-contact interaction.

The measurement of the hyperfine splitting was carried out with a tunable laser
aimed at a beam of sodium atoms.

The laser beam is aligned perpendicular to the sodium atom beam in order to
avoid the Doppler shift of the spectral lines.

The sodium atoms begin to emit when excited by the laser and the fluorescence is
measured as a function of the laser frequency.
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Selection rules for elm. dipole transitions 1

(DipolAntenne.mp4)

DipolAntenne.mp4
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Selection rules for elm. dipole transitions 1 Comment

The animation shows again the emission of an electromagnetic wave by a
pulsating electric dipole as it can be calculated with the classical theory of Heinrich
Hertz (1886).
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Selection rules for elm. dipole transitions 2

Paul Dirac (1927): Fermi’s golden rule

Wi→f =
2π
ħ

| ⟨f | Ĥ
′
|i ⟩ |2ρ(Ei→f)

Ĥ
′
: time-independent part of a perturbation operator

with sinusoidal time dependence
ρ(Ei→f): density of states, i.e. number of quantum
states which contribute to the transition i → f

electric dipole radiation | ⟨f | Ĥ
′
|i ⟩ |2 ∝ |E⃗ ⟨f | e⃗r |i ⟩ |2
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Selection rules for elm. dipole transitions 2 Comment 1

In quantum physics, photons are emitted or absorbed during the transitions
between two quantum states.

The figure shows an energy level scheme with a transition between an initial state
|i ⟩ and an final state |f ⟩.

The transition probability was calculated by Paul Dirac in 1927.

The formula outlined in red shows the result of Paul Dirac’s calculation.

The formula for the transition probability became famous as Fermi’s golden rule.

The transition is caused by a disturbance with a sinusoidal time dependence.
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Selection rules for elm. dipole transitions 2 Comment 2

The Hamilton operator Ĥ
′
is the time-independent part of the perturbation

operator, e.g. Ĥ
′
= d⃗E⃗ when the complete perturbation is d⃗E⃗ sin(ωt).

For electric dipole radiation, the transition matrix element ⟨f | Ĥ
′
|i ⟩ is proportional

to the amplitude of the electric field of the electromagnetic wave E⃗ sin(ω t) causing
the transition and the expectation value of the electric dipole operator d⃗ = e⃗r.

In this case, Fermi’s Golden Rule describes the absorption or the stimulated
emission (when Ef < Ei) of electromagnetic radiation and the rule can be used as
long as the energy of the disturbance, i.e. < Ĥ ′ >, is small compared to the
natural linewidth ∆E = ħ∆ω of the transition caused by spontaneous emission.

The transition probability also depends on the density of states of the final states,
i.e. the number of quantum states which are involved in the transition i → f.
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Selection rules for elm. dipole transitions 3

⟨f | e⃗r |i ⟩

electric dipole moment e⃗r

with |i ⟩ := φi(⃗r) and ⟨f | := φ∗
f (⃗r)

⟨f | e⃗r |i ⟩ :=
∫
V
φ∗
f (⃗r)e⃗r φidV

the frequency of the transition equals the frequency of the oscillating electric field

ωi→f =
Ef − Ei

ħ
=

Ei→f
ħ
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Selection rules for elm. dipole transitions 3 Comment 1

The formula outlined in red shows the matrix element⟨f | e⃗r |i ⟩ for the electric dipole
moment e⃗r with the Dirac notation.

Under the quantum states |i ⟩ and |f ⟩ one can imagine, for example, the solutions
of the time-independent Schrödinger equation for an atom.

The formula underlined in red shows the integral of the matrix element.

The formula outlined in red indicates the frequency of the transition between the
initial state and the final state.

In the range of the uncertainty relation, this frequency must also be the frequency
of the oscillating electric field.
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Selection rules for elm. dipole transitions 3 Comment 2

Before the transition probability is actually calculated, it is helpful to know whether
the transition matrix element is zero or not.

For this purpose there are selection rules which show whether a transition can
take place or not.
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Selection rules for elm. dipole transitions 4

E⃗ ⟨f | e⃗r |i ⟩

maximal transition probability when E⃗ ∥ r⃗
zero transition probability when E⃗ ⊥ r⃗

it is helpful to rearrange E⃗ r⃗

E⃗ r⃗ =Exx+ Eyy+ Ezz = (Ex − iEy)
1
2
(x+ iy) + (Ex + iEy)

1
2
(x− iy) + Ezz

=
1
2
Exx+

1
2
Eyy+

i
2
Exy−

i
2
Eyx+

1
2
Exx+

1
2
Eyy−

i
2
Exy+

i
2
Eyx+ Ezz
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Selection rules for elm. dipole transitions 4 Comment 1

The formula outlined in red shows that the polarization of the emitted or absorbed
radiation is determined by the electrical dipole moment.

The probability of absorption and emission is maximal when the electric field is
polarized parallel to the electric dipole moment, but zero when the electric field
and the dipole moment are perpendicular to each other.

Since it is known that atoms can absorb and emit circularly polarized
electromagnetic waves, it is helpful to rearrange E⃗ r⃗ so that the circular polarization
of the radiation is present in the formula.
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Selection rules for el. dipole transitions 5

E⃗ = E⃗x ± iE⃗y = (E⃗0x ± iE⃗0y)ei(⃗k⃗r−ωt)

(Circularpolarization.mp4)

Circularpolarization.mp4
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Selection rules for elm. dipole transitions 5 Comment

The underlined equation gives the wave function of a wave whose electric field is
polarized in the xy plane.

The animation shows the effect of a phase shift between the x and y components
of the electric field.

The wave is linearly polarized when the phase shift is 0°.

If the phase shift is 90°, then the wave is circularly polarized.

The decomposition of the scalar product E⃗⃗r is adapted to the situation of an atom
in a magnetic field or, more generally, for an atom in an axial symmetric field.
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Selection rules for el. dipole transitions 6
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Selection rules for elm. dipole transitions 6 Comment

The illustration shows the Zeeman effect again.

The quantization direction, i.e. the z-direction, is defined by the direction of the
magnetic field.

The light is linearly polarized when observed perpendicular to the magnetic field
and circularly polarized when observed along the direction of the magnetic field.
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Selection rules for el. dipole transitions 7

electric dipole moment and spherical harmonics

x+ iy = r sin θ cosφ+ i sin θ sinφ = r sin θe+iφ ∝ rY1,+1(θ,φ)

and
x− iy = r sin θ cosφ− i sin θ sinφ = r sin θe−iφ ∝ rY1,−1(θ,φ)

and
z = r cos θ ∝ rY10(θ,φ)

Ezz ∝EzrY1,0

(Ex ∓ iEy)(x± iy) ∝(Ex ∓ iEy)rY1,±1
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Selection rules for elm. dipole transitions 7 Comment

The coordinates x, y, z can be combined to form spherical harmonics with
quantum number ℓ = 1.

The scalar product of the electric field and the electric dipole moment can be
expressed in terms of spherical harmonics.

The formulas outlined in red summarize the results of the conversion.

The first line shows the linear polarization along the z-axis.

This is known as π polarization.

The second line shows the polarization perpendicular to the z-axis.

This is known as σ polarization.
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Selection rules for elm. dipole transitions 8

⟨f | e⃗r |i ⟩

selection rule for the spin

∆ms = 0

the electric dipole moment e⃗r cannot act on the spin

|s,ms = +1/2⟩ =̂

(
1
0

)
and |s,ms = −1/2⟩ =̂

(
0
1

)
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Selection rules for elm. dipole transitions 8 Comment

The essence of the selection rules becomes particularly clear when one considers
the electron spin.

The electric dipole moment cannot change the quantum states of the spin, so that
the matrix element underlined in red can only deviate from zero if the spin
quantum numbers for the initial and final state are the same.

This results in the selection rule outlined in red for the spin quantum number ms.
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Selection rules for elm. dipole transitions 9

⟨f | e⃗r |i ⟩
selection rules with the wave functions of the hydrogen atom

⟨f | =̂Rn ′,ℓ ′(r)Y∗
ℓ ′,m ′(θ,φ) and |i ⟩ =̂Rn,ℓ(r)Yℓ,m(θ,φ)

⟨f | e⃗r |i ⟩ ∝
∫

Rn ′,ℓ ′(r)rRn,ℓ(r)r 2dr
∫

Y∗
ℓ ′,m ′(θ,φ)Y1,0 or ±1(θ,φ)Yℓ,m(θ,φ) sin θdθdφ

mathematical detail Y1,n=0 or ±1Yℓ,m = aYℓ−1,m+n + bYℓ,m+n + cYℓ+1,m+n

orthogonality of spherical harmonics∫ π

θ=0

∫ 2π

φ=0
Y∗
ℓ ′,m ′(θ,φ)Yℓ,m(θ,φ) sin θdθdφ = δℓ ′, ℓ δm ′,m
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Selection rules for elm. dipole transitions 9 Comment 1

The matrix element of the electric dipole moment for the wave functions of the
hydrogen atom or more general for single atomic orbitals is fundamental for all
selection rules.

The integral of the matrix element is divided into an integral over the distance r to
the center and an integral over the angles θ and φ.

The radial integral is only a prefactor which has to be calculated.

The selection rules follow from the angle-dependent integral.

Therefore, the quantum numbers of the angular momenta are important not only to
specify the atomic eigenstates but also to characterize the transition probability
between the eigenstates.
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Selection rules for elm. dipole transitions 9 Comment 2

To evaluate the angle-dependent integral, two mathematical points must be taken
into account.

First: The product of two spherical harmonics can be written as the sum of
spherical harmonics.

The shaded area shows the decomposition of the product Y1,nYℓ,m.

It decomposes into the sum of the spherical harmonics Yℓ−1,n+m, Yℓ,n+m and
Yℓ+1,n+m.1

The decomposition describes the addition of an angular momentum with the
quantum number ℓ = 1 and an angular momentum with the quantum number ℓ.

1(The numbers a, b and c are Clebsch-Gordon coefficients. Table of Clebsch-Gordon coefficients
https://en.wikipedia.org/wiki/Table_of_Clebsch-Gordan_coefficients)

https://en.wikipedia.org/wiki/Table_of_Clebsch-Gordan_coefficients
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Selection rules for elm. dipole transitions 9 Comment 3

The product Y1,nYℓ,m corresponds to a sum of the total momentum states with the
quantum numbers j = ℓ− 1, j = ℓ and j = ℓ+ 1. 2

Second: The spherical harmonics are orthogonal functions, as indicated by the
formula outlined in red.

It is obvious that the integral of the transition probability is non-zero only when the
selection rule ∆ℓ = ℓ ′ − ℓ = 0 or ±1 is satisfied.

2 j⃗ = ℓ⃗1 + ℓ⃗2 with ℓ1 = 1 and ℓ2 = ℓ
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Selection rules for elm. dipole transitions 10
selection rules for the quantum numbers of the orbital angular momentum

selection rule for the ℓ-quantum number

∆ℓ = ±1

but not!
∆ℓ = 0

selection rule for the m-quantum number

∆m = 0,±1
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Selection rules for elm. dipole transitions 10 Comment

The matrix element is only different from zero if the quantum numbers ℓ ’ equals
ℓ± 1 and m’ equals m or m± 1.

Astonishingly, the matrix elements with ℓ ′ = ℓ are always zero.

The physical reason is that the photon always adds or carries away an angular
momentum ħ. Therefore ℓ has to change by ±1.

(The mathematical reason is the inversion symmetry. When the coordinate system
is reversed, the numerical value of the transition integral does not change.
However, the spherical harmonics change according to Yℓ,m → (−1)ℓYℓ,m)
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Selection rules for el. dipole transitions 11

a) Selection rules for a single electron without spin-orbit coupling

∆ℓ = ±1

π polarization
∆m = 0

σ polarization
∆m = ±1
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Selection rules for elm. dipole transitions 11 Comment

This page summarizes the selection rules for electric dipole radiation for a single
electron.

These selection rules are fundamental because when a photon is emitted or
absorbed by electric dipole radiation, the matrix element can always be reduced to
that of a single electron, even if an atom contains many electrons.

Since the π polarization is related to the spherical harmonics Y1,0, the result is the
selection rule ∆m = 0.

The m-quantum number does not change with the π polarization.

The last boxed formula gives the selection rule for σ polarization.

The m-quantum number changes by ±1, since the σ polarization is related to the
spherical harmonic Y1,±1.
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Selection rules for el. dipole transitions 12
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Selection rules for elm. dipole transitions 12 Comment

The figure shows once again the energy level scheme of Lithium and Sodium.

The observed series confirm the selection rule ∆ℓ = ±1.
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Selection rules for el. dipole transitions 13
b) Selection rules for a single electron with spin-orbit coupling

the photon carries an angular momentum ±ħ

∆ℓ = ±1

quantum number of the total angular momentum j

∆j = 0,±1

π polarisation
∆mj = 0

σ polarisation
∆mj = ±1
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Selection rules for elm. dipole transitions 13 Comment

The spin and the angular momentum of the orbit couple due to the spin-orbit
coupling to the total angular momentum j.

The selection rule ∆ℓ = ±1 remains valid.

In addition there are the selection rules for to total angular momentum.

For the total angular momentum, the transition with ∆j = 0 is also possible.

The selection rules for the mj quantum number are ∆mj = 0 for π polarization and
∆mj = ±1 for σ polarization.
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Selection rules for elm. dipole transitions 14

Zeeman effect of the Sodium D lines
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Selection rules for elm. dipole transitions 14 Comment

To illustrate these selection rules the figure shows again the Zeeman effect of the
Sodium D-lines.

The left figure shows the selection rule ∆j = ±1 and the right figure the selection
rule ∆j = 0.

The colours indicate the σ+, σ− and π polarisation of the transitions according to
the ∆mj = ±1, 0 selection rule.
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Selection rules for el. dipole transitions 15
c) Selection rules for electron configurations with many electrons

selection rule for the ℓ quantum numbers∑
n
ℓ (i)n −

∑
n
ℓ (f)n = ±1

selection rules for quantum numbers of the total angular momentum J

∆J = 0,±1 but not J = 0 ↔ J = 0

π polarization
∆MJ = 0

σ polarization
∆MJ = ±1
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Selection rules for elm. dipole transitions 15 Comment 1

If one considers an atom with many electrons, the orbital angular momentum and
the spins of the electrons add up to a total angular momentum of the electron
configuration.

The total angular momentum is denoted by the capital letter J.

Since one photon has to be absorbed or emitted in the case of electrical dipole
radiation, the most basic selection rule is given by the first underlined equation.

The selection rule states that the sum over the orbital angular momenta of all
electrons of the initial and final configuration must differ by one.

In particular, this selection rule states that there can be no electric dipole
transitions within an electron configuration.
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Selection rules for elm. dipole transitions 15 Comment 2

The selection rules for the total angular momentum J are similar to the selection
rules for a single electron with spin-orbit coupling.

But there is one big difference:

If the total angular momentum of the initial and final state is zero, no electrical
dipole transition is possible.
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Selection rules for el. dipole transitions 16
d) Additional selection rules if the spin-orbit coupling is negligible

If the atomic number is less than Z ≈ 50, the influence of the spin-orbit coupling is
small. The spins of the electrons add up to the total spin S and the orbital angular
momenta of the electrons add up to the total orbital angular momentum L

Selection rule for the ℓ quantum numbers∑
n
ℓ (i)n −

∑
n
ℓ (f)n = ±1

Selection rule for the total spin
∆S = 0

Selection rule of the total orbital angular momentum

∆L = 0,±1 but not L = 0 ↔ L = 0
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Selection rules for elm. dipole transitions 16 Comment 1

If the influence of the spin-orbit coupling in an electron configuration with many
electrons is small, orbital angular momentum and electron spins add up
independently of one another to form a total orbital angular momentum L and a
total spin S.

The first selection rule for the orbital angular momenta of the electrons underlined
in red is still valid.

The second selection rule says that the electric dipole moment cannot influence
the electron spin.

The spin quantum numbers of the initial and final state must be the same.
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Selection rules for elm. dipole transitions 16 Comment 2

The third selection rule is the usual selection rule for the orbital angular
momentum.

But there is a small difference to the case of a single electron: If there are many
electrons also ∆L = 0 is possible.

However, an electric dipole transition is not possible if the total orbital angular
momentum of the initial and final state is zero.

Since the spin-orbit coupling can never be completely neglected, the selection
rules for the total angular momentum J remain valid.
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Selection rules for elm. dipole transitions 17

The green spectral line of Mercury

7 3S1 [6s1, 7s1] ↔ 6 3P2 [6s1, 6p1] λ = 546,1nm

Parity: ∆ℓ = ±1
Spin: ∆S = 0
Orbit: ∆L = ±1
total angular momentum: ∆J = ±1
magnetic quantum number:
∆MJ = 0,±1
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Selection rules for elm. dipole transitions 17 Comment

As an example for the application of the selection rules, the figure on the left
shows the Zeeman effect of the green mercury line again.

The transition of the green spectral line of mercury satisfies the selection rules.

However, the atomic number of mercury is Z = 80 and the spin-orbit coupling is
not small.

Therefore, there are many transitions that only satisfy the selection rules for the
total angular momentum J.
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Selection rules for el. dipole transitions 18

e) Selection rules for hyperfine splittings

the quantum number of the total angular momentum, which results from the
addition of the angular momentum of the electron configuration J and the nuclear
spin I, is denoted by the capital letter F.

∆F = 0,±1 but not F = 0 ↔ F = 0

π polarization
∆MF = 0

σ polarization
∆MF = ±1

the selection rules ∆ℓ = ±1 and ∆J = 0,±1 but not J = 0 ↔ J = 0 remain valid
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Selection rules for elm. dipole transitions 18 Comment

If the nuclear spin is added to the total angular momentum of the electron
configuration, the resulting total angular momentum is denoted by the capital letter
F.

The selection rules for the hyperfine quantum number F are similar to the selection
rule for the total angular momentum of the electron configuration J.

In addition, the selection rules in the previous sections must be met.



Hyperfine interaction Selection rules Revision

Selection rules for elm. dipole transitions 19

hyperfine splitting of the sodium D2 line
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Selection rules for elm. dipole transitions 19 Comment

The hyperfine transitions observed for the sodium D2 line confirm the selection
rules discussed above.



Hyperfine interaction Selection rules Revision

Selection rules for elm. dipole transitions 20

Hyperfine splitting Thallium
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Selection rules for elm. dipole transitions 20 Comment 1
The energy level diagram shows the excitation of the valence electron of thallium
(electron configuration [Xe] 4f145d106s26p1, see experiment in our lab).

The transitions between the ground state 6 2p1/2 and the excited state 7 2s1/2 obey
the selection rules ∆j = 0 and ∆ℓ = ±1.

The nuclear spin of thallium is 1/2 and the quantum numbers of the total angular
momentum are either F = 0 or F = 1.

The permitted dipole transitions are marked in red, blue and green.

The transition F = 0 ↔ F = 0 is forbidden.

If both the beginning and the end state have no total angular momentum, then no
photon can be emitted or absorbed, since the photon has an intrinsic angular
momentum of ħ.

The figure on the right side shows the measurement of the spectral line with a
Fabry-Perot interferometer.
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Selection rules for elm. dipole transitions 20 Comment 2

The figure shows a recording of the spectral line with a Fabry-Perot interferometer.

The rings show a triplet structure, represented by three dots in red, blue and green
according to the transitions shown in the energy level diagram.

The diameter difference of the rings is roughly proportional to the frequency
difference ∆ν of the spectral lines.
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Summary in Questions

1. Give the magnetic moments of the proton and the neutron.

2. Calculate the ratio between the magnetic moment of the electron and the
magnetic moment of the proton.

3. Write down the Hamilton operator of the Fermi contact interaction.

4. Give the selection rule for the ℓ-quantum number.

5. Give the selection rule for the m-quantum number and explain how this
quantum number influences the polarization of the radiation.

6. Give the selection rule for the spin quantum numbers.

7. Give the selection rules for the quantum numbers of the total angular
momentum.
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