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Brillouin and Raman scattering 1
Brillouin and Raman scattering

Inelastic scattering of visible light due to lattice vibrations

Elastic scattering of X-rays on a static crystal lattice:

Laue condition k⃗− k⃗ ′ = K⃗

For visible light λ ≈ 400nm to 600 nm, i.e.

k = 2π
λ ≈ 107m−1 to 1.6 · 107m−1

The length of the reciprocal lattice vectors is with a ≈ 3 · 10−10m, i.e.

K ≈ 2π
a = 2 · 1010m−1 >> k : no reciprocal lattice vector is involved
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Brillouin and Raman scattering 1 Comment 1

The third lecture dealt with the scattering of X-rays on a static crystal lattice.

The energy of the incident and the scattered photon is the same and the Laue
condition for elastic scattering results.

In this and the next section, the scattering on a dynamic crystal lattice is
discussed.

Due to the lattice vibrations, the crystal lattice can transfer energy to the incident
wave or withdraw energy from the incident wave.

Brillouin and Raman scattering describe the inelastic scattering of visible light on a
crystal lattice.
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Brillouin and Raman scattering 1 Comment 2

Since the wave numbers of visible light (k ≈ 107m−1) are very small compared to
the length of the reciprocal lattice vectors (K ≈ 1010m−1), no reciprocal lattice
vector according to the Laue condition can be involved in the scattering of visible
light, i.e. K⃗ = 0 in the Laue condition.

Nevertheless, visible light is elastically scattered on crystal lattices.

The reason for this lies in statistical fluctuations in the density of the crystal lattice.

This type of scattering is called Rayleigh scattering.
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Brillouin and Raman scattering 2

Brillouin scattering: emission or absorption of an acoustic phonon
Raman scattering: emission or absorption of an optical phonon

by a photon in the range of visible light

Emission of a phonon

ħk⃗− ħk⃗ ′ = + ħq⃗

ħω(⃗k)− ħω(⃗k ′) = + ħω(q⃗)

Absorption of a phonon

ħk⃗− ħk⃗ ′ = − ħq⃗

ħω(⃗k)− ħω(⃗k ′) = − ħω(q⃗)
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Brillouin and Raman scattering 2 Comment
The inelastic scattering of light on a crystal lattice is usually described in the
particle picture.

Photons scatter on the quantum particles of the lattice vibrations - the phonons.

The most important process is the emission or absorption of a phonon by a photon

The equations outlined in red show the law of conservation of energy and
momentum for these processes.

If a photon is involved in an acoustic branch, one speaks of Brillouin scattering.

If a phonon is involved in an optical branch, one speaks of Raman scattering.

Chandrasekhara Venkata Raman was awarded the Nobel Prize in 1930 “for his
work on the scattering of light and for the discovery of the effect named after him”
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Brillouin and Raman scattering 3

Note: frequency of visible light is in the range between 500 and 750 THz
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Brillouin and Raman scattering 3 Comment 1

The figure on the left shows the basic setup for measuring the light scattering on a
crystal.

A laser beam penetrates the crystal and a small part of the light is scattered
laterally and analyzed with a spectrometer or interferometer.

The vector diagram outlines the law of conservation of momentum for the
scattering of a photon on a phonon.

If the vector q⃗ points to k⃗′, a phonon is absorbed.

If the vector q⃗ points to k⃗, then a phonon is emitted.

The right figure shows a schematic sketch of the expected experimental results.
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Brillouin and Raman scattering 3 Comment 2

The central peak is the elastic scattering named after J.W. Rayleigh (1842-1919).

The peaks on the left side are named after Sir George Gabriel Stokes.

He discovered in 1852 that the wavelength of fluorescent light is larger than the
wavelength of the exciting wave.

For comparison: the frequency of visible light is in the range between 500 and 750
THz (i.e. 5 · 1014 to 7.5 · 1014 Hz)

The frequency shift of the Brillouin peak is small and lies in the range of a few
GHz, since the frequency of acoustic phonons approaches zero at the Γ point.

The frequency shift of the Raman peak is in the range of a few THz due to the
higher frequency of optical phonons.
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Brillouin and Raman scattering 3 Comment 3

The Stokes components correspond to the emission of a phonon by the incident
photon.

The Anti-Stokes components correspond to the absorption of a phonon by the
incident photon and the frequency is shifted to higher values.
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Brillouin and Raman scattering 4
phonon dispersion of Silicon
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Brillouin and Raman scattering 4 Comment

The figure shows the dispersion of the lattice vibrations in silicon.

The red circles show where in the dispersion spectrum of the lattice vibrations the
phonons can be found that can be observed with Brillouin or Raman scattering.
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Brillouin and Raman scattering 5

Brillouin and Raman scattering of Silicon
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Brillouin and Raman scattering 5 Comment 1

The figure on the left shows an example of a Brillouin spectrum for silicon.

The shift depends on the momentum ħq⃗ of the phonon and the wavelength of the
light used for the measurement.

The q⃗ vector of the phonon is determined by the geometry of the experiment.

The right figure shows the Raman scattering of Silicon.

The frequency shift is almost independent of the wavelength of the photon and the
direction of the q⃗ vector of the phonon.

The Stokes line is much more intense than the Anti-Stokes line because only a
few optical phonons are thermally excited, while many optical phonons can be
excited or emitted by the oscillating electric field strength of the light wave.
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Brillouin and Raman scattering 5 Comment 2

As the temperature rises, the Anti-Stokes line also becomes more intense.

The frequency of the Raman shift decreases with increasing temperature,
suggesting that the lattice becomes softer with increasing temperature.
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Brillouin and Raman scattering 6
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Brillouin and Raman scattering 6 Comment

Since the Raman shift is independent of the wavelength of the incident photon,
Raman scattering can be used to measure the vibrational frequencies of
molecules and their surroundings.

The figure shows a measurement of cubic silicon nitride.

A multitude of different oscillation frequencies can be observed by measuring with
one wavelength of light.

Alternatively, these vibrations would have to be observed directly during
absorption or emission measurements.
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Inelastic neutron scattering
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Inelastic neutron scattering 1
For thermal neutrons and X-rays, the wavelength is smaller than the lattice
parameters, i.e. λ < a and k > b

Laue condition for elastic scattering k⃗− k⃗ ′ = K⃗ or k⃗ = k⃗ ′ + K⃗
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Inelastic neutron scattering 1 Comment 1

For thermal neutrons and X-rays, the wavelength is smaller than the dimensions of
the primitive unit cell, i.e. λ < |⃗a1,2,3|.

In the case of thermal neutrons, the kinetic energy is in the range of the thermal
energy kBT.

The wave number k is therefore larger than the lattice parameters of the reciprocal
lattice.

For elastic scattering, the Laue condition must be met.

If the Laue condition is interpreted as the law of conservation of momentum, the
reciprocal lattice K denotes the momentum transfer to the crystal lattice.

No energy transfer is associated with this momentum transfer.
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Inelastic neutron scattering 1 Comment 2

In classical mechanics, this corresponds to the elastic reflection of a rubber ball on
a solid wall.

The figure illustrates the situation of elastic scattering of thermal neutrons and
X-rays on a crystal lattice.

All reciprocal lattice points that lie on the surface of the Ewald sphere lead to an
elastic scattering of the incident particles.
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Inelastic neutron scattering 2
Triple axis neutron spectrometer
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Inelastic neutron scattering 2 Comment

The classic setup for measuring the scattering of thermal neutrons on a crystal
lattice is a three-axis neutron spectrometer.
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Inelastic neutron scattering 3
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Inelastic neutron scattering 3 Comment 1

The figure shows the experimental setup schematically.

Neutrons are created when 235U decays or when other atomic nuclei are
stimulated to decay by bombarding them with high-energy protons.

The high-energy neutrons are slowed down to thermal energy in a moderator
(liquid water, H2 or methane).

The wavelength of the neutrons is determined by the Bragg reflection on a crystal,
the monochromator.

Monochromators are made from pyrolytic graphite, Si, Ge, Cu or magnetic alloys.

Magnetic monochromators are used to generate spin polarized neutrons for
studying magnetic structures.
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Inelastic neutron scattering 3 Comment 2

A berylium filter is used to remove spurious radiation, i.e. high energy neutrons or
photons.

The number of incoming neutrons is measured with the monitor.

The monitor is a chamber filled with 3He.

3He efficiently captures neutrons and decays into a proton (1H) and tritium (3H)
with an energy release of 0.76 MeV.

The number of protons and tritium nuclei produced in the chamber is a measure of
the incident neutron flux.

The sample can be rotated.
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Inelastic neutron scattering 3 Comment 3

The analyzer measures the energy of the scattered neutrons

For this purpose, the wavelength is measured by means of Bragg reflection on a
second crystal.

In the detector, the incoming thermal neutrons are detected by an efficient capture
reaction.

Suitable materials are 3He, 6Li, 10B, 155Gd, 157Gd, and 235U.
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Inelastic neutron scattering 4

conservation laws:
momentum

k⃗− k⃗ ′ = K⃗± q⃗

energy

E(⃗k)− E(⃗k ′) = ±ħω(q⃗)

+: emission
−: absorption
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Inelastic neutron scattering 4 Comment
The figure sketches the law of conservation of momentum for the case of inelastic
scattering.

The black points show the reciprocal lattice.

The dashed line shows the Ewald sphere.

The vectors drawn in blue are the wave vectors of the incident and scattered
neutrons.

If the length of the wave vector of the scattered neutron is greater than the radius
of the Ewald sphere, a phonon is absorbed (Ekin = ħ2k⃗2/2mn).

If the length of the wave vector is smaller than the radius of the Ewald sphere, a
phonon is emitted.

The scattering events only take place, if in addition to conservation of momentum,
the law of conservation of energy is also fulfilled.
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Inelastic neutron scattering 5

measuring the dispersion branches of palladium
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Inelastic neutron scattering 5 Comment

The figure once again shows the phonon dispersion of palladium as an example.

To measure this dispersion spectrum, one performs energy scans for a selected
momentum.

This is indicated in the sketch by a red line for a selected momentum on the ∆-line
connecting the Γ- and X-points.

Alternatively, a momentum scan can be carried out.

In the sketch, a red line indicates a momentum scan along the Λ-line connecting
the Γ-point to the L-point
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Inelastic neutron scattering 6

momentum conservation law

k⃗− k⃗ ′ = K⃗± q⃗

+: emission, −: absorption
momentum transfer

Q⃗ = k⃗− k⃗ ′

momentum conservation law with momentum transfer

Q⃗ = K⃗± q⃗

energy conservation law

E(⃗k)− E(⃗k ′) = ±ħω(q⃗)
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Inelastic neutron scattering 6 Comment

For the experiment it is important to consider the left and right sides of the law of
conservation of momentum outlined in red.

The right side is determined by the reciprocal lattice vector K⃗ and the momentum
to be measured q⃗.

The left side is the so-called momentum transfer Q⃗ = k⃗− k⃗ ′.

The momentum transfer is determined by the settings of the spectrometer.

The experimenter determines the scattering angle 2θ and the energy of the
neutron to be detected, i.e. the length of the vector k⃗ ′.

Both 2θ and |⃗k ′| are varied until the law of conservation of energy is satisfied.
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Inelastic neutron scattering 7: energy scan

Q⃗ = k⃗− k⃗ ′ and Q⃗ = K⃗± q⃗
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Inelastic neutron scattering 7 Comment

The sketch illustrates the situation of an energy scan for the emission (left) and the
absorption (right) of a phonon with momentum q⃗ at the reciprocal lattice vector K⃗.

To change the length of the vector k⃗ ′, the crystal must be rotated and the angle θ
adjusted accordingly.

The gray triangle shows that the relative orientation of q⃗ and K⃗ is not changed,
while the triangle spanned by k⃗ and k⃗ ′ is changed. This is highlighted by the blue
triangle.

The sketch also illustrates the limits of neutron scattering.

If |⃗q| is small, the scattering condition is satisfied near the Ewald sphere and the
signal is dominated by the elastic scattering of the neutrons.

This is the range of Brillouin- and Raman-scattering.
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Inelastic neutron scattering 8
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Inelastic neutron scattering 8 Comment

The figure shows an example of such a measurement.

The left peak gives the emission and the right peak the absorption of a phonon
with the wave vector q⃗ = (ξ = 0.08 · 1010m−1, 0, 0).

With neutrons, not only phonons but also magnetic excitations of the crystal lattice
can be observed, since neutrons have a magnetic moment.

The quantum particles of magnetic excitations are called magnons in analogy to
phonons and photons.

For example, waves can be excited in ordered magnetic structures (ferromagnets,
antiferromagnets, etc.). These waves are called spin waves.

As with the lattice vibrations, the dispersion of the spin waves can be measured
with neutrons.
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Inelastic neutron scattering 9: q-scan

Q⃗ = k⃗− k⃗ ′ and Q⃗ = K⃗± q⃗
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Inelastic neutron scattering 9 Comment

The figure illustrates the situation of a q-scan.

The orientation of the crystal must be changed and the scattering angle 2θ
adjusted accordingly. This is indicated by the blue triangle.

The gray triangle shows that the relative orientation between the vectors q⃗ and K⃗
is not changed. Only the length of q⃗ is varied.



Brillouin/Raman scattering Inelastic neutron scattering Heat capacity Revision

Heat capacity
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Heat capacity of the crystal lattice 1

heat capacity

C =
∂E
∂T

∣∣∣∣
Vor p

specific heat capacity: heat capacity per mass, molar amount etc.
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Heat capacity of the crystal lattice 1 Comment 1

The heat capacity indicates the change in energy when the temperature varies.

In order to clearly define the heat capacity, the conditions under which the
temperature change takes place must be specified.

For example, if the volume is kept constant, a crystal does not have to do any
expansion work.

Usually a crystal expands when heated.

When the thermal expansion is suppressed, the elastic energy in the bonds
greatly increases.

The thermal work of expansion is negligible compared to the elastic energy that is
stored in the compressed bonds.
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Heat capacity of the crystal lattice 1 Comment 2

Therefore the heat capacity of a crystal measured at constant pressure is smaller
than the heat capacity measured at constant volume.

Usually, the heat capacity per mass of the crystal or the number of primitive unit
cells of the crystal, etc. is measured.

This is known as the specific heat capacity.

In this section the heat capacity due to the vibrations of a crystal lattice is
discussed.

The quantization of the lattice oscillations is used below.

This allows a first approximation of the heat capacity.

But many effects are ignored (phonon-phonon scattering, thermal expansion, etc.)
that are necessary for a complete description of heat capacity.
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Heat capacity of the crystal lattice 2
specific heat capacity of diamond
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Heat capacity of the crystal lattice 2 Comment

The figure shows the specific heat capacity of diamond.

The difference between measurements at constant volume and constant pressure
is only noticeable at very high temperatures.

At zero temperature there are no phonons and the heat capacity disappears as the
temperature approaches zero.

At high temperatures, the thermal capacity measured at constant pressure
increases linearly due to the thermal expansion of the lattice.

If the heat capacity is measured at constant volume, i.e. the expansion of the solid
is hindered, the elastic energy stored in the bonds increases the heat capacity at
high temperatures.
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Heat capacity of the crystal lattice 3
The Boltzmann factor gives the probability pn that there are n phonons with the
frequency ω and the wave vector q⃗.

pn =
1
Z
exp

(
−nħω(q⃗)

kBT

)
The average number n̄ of phonons in thermal equilibrium with frequency ω and
wave vector q⃗ is

n̄ =
1

exp(ħω(q⃗)/kBT)− 1

The average energy E of phonons in thermal equilibrium with frequency ω and
wave vector q⃗ is

E =
ħω(q⃗)

exp(ħω(q⃗)/kBT)− 1
= n̄ħω(q⃗)
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Heat capacity of the crystal lattice 3 Comment 1

The thermal equilibrium of phonons can be described with the Boltzmann factor.

The probability that there are n phonons of a special phonon mode can be
calculated with the Boltzmann factor of the line underlined in red.

In this formula, Z denotes the partition sum, i.e. the sum of all exponential
functions exp(−nħω/kBT) starting with n = 0 to n→ ∞, i.e.

Z =

∞∑
n=0

exp(−nħω/kBT) =
1

(1− exp(−ħω/kBT))

The average phonon number n̄ =
∑∞

n=0 npn can be calculated with the Boltzmann
factor and is given by the first boxed equation.
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Heat capacity of the crystal lattice 3 Comment 2

auxiliary calculation: with x = ħω/kBT and Z =
∑∞

n=0 exp(−nx)

∂Z
∂x

= −
∞∑
n=0

nexp(−nx) and
1
Z
∂Z
∂x

= −
∞∑
n=0

npn =
1
Z
∂
∂x

(
1

1− e−x

)
i.e.

n̄ = −1
Z
∂
∂x

(
1

1− e−x

)
= −(1− e−x)

(−1)e−x

(1− e−x)2
=

1
ex − 1

The mean energy of the phonon mode with q⃗ and ω(q⃗) in thermal equilibrium is
then E = n̄ħω(q⃗).

This is the second equation outlined in red.
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Heat capacity of the crystal lattice 3 Comment 3

Note that the same formula occurs in Planck’s law of radiation.

This is not surprising, since both phonons and photons are bosons.

Photon-Photon interactions are negligible small and phonon-phonon interactions
are ignored in the calculation.
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Heat capacity of the crystal lattice 4
The total energy of the phonons in thermal equilibrium is

E =
∑
q⃗

∑
b

ħωb(q⃗)
eħωb (⃗q)/kBT − 1

the sum runs over all phonon modes, i.e. over all wave vectors q⃗ and phonon
branches b

and

the number of q⃗-modes is equal to the number of primitive unit cells of the
lattice

the number of branches b is equal to three times the number of atoms n within
the primitive unit cell
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Heat capacity of the crystal lattice 4 Comment

The total energy of the phonons in thermal equilibrium results from the sum of all
phonon modes.

A phonon is characterized by its wave vector q⃗ and the phonon branch.

The number of different wave vectors q⃗ corresponds to the number of primitive unit
cells that form the crystal lattice, and the number of phonon branches is
determined by the number of atoms within the primitive unit cells.

There are three acoustical branches for the first atom and three optical branches
for each additional atom.
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Heat capacity of the crystal lattice 5
High temperatures:

kBT >> ħωmax

eħωb (⃗q)/kBT → 1+
ħωb(q⃗)
kBT

E =
∑
q⃗

∑
b

ħωb(q⃗)
eħωb (⃗q)/kBT − 1

→
∑
q⃗

∑
b

kBT = N3nkBT

N : number of primitive unit cells
n : number of atoms in a primitive unit cell
the heat capacity C = ∂E/∂T is (rule of Dulong-Petit 1819)

C = 3nNkB
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Heat capacity of the crystal lattice 5 Comment 1

The limit value of the heat capacity at high temperatures results from the Taylor
expansion of the exponential function.

The total energy of the phonons at high temperatures is simply proportional to
temperature T.

The heat capacity of phonons becomes constant at high temperatures when
thermal expansion (measurements at constant pressure) or the change in force
constants between atoms can be neglected (measurements at constant volume).

In other words: The heat capacity of phonons becomes constant at high
temperatures as long as the bonds between the atoms are not influenced by the
lattice vibrations.
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Heat capacity of the crystal lattice 5 Comment 2

The heat capacity is proportional to the number of primitive unit cells N and the
number of atoms within the primitive unit cell n.

This result corresponds to the rule of Dulong-Petit, which Pierre Louis Dulong and
Alexis Thérèse Petit found in 1819 when investigating gases.

In 1907 Albert Einstein showed why this rule also applies to solids.

In 1900 Max Planck assumed that matter consists of quantized oscillators.

From this assumption he derived his famous radiation law.

In 1907 Albert Einstein applied the oscillator model to calculate the heat capacity
of a solid.



Brillouin/Raman scattering Inelastic neutron scattering Heat capacity Revision

Heat capacity of the crystal lattice 5 Comment 3

He assumed that the oscillators vibrate independently so that there is no
dispersion of the vibration frequency.

In the context of the Einstein model of heat capacity from 1907, ω(q) in the above
formulae must be replaced by the constant frequency ωE.

Einstein found the Dulong-Petit rule for solids, since neither the frequency nor the
dispersion of the lattice vibrations at high temperatures contribute to the heat
capacity.

This success in 1907 was a further indication that the quantization of energy is a
general phenomenon of nature and is not limited to electromagnetic waves.
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Heat capacity of the crystal lattice 6
High temperature limiting case of palladium:

T >>
hνmax
kB

=
4.14 · 10−15 eVs · 220 cm−13 · 1010 cms−1

8.617 · 10−5 eVK−1 = 317K
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Heat capacity of the crystal lattice 6 Comment

The meaning of “high temperatues” is determined by the phonon dispersion of the
lattice.

The figure shows the phonon dispersion of palladium.

The highest frequency is approximate E/hc = 220 cm−1, i.e.
νmax = E/h = 220 cm−1 · 3 · 1010 cms−1 = 6.6 · 1012Hz

Dividing hνmax by the Boltzmann constant results in a temperature of about 300 K.
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Heat capacity of the crystal lattice 7
High temperature limiting case of diamond:

T >>
hνmax
kB

=
4.14 · 10−15 eVs · 40 · 1012 s−1

8.617 · 10−5 eVK−1 = 1926K
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Heat capacity of the crystal lattice 7 Comment

The figure shows the phonon dispersion of diamond.

Palladium and diamond both crystallize in an fcc lattice.

With diamond there are two atoms in the primitive unit cell, while with palladium
there is only one atom.

Diamond’s highest phonon frequency of 40 · 1012 Hz corresponds to a
temperature of about 1900 K.
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Heat capacity of the crystal lattice 8
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Heat capacity of the crystal lattice 8 Comment 1

The figure compares the specific heat capacity of different crystalline substances.

The heat capacity refers to the molar amount of substances, i.e. the number of
atoms measured in units of the Avogadro number (6 · 1023mol−1).

The limit case of high temperature is reached for lead (Pb) at much lower
temperatures than e.g. for diamond.

A small calculation gives the value 3NAkB = 24.94 Jmol−1K−1.

The measurement of lead exceeds this value at about 90 K.

There are two reasons.
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Heat capacity of the crystal lattice 8 Comment 2

On the one hand, the thermal expansion contributes to the heat capacity, on the
other hand, in addition to the contribution of the lattice vibrations, there is also the
contribution of the conduction electrons, which also increases proportionally to the
temperature.

ΘD denotes the Debye temperature, which is used to characterize the heat
capacity of a solid.



Brillouin/Raman scattering Inelastic neutron scattering Heat capacity Revision

Heat capacity of the crystal lattice 9
Low temperature:

only the acoustic phonon branches can be excited
the dispersion is linear for small phonon energy

ω(q) = csq
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Heat capacity of the crystal lattice 9 Comment 1

The figure shows once more the phonon dispersion of diamond.

The area marked in red shows the thermal activation of the phonon modes.

At low temperatures, only the acoustic branches of the dispersion of the lattice
vibrations can be thermally activated.

The relationship between frequency and wave number is linear if the activated
frequencies are not too high.

The equation outlined in red shows the linear relationship between the frequency
and the wavenumber q of the phonons.

The constant of proportionality is the speed of sound in the crystal lattice, which of
course depends on the polarization and the direction of propagation of the wave.
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Heat capacity of the crystal lattice 9 Comment 2

The dispersion of the acoustic lattice vibrations in the vicinity of the Γ point is
similar to the dispersion of the photons in a vacuum.

The speed of light must be replaced by the respective speed of sound.
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Heat capacity of the crystal lattice 10

Photons: Stefan-Boltzmann law

P = AσT 4

Phonons at low temperatures
E ∝ T 4

heat capacity of a crystal lattice at low temperatures

C ∝ T 3
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Heat capacity of the crystal lattice 10 Comment 1

The linear phonon dispersion for small frequencies has an important effect on the
heat capacity at low temperatures.

The Stefan-Boltzmann law is a consequence of the linear relation between the
frequency and wave number of photons.

The Stefan-Boltzmann law states that the total radiation power in thermal
equilibrium is proportional to T4.

The total radiation power of a photon gas is proportional to the total energy of the
photon gas.
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Heat capacity of the crystal lattice 10 Comment 2

The same applies to a phonon gas if only the linear part of the phonon dispersion
is thermally excited.

The total energy of the lattice vibrations is proportional to T4 in this case and the
heat capacity of a crystal lattice is therefore proportional to T3 at low temperatures.

The T3-law of the heat capacity at low temperatures due to the phonons is
fundamental and usually dominates the heat capacity at low temperatures.
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Heat capacity of the crystal lattice 11

Debye model (1912) replace the 1st Brillouin zone by a sphere
the radius of the sphere qmax is determined
by the condition

N =
4
3πq

3
max

(2π)3/V

the Debye temperature ΘD is given by the
highest phonon energy divided by
Boltzmann’s constant

ΘD =
ħcsqmax
kB

or ΘD =
hcs
2kB

3

√
6
π
N
V
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Heat capacity of the crystal lattice 11 Comment 1

The Einstein model of heat capacity from 1907 fails at low temperatures because
the frequency of the lattice vibrations cannot be described by a fixed frequency
ωE.

In 1912 Peter Debye therefore proposed a model for calculating the heat capacity
of the crystal lattice at low temperatures, which is based on the linear dispersion
relation of sound waves.

The shape of the 1st Brillouin zone does not matter at low temperatures, since
lattice vibrations can only be excited near the Γ point. Therefore Peter Debye
replaces the 1st Brillouin zone with a simple sphere.

The sketch on the left illustrates this idea.
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Heat capacity of the crystal lattice 11 Comment 2

The figure shows the cubic unit cell of the reciprocal lattice for an fcc lattice, the 1st

Brillouin zone and the sphere of the Debye model drawn in blue.

The radius of the sphere qmax is determined by the requirement that the number of
q-modes in the sphere is equal to the number of primitive unit cells in the crystal
lattice, i.e. that the number of q-modes in the 1st Brillouin zone is equal to the
number of q-modes enclosed by the sphere.

The formula underlined in red formulates this requirement.

The multiplication of the radius of the sphere qmax by an average speed of sound
cS gives the maximum phonon frequency of the Debye model ωmax.

The maximum energy of the Debye model is ħωmax = ħcsqmax.
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Heat capacity of the crystal lattice 11 Comment 3
The Debye temperature ΘD is obtained by dividing the maximum energy by the
Boltzmann constant.

The formula outlined in red gives the Debye temperature.

The Debye model describes the heat capacity only for temperatures that are much
lower than the Debye temperature.

The Debye temperature is usually an experimental parameter that is determined
by fitting the Debye model to measurements of heat capacity

C = NkB
12π 4

5

(
T
ΘD

)3
.

N denotes the number of primitive unit cells.

This formula is obtained by exploiting the equation on slide 4. The calculation can
be found in many textbooks.
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Heat capacity of the crystal lattice 12

diamond 2230K

Si 645K

Cr 610K

Fe 470K

Mo 450K

Al 428K

Ge 374K

Table of Debye temperatures
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Heat capacity of the crystal lattice 12 Comment

The table gives the Debye temperatures of some substances.

The harder the material, the higher the speed of sound and, accordingly, the
Debye temperature.
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Solids

1 Binding types
2 Crystal lattices
3 Lattice vibrations
4 Electrons in crystal lattices
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Summary in Questions

1. Explain the difference between Brillouin and Raman scattering and give the
typical frequency range of Brillouin and Raman spectra.

2. Sketch an experimental setup to measure Brillouin and Raman scattering.
3. Explain why Raman spectroscopy is widely used in chemistry.
4. Write down the law of conservation of energy for the absorption of a phonon by

a neutron.
5. Write down the law of conservation of momentum for the absorption of a

phonon by a neutron.
6. Calculate the molar specific heat capacity of a crystal lattice at high

temperatures.
7. How does the heat capacity of the crystal lattice depend on temperature at low

temperatures?
8. How is the Deby temperature ΘD defined? How does ΘD depend on the

number of primitive unit cells and the speed of sound?
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