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Sommerfeld model Comment

This section is divided into six subsections that cover, step by step, the most basic
concepts of conduction electrons.
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Introduction 1

the conduction electrons, like all quantum particles, are subject to the
Schrödinger equation
the potential energy is an effective potential energy and simply a constant
the surface is the barrier that encloses the conduction electrons
the Schrödinger equation only contains the term for the kinetic energy

E(⃗k)ψk⃗(⃗r, t) = −ħ2∇2

2m
ψk⃗(⃗r, t)

the wave functions are plane waves

ψk⃗(⃗r, t) = ψ0ei(⃗k⃗r−ωt)

the energy is

E(⃗k) = ħω =
ħ2k⃗ 2

2m
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Introduction 1 Comment 1

It is obvious that the conduction electrons must also be described by wave
functions that are determined by the Schrödinger equation.

Based on the Drude model, Arnold Sommerfeld formulated a simple approach in
1927 that already revealed some fundamental properties of electrons in solids.

In his model of the conduction electrons, Sommerfeld assumes that the attractive
forces of the positively charged atoms and the repulsive forces between the
conduction electrons are averaged so that the potential energy of the conduction
electrons is simply constant regardless of the location of the conduction electrons.

The attractive forces of the atoms only dominate on the surface of the solid, so
that the conduction electrons are bound to the solid.

The resulting potential step on the surface corresponds to the work function WA in
the photoelectric effect.
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Introduction 1 Comment 2

The formula outlined in red gives the Schrödinger equation.

The value zero is assigned to the constant potential energy and WA → ∞ is
assumed for the sake of simplicity, resulting in the well-known box potential.

The solutions to this Schrödinger equation are plane waves.

The last underlined formula gives the energy eigenvalues of the Schrödinger
equation. This is simply the kinetic energy of a quasi-free electron.

Before delving into the mathematical details in this and subsequent lectures, it is
helpful to consider how the properties of electron waves in crystal lattices can be
described based on the knowledge of atomic orbitals and waves in crystal lattices
already developed in these lectures.
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Introduction 2

What do we know and what can we guess?

The energy of the waves depends on the
direction of k⃗ and the atomic orbitals, i.e.
En = En(⃗k)
En(⃗k) must be specified in the reciprocal
lattice
Bragg planes will be important
The energy dispersion of electrons En(⃗k) is
similar to the frequency dispersion of
phonons (electron band structure)
The energy bands are periodic in the
reciprocal lattice, i.e. En(⃗k) = En(⃗k+ K⃗)
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Introduction 2 Comment 1
The sketch of overlapping d-orbitals shows without calculation that the energy of
the electron wave must depend on the direction of propagation k⃗.

The energy also depends on the atomic orbitals from which the electrons
delocalize when the orbitals overlap (e.g. E4s(⃗k) or E3d(⃗k)).

In the case of copper this is the singly occupied 4s-orbital.

In the case of nickel, the 4s orbital is empty and the conductivity is based on the
fully occupied 3d-orbitals.

The more the orbitals overlap, the easier it is for an electron to gain energy.

Assuming that the energy gain can be described by the classical formula for the
kinetic energy Ekin = ħ2k⃗2/2m, one can conclude that the mass of the electrons is
not the mass of a free electron, but a parameter - the effective mass - that
describes how the electron can gain energy when its momentum increases.
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Introduction 2 Comment 2

Since the conduction electrons delocalize from the atomic orbital, they cannot
escape the atomic arrangement of the atoms in the crystal lattice.

The assumption of the Sommerfeld model that the electron wave does not depend
on the direction of propagation only applies to strongly overlapping s-orbitals (e.g.
the alkali metals).

Similar to the lattice vibrations, the electron waves must be specified in the
reciprocal lattice and the variation of the electron energy En(⃗k) is expected to
resemble the frequency dispersion of the phonons.

For electrons the energy dispersion En(⃗k) is called an energy band.

E.g. there is one band for the 4s electrons and 5 bands for the 3d electrons
because the d orbitals point in different directions and the overlap is different for
each type of d orbital (e.g. dxy, dxz, dyz, dx2−y2 and d3z2−1).
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Introduction 2 Comment 3
The frequency dispersion of the phonons is periodic in the reciprocal lattice, i.e.
ω(q⃗) = ω(q⃗+ K⃗).

The same can be expected for electron waves, since the electron density
ρ(⃗r) = ψk⃗(⃗r, t)ψ

∗
k⃗
(⃗r, t) must be periodic in the crystal lattice.

This periodicity cannot be lost in the reciprocal lattice and one can expect
En(⃗k) = En(⃗k+ K⃗)!

In contrast to phonons the wave vectors of electrons k⃗ will not be restricted to the
1st Brillouin zone and one can expect that the Bragg planes are very important for
the propagation of electrons waves.

For this reason, higher order Brillouin zones are defined!

For the phonons it was shown that every point in the reciprocal lattice can be
examined with a three-axis neutron spectrometer.
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Introduction 2 Comment 4

Neutrons are about 2000 times heavier than electrons and are therefore not
suitable for studying the energy dispersion of conduction electrons.

Photons, on the other hand, interact strongly with electrons and inelastic photon
scattering and in particular the study of photoelectrons are used for the
experimental study of the energy bands of conduction electrons.
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Fermi sphere 1

Schrödinger equation

E(⃗k)ψk⃗(⃗r, t) = −ħ2∇2

2m
ψk⃗(⃗r, t)

plane waves
ψk⃗(⃗r, t) = ψ0ei(⃗k⃗r−ωt)

periodic boundary conditions (for a cubic sample with edge length L)

ψk⃗(x, y, z, t) =ψk⃗(x+ L, y, z, t)
ψk⃗(x, y, z, t) =ψk⃗(x, y+ L, z, t)
ψk⃗(x, y, z, t) =ψk⃗(x, y, z+ L, t)

kxL = 2πn1 kyL = 2πn2 kzL = 2πn3 and n1,2,3 = 0,±1,±2, ...
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Fermi sphere 1 Comment 1

The first underlined equation gives the Schrödinger equation for a conduction
electron in the Sommerfeld model.

The solutions of the Schrödinger equation are plane waves and periodic boundary
conditions have to be used to adapt the infinite plane waves to the finite
dimensions of the sample.

It is the same procedure that has already been used to describe lattice vibrations,
and the justification for using periodic boundary conditions is always the same.

The standing waves, which were used for exactly the same Schrödinger equation
for the box potential, are not used in an extended volume because scattering
events suppress the formation of standing wave modes.
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Fermi sphere 1 Comment 2

For the periodic boundary condition, it is easiest to start with a cubic sample with
the edge length L    , which repeats itself infinitely often in all spatial directions.

The wave functions in the resulting infinite but periodic structure can be described
in the context of a Fourier series expansion using plane waves.

The equations framed in red formulate the periodic boundary condition of the wave
functions.

The last line specifies the condition that the components of a wave vector kx, y, z
have to meet within the Fourier series expansion.
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Fermi sphere 1 Comment 3

These wave vectors result in periodic wave functions, which have the edge length
L of the cube-shaped sample as the period length.

With this trick, infinitely plane waves can be used, although only the wave
functions of a finite cubic sample are needed.
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Fermi sphere 2
allowed wave vectors

k⃗n1,n2,n3 =
2π
L

n1
n2
n3



volume around the tip of each
wave vector

∆k 3 =

(
2π
L

)3
=

(2π)3

V
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Fermi sphere 2 Comment 1

The formula outlined in red shows the permitted wave vectors.

These wave vectors form a discrete lattice and each of these lattice points, i.e.
each of these plane waves can be occupied by two electrons according to the
Pauli principle, which differ in their spin quantum number ms = ±1/2.

This lattice of wave vectors fills the reciprocal lattice of the crystal and since the
edge length L   of the cubic sample is much larger than the lattice parameters of the
crystal lattice (e.g. a in the case of a simple cubic lattice), it is obvious that the k
states are very dense compared to the lattice points of the reciprocal lattice.

The figure shows the lattice of k states, with the spacing of the lattice points being
exaggerated.
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Fermi sphere 2 Comment 2

All k states that are occupied by electrons at zero temperature are surrounded by
a sphere called the Fermi sphere.

The largest wave number, i.e. the radius of the Fermi sphere, is called the Fermi
wave number.

The underlined formula gives the volume around the tip of each k state.

In the formula L3 can be replaced by the volume V of the sample.

This is a remarkable detail.

Since scattering events prevent the formation of standing waves, which are
caused by the superposition of the waves reflected on the surfaces, the surfaces
do not influence the waves in the volume of the sample.
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Fermi sphere 2 Comment 3

Therefore, the reference to a cubic shape of the sample is not necessary and L3

can be replaced by the volume V of an arbitrarily shaped crystal.

Technically, the Fermi sphere is reminiscent of the sphere of the Debye model,
although the underlying physics is different.
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Fermi sphere 3

radius of the Fermi sphere

N = 2 ·
4π
3 k

3
F

(2π)3
V

=
Vk3F
3π2

Fermi wave number kF

kF =

(
3π2N

V

) 1
3

Fermi energy, Fermi temperature and Fermi velocity

EF =
ħ2k2F
2m

and TF =
EF
kB

and vF =

√
2EF
m

i.e. EF =
1
2
mv2F
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Fermi sphere 3 Comment 1

At the temperature T = 0 all occupied k states are enclosed by the surface of the
Fermi sphere.

Since all k states can be occupied by two electrons, the condition of the first row
results.

The volume of the sphere divided by the volume of a k state is half the number of
electrons.

With this condition the radius of the Fermi sphere can be calculated and the first
equation outlined in red gives the Fermi wave number.

The Fermi energy can be calculated using the Fermi wave number.

The Fermi energy is the highest kinetic energy of an electron at zero temperature.
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Fermi sphere 3 Comment 2

If the Fermi energy is divided by the Boltzmann constant, the Fermi temperature is
obtained.

The Fermi temperature is useful to estimate the influence of thermal excitations.

With the formula for the kinetic energy EF = mv2F/2 the speed of an electron with
the Fermi energy can be calculated.

vF is the Fermi velocity.

The Fermi velocity needs some comments.

At zero temperature all electrons occupy their k state within the Fermi sphere.

In order for something to happen, electrons must be excited, for example
thermally, when the temperature increases.
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Fermi sphere 3 Comment 3

However, it is never possible to excite a single k state because other electrons
respond to the excitation due to the Coulomb repulsion energy.

Therefore always so called wave packets are excited.

The speed of wave packets is the group velocity vg(k) = dω(k)
dk .

With E(k) = ħω(k) = ħ2k2/2m follows that vg(kF) = vF, i.e. the wave packets
formed with the wave vectors around kF move with the Fermi velocity.

Since the Coulomb interaction between the electrons cannot be completely
captured by effective potentials, the electron gas of the Sommerfeld model is not a
gas but a liquid.

The Fermi gas of electrons is in reality a Fermi liquid.
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Fermi sphere 3 Comment 4

Lew Landau showed in 1956 that any excitation of the Fermi liquid can be traced
back to a k state of the non-interacting Fermi gas as long as the excitation energy
is much smaller than the Fermi energy.

The effect of Coulomb repulsion on the wave packets is that the lifetime of the
wave packets is finite.

Lew Landau got the Nobel prize 1962 ”for his pioneering theories for condensed
matter, especially liquid helium”.

In the following we consider the excitation for k states and keep in mind that this
involves the excitation of wave packets.
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Fermi sphere 3 Comment 5
Velocity of a wave packet (compare the 2nd lecture)

A one-dimensional wave packet

ψ(x, t) =
∫
dkF(k)ei(kx−ω(k)t).
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Fermi sphere 3 Comment 6

with
ω(k) = ω(k0) +

dω(k)
dk

∣∣∣∣
k=k0

(k− k0) + ...

follows

ψ(x, t) =
∫
dkF(k)ei(kx−ω(k)t) =

∫
dkF(k)e

i((k−k0)x+k0x−ω(k0)t−
dω(k)
dk

∣∣∣
k=k0

(k−k0)t)

=

{∫
dkF(k)e

i(k−k0)
[
x−t dω(k)

dk

∣∣∣
k=k0

]}
ei(k0x−ω(k0)t)

This is a wave ei(k0x−ω(k0)t) whose amplitude function (curly bracket) moves with
the group velocity.
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Fermi sphere 4

valency N/V [cm−3] kF [1010m−1] EF [eV] TF [K] vF [106 m/s]

Li 1 4.70 · 1022 1.11 4.72 54800 1.29

Rb 1 1.15 · 1022 0.70 1.85 21500 0.81

Cu 1 8.45 · 1022 1.36 7.00 81200 1.57

Au 1 5.90 · 1022 1.20 5.51 63900 1.4

Be 2 24.20 · 1022 1.93 14.14 164100 2.25

Zn 2 13.10 · 1022 1.57 9.39 109000 1.83

Al 3 18.06 · 1022 1.75 11.63 134900 2.03

Pb 4 13.20 · 1022 1.58 9.37 108700 1.83
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Fermi sphere 4 Comment

The table shows the valency, i.e. the number of conduction electrons per atom, the
density of conduction electrons and the Fermi wave number, energy, temperature
and velocity.

The Fermi wave number is comparable to the dimensions of the 1st Brillouin zone.

The Fermi temperature is very high compared to the melting temperatures of the
metals.

Therefore, the thermal energy has only a very small influence on conduction
electrons at ambient temperatures.

The Fermi speed is about a factor of 100 smaller than the speed of light.
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Fermi sphere 5

valency N/V [cm−3] EF [eV] vF [106 m/s] ρ [nΩ· m] ℓ [10−10 m]

Li 1 4.70 · 1022 4.72 1.29 92.8 100

Rb 1 1.15 · 1022 1.85 0.81 128.0 190

Cu 1 8.45 · 1022 7.00 1.57 16.8 171

Au 1 5.90 · 1022 5.51 1.4 22.1 147

Be 2 24.20 · 1022 14.14 2.25 36.0 90

Zn 2 13.10 · 1022 9.39 1.83 59.0 82

Al 3 18.06 · 1022 11.63 2.03 26.5 147

Pb 4 13.20 · 1022 9.37 1.83 208.0 23
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Fermi sphere 5 Comment 1

The table shows in the 6th column the electric resistivity ρ = σ−1 at 20 °C and in
the last column an   estimate of the mean free path ℓ = vF · τ when the electrons
move with the Fermi velocity.

For this purpose, the mean free time τ is calculated using the formula

σ =
e2

m
N
V
τ.

For the calculation, the mass of a free electron mc2 = 500 keV is assumed for the
mass of the electrons.
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Fermi sphere 5 Comment 2

The estimate of the mean free path shows that an electron wave packet on the
surface of the Fermi sphere can fly past many atoms before a scattering event
occurs.

Since waves can propagate through a perfect crystal lattice without scattering, the
long free paths of the conduction electrons are to be understood in the wave
image.

On the other hand, the estimate of the mean free path shows that the assumption
of periodic boundary conditions is no longer applicable in the context of
nanophysics.

This lecture deals exclusively with macroscopic samples, i.e. samples whose
dimensions are much larger than the mean free path of the electrons and the
influence of the surfaces can safely be neglected.
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Fermi sphere 6

one electron per primitive unit cell
of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2)
1
3

a
=

3.09
a

<
π
a

two electrons per primitive unit cell
of a simple cubic lattice

kF =

(
3π2N

V

) 1
3
=

(3π2 · 2)
1
3

a
=

3.9
a

>
π
a
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Fermi sphere 6 Comment 1

Since the crystal lattice cannot be ignored, it is helpful to get an idea of   how the
Fermi sphere is embedded in the reciprocal lattice.

For the sake of simplicity, a simple cubic lattice with the lattice parameter a is
considered as the model. Examples of real substances are discussed later.

The lattice parameter of the cubic cell of the reciprocal lattice is 2π/a.

The figure on the left shows the case that there is one conduction electron in the
primitive unit cell of the lattice.

The right figure shows the case that there are two conduction electrons in the
primitive unit cell of the lattice.
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Fermi sphere 6 Comment 2

The Fermi wave number can be calculated with the density of the conduction
electrons.

If there is one conduction electron per primitive unit cell, the Fermi sphere lies
within the 1st Brillouin zone.

With two conduction electrons per primitive unit cell, the Fermi sphere is slightly
larger than the 1st Brillouin zone and there are wave vectors ending on the Bragg
planes that enclose the 1st Brillouin zone.
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Fermi distribution function

Fermi distribution function

f (E ) =
1

e(E−μ)/kBT + 1

the chemical potential μ equals nearly the Fermi energy EF

lim
T→0

μ(T ) = EF
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Fermi distribution function Comment 1

The Fermi distribution function describes the probability that a k state with the
energy E is occupied by an electron.

If the temperature approaches zero, the Fermi distribution function changes into a
step function.

The step function is marked in the figure by the blue line.

For T → 0 all k states below the Fermi energy are occupied with probability 1, and
the probability for the occupation of a k state with a higher energy than the Fermi
energy is zero.

Since a k state can be occupied by two electrons, the probability below the Fermi
energy is 1 for ms = +1/2 and 1 for ms = −1/2, i.e. the spin quantum number
does not matter.
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Fermi distribution function Comment 2

The step will soften as the temperature rises. This is indicated by the red line in the
figure.

Since the Fermi energy is much greater than the thermal energy at normal
temperatures, only electrons in k states just below the Fermi energy can be
excited in k states just above the Fermi energy.

The energy range around the Fermi energy in which electrons can be thermally
excited is extremely small and exaggerated in the figure, e.g. for T ≈ 300K one
has kBT ≈ 26meV << EF.

In the case of k states that lie within the Fermi sphere, the Pauli principle prevents
electrons from being excited by thermal energies.
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Fermi distribution function Comment 3

The formula outlined in red gives the mathematical expression of the Fermi
distribution function.

The derivation of this formula can be looked up in textbooks on solid state physics.

The formula is somewhat similar to the formula of Planck’s law of radiation and the
formula of the heat capacity of phonons.

Since photons and phonons are bosons and electrons are fermions, there are two
important differences.

The first difference is that +1 is added to the exponential function in the
denominator instead of the −1 of Planck’s radiation law and the heat capacity of
phonons.

This +1 is the reason why the Fermi distribution function is almost a step function.
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Fermi distribution function Comment 4

The second difference is that in the exponent of the exponential function the
chemical potential μ is subtracted from the energy E.

In thermodynamics, the chemical potential μ describes the change in energy when
the number of particles dN changes, i.e. dE = μdN (dE is usually the free energy
F).

In the case of photons or phonons, the chemical potential is zero, since photons or
phonons only interact very weakly with one another.

For an electron gas, the chemical potential is almost equal to the Fermi energy
because when another electron is added, the energy increases by the Fermi
energy.
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Fermi distribution function Comment 5

Since the step of the Fermi distribution function softens somewhat with increasing
temperature, the chemical potential decreases somewhat with increasing
temperature.

The influence of temperature on the chemical potential is very small, so that the
temperature dependence of the chemical potential can be neglected in most
cases.

The Fermi distribution function is the mathematical expression for the fact that
most electrons are blocked in their k states due to the Pauli principle.

Only those electrons that occupy k states very close to the surface of the Fermi
sphere can be thermally excited.

The surface of the Fermi sphere is the Fermi surface.



Sommerfeld model Fermi sphere Fermi distribution function Electric conductivity Revision

Fermi distribution function Comment 6

In general, the Fermi surface separates the occupied k states from the unoccupied
k states at T = 0.

However, a spherical Fermi surface is an idealization that approximately occurs,
for example, in the alkali metals.
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Electric conductivity
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Electric conductivity 1

drift velocity: v⃗ = μE⃗ → shift of the Fermi sphere ∆k⃗ = mv⃗
ħ = mμ

ħ E⃗

estimate of the shift:

μ = 4.4 · 10−3m2V−1s−1 for copper and
E = 100V/m

∆k =
2π500 · 103 eV4.4 · 10−3m2V−1s−1

4.14 · 10−15 eVs (3 · 108ms−1)2
100V/m

=3710m−1 <<<< kF ≈ 1010m−1

(electron mass m ≈ 500 keV/c2)



Sommerfeld model Fermi sphere Fermi distribution function Electric conductivity Revision

Electric conductivity 1 Comment 1

When an electric field is applied to a conductor, the charge carriers begin to drift
along the direction of the electric field.

The drift velocity shifts the Fermi sphere somewhat along the direction of the
electric field.

The sketch shows, greatly exaggerated, the displacement of the Fermi sphere
when the electric field is applied in the x direction.

In the figure, the black dots denote the k states.

The blue circle indicates the Fermi sphere when no electric field is applied.

The red circle indicates the Fermi sphere when an electric field is applied.
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Electric conductivity 1 Comment 2

Most electron waves have a counter wave and only a small part of the occupied k
states near the Fermi surface on the right side of the Fermi sphere can contribute
to the transport of the electric charge.

The drift velocity can be calculated from the electrical mobility μ and the electric
field strength E.

The displacement of the Fermi sphere in k space can be calculated with the
momentum mv.

The calculation shows the estimate based on the mobility μ of copper and a field
strength of 100 V/m.

For the calculation it is assumed that the mass of the charge carriers corresponds
to the mass of a free electron, i.e. 500 eV/c2.
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Electric conductivity 1 Comment 3

This assumption is only approximately fulfilled for copper, but this has no influence
on the result of the estimate.

The displacement of the Fermi sphere due to the drift speed of the electrons in an
electric field is about 6 orders of magnitude smaller than the Fermi wave number
kF.
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Electric conductivity 2
Thermal softening of the Fermi surface

E = ħ2k2/2m → ∆E
E

= 2
∆k
k

with ∆E = kBT, T = 300K, E = EF = 7eV
(copper) and k = kF

∆kF =kF
1
2
kBT
EF

=kF
8.62 · 10−5 eVK−1 · 300K

2 · 7eV
=kF · 1.85 · 10−3

∆kF = 1.36 · 1010m−1 · 1.85 · 10−3 ≈ 2.5 · 107m−1 >> ∆k ≈ 3.7 · 103m−1
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Electric conductivity 2 Comment 1

The figure shows once again the influence of temperature on the Fermi distribution
function, greatly exaggerated.

In the case of Fermi energy, the step of the distribution function softens in an
energy range that corresponds to thermal energy.

In this way, the softening of the Fermi surface in the wavenumber space can also
be estimated.

Since the thermal energy at room temperature is about a thousandth of the Fermi
energy, the surface of the Fermi sphere is also smeared in this order of magnitude
in the wavenumber space.

The estimate for copper shows that the displacement of the Fermi sphere by an
electric field is generally much smaller than the thermal smearing of the Fermi
surface.
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Electric conductivity 2 Comment 2

E.g. the energy gain per electron in copper for an electric field of 100 V/m is only

∆E = EF2∆k/kF = 2 · 7eV · 3700/1.36 · 10+10 = 3.8μeV

and therefore very much smaller than the thermal energy at room temperature.
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Electric conductivity 3

ideal resistivity of various metals
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Electric conductivity 3 Comment

The temperature dependence of the specific resistance of the metals follows a
universal curve if the temperature is normalized to the Debye temperature ΘD and
the specific resistance to a suitable value.

The temperature dependence is essentially determined by the fact that the
conduction electrons can absorb and emit phonons.

In addition, there is a temperature-independent component that arises from the
scattering of the conduction electrons at imperfections, i.e. impurity atoms and
other lattice defects.

This contribution determines the temperature-independent resistance at low
temperatures, which is subtracted in the figure.
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Electric conductivity 4

electron-phonon scattering k⃗ = k⃗ ′ ± q⃗ and E(⃗k) = E(⃗k ′)± ħω(q⃗)

Only electrons in the range of the Fermi
surface participate in the scattering
E(⃗k), E(⃗k ′) >>> ħω(q⃗), i.e. quasi elastic
scattering
the scattering rate is proportional to the
phonon number

n̄ =
1

exp(ħω(q⃗)/kBT)− 1
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Electric conductivity 4 Comment 1

The temperature dependence of the electric resistance is due to electron-phonon
scattering

In the first line the law of momentum and energy conservation for the emission (+)
and absorption (-) of a phonon by a conduction electron is formulated.

Only electrons can take part in the scattering processes whose wave vectors k⃗ lie
in the thermally softened area around the Fermi surface.

The energy of the phonon is always very much smaller than the Fermi energy of
the electrons.

Therefore, the electron-phonon scattering is quasi-elastic.

The influence of electron-phonon scattering on the electrical resistance depends
on the number of phonons.
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Electric conductivity 4 Comment 2

Therefore, it can be expected that the electrical resistance decreases with
decreasing temperature.

The figure outlines two scattering processes.

In one scattering process there is a large angle between the wave vectors of the
electrons, in the other scattering process the angle is small.

If the temperature is higher than the Debye temperature, then all phonon modes
within the 1st Brillouin zone are excited.

Since the dimensions of the Fermi sphere roughly correspond to the dimensions of
the 1st Brillouin zone, the scattering with phonons at the edge of the 1st Brillouin
zone can lead to large scattering angles.
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Electric conductivity 4 Comment 3

Such scattering processes hinder effectively the charge transport and increase the
electrical resistance.

For kBT >> ħωmax, i.e. T > ΘD, n̄ is proportional to temperature, which explains
the linear increase in electrical resistance with temperature, i.e. ρ ∝ T.
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Electric conductivity 5
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Electric conductivity 5 Comment 1

The figure shows the temperature dependence of the electrical resistance of
potassium.

The Debye temperature of potassium is ΘD = 100K and the resistance varies
proportionally to T for T > ΘD.

For T < ΘD the resistance varies proportionally to T 5.

The quadratic temperature dependence below ≈2 K is attributed to
electron-electron scattering.

The variation of T 5 is due to the scattering of electrons from acoustic phonons.
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Electric conductivity 5 Comment 2

These phonons have a small momentum and cannot change the direction of
propagation of the electron wave significantly (compare the figure on page 4).

For this reason, the influence of the electron-phonon scattering on the electrical
resistance becomes very small at low temperatures.

The reason for the T 5 dependency is as follows:

First, the energy of the acoustic phonons is very small ħqmaxcS ≈ kBT.

Electron scattering is therefore almost elastic and only phonons in a disk with
radius qmax at the tip of k⃗ can contribute.

This geometric effect contributes to the scattering according to q2max ∝ T 2.

Second, the total number of acoustic phonons varies proportionally to T 3 at low
temperatures.
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Electric conductivity 5 Comment 3

Due to these two effects, the electrical resistance at low temperatures varies
according to T 5.

The total number of acoustic phonons is N = 3
∑

q⃗
1

exp(ħcSq/kBT)−1 .

Since at low temperatures only acoustic phonons around the Γ point are excited,
the sum can be replaced by an integral over a sphere, i.e.

N = 3
1

(2π)3/V

∫ qmax

q=0
q2dq

1
exp(ħcSq/kBT)− 1

.

With the substitution x = ħcSq/kBT → q = xkBT/ħcS and xmax → ∞ for T → 0 one
gets N ∝ T 3. (By the way: With the energy E(q) = ħcSq of the acoustic phonons
you get E ∝ T 4 for the total energy of all phonons at low temperatures.)
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Summary in Questions 1

1. How does the Sommerfeld model differ from the Drude model of electric
conductivity?

2. Write down the Schrödinger equation of the Sommerfeld model.
3. How does the Schrödinger equation of the Sommerfeld model differ from the

Schrödinger equation of the box potential?
4. Which volume can be assigned to a k state in the Sommerfeld model?
5. What is meant by the Fermi sphere?
6. Calculate the radius of the Fermi sphere.
7. Calculate the Fermi wave number of copper.
8. Compare the Fermi number of copper with the 1st Brillouin zone of copper. (The

lattice parameter of the cubic unit cell of copper is a = 3.61 · 10−10m)
9. What is meant by a Fermi surface?
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Summary in Questions 2

10. Why is the Debye temperature a characteristic temperature for the electrical
resistance of a metal?

11. What is the displacement of the Fermi sphere when an electric field strength of
1000 V/m is applied to a metal?
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