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Quasi-free electrons in the sc-lattice 1
three electrons per primitive unit cell of a simple cubic lattice
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Quasi-free electrons in the sc-lattice 1 Comment

It may be helpful to consider the case of three free conduction electrons in a
simple cubic lattice.

The Fermi wave number is easy to calculate.

The figure on the left shows the energy bands in the periodic zone scheme in the
Γ-X direction. The occupied k states are marked in red.

The figure on the right shows the Γ-X plane of the reciprocal lattice with the 1st

Brillouin zone, 2nd Brillouin zone and 3rd Brillouin zone for the simple cubic lattice.

The circle indicates the Fermi sphere.

The k states of the 1st Brillouin zone are completely occupied and the k states of
the 2nd Brillouin zone are partially occupied by electrons.

Therefore, the first energy band cannot contribute to conductivity.
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Quasi-free electrons in the sc-lattice 2

periodic zone scheme 2nd band
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Quasi-free electrons in the sc-lattice 2 Comment

The figure on the left again shows the band structure in the Γ-X direction.

The figure on the right shows the occupied k states of the 2nd energy band marked
in red in the periodic zone scheme.

The red areas enclose white areas of unoccupied k states, i.e. the energy of the k
states is greater than the Fermi energy E(⃗k) > EF.
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Quasi-free electrons in the sc-lattice 3

four electrons per
primitive sc cell
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Quasi-free electrons in the sc-lattice 3 Comment 1

The middle figure shows the energy bands of quasi-free electrons in the simple
cubic lattice along the ΓX and ΓM directions.

The dashed lines show the Fermi energies for 1, 2, 3, and 4 electrons per primitive
cell of the sc lattice.

The green and light blue colors indicate the paraboloids contributing the the
energy band in ΓM direction.

The green and light blue colors indicate the paraboloids contributing to the energy
bands in ΓM direction.

The green line corresponds to two degenerate energies as indicated in the sketch
below right.
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Quasi-free electrons in the sc-lattice 3 Comment 2

The sketch above right shows the Fermi sphere for four electrons.

The 1st Brillouin zone is completely occupied, the 2nd Brillouin zone, 3rd Brillouin
zone and 4th Brillouin zone are partly occupied.
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Quasi-free electrons in the sc-lattice 4

second energy band
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Quasi-free electrons in the sc-lattice 4 Comment

The middle figure shows the second band in the reduced zone scheme.

The figure on the right shows the second band in the periodic zone scheme.

The Fermi surface completely encloses unoccupied k-states, i.e. in the white area
E(⃗k) < EF applies.
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Quasi-free electrons in the sc-lattice 5

third energy band
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Quasi-free electrons in the sc-lattice 5 Comment

The middle figure shows the third band in the reduced zone scheme.

The figure on the right shows the third band in the periodic zone scheme.

The center of the primitive cell is shifted to the M-point so that the Fermi surface is
completely enclosed by the primitive cell.

The Fermi surface completely encloses occupied k-states, i.e. in the red areas
E(⃗k) < EF applies.

The occupied k-states of the 4th Brillouin zone are also centered at the M-point.

The Fermi surface completely encloses occupied k-states.
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Photoemission Spectroscopy 1

The photoelectric effect at the beginning of the 20th century.

Ekin = |eU0| Ekin = hν −WA
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Photoemission Spectroscopy 1 Comment 1

The figures summarize the results of the photoelectric effect.

With the results of these measurements, A. Einstein showed in 1905 that the
energy of electromagnetic waves is quantized.

When a photoelectrode is illuminated, electrons can be released, resulting in a
photocurrent when a second electrode is nearby.

If the second electrode is positively charged, the photocurrent increases with
increasing voltage and reaches a maximum value.

When a negative voltage is applied to the second electrode, there is a voltage at
which the photocurrent can be reduced to zero.
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Photoemission Spectroscopy 1 Comment 2

If quantitative experiments are to be performed, it is important that monochromatic
light is used.

If the voltage U0, at which the photocurrent falls to zero, is plotted against the
frequency of the light used, a straight line results whose slope is Planck’s constant
h.
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Photoemission Spectroscopy 2

Ekin = hν −WA



Quasi-free electrons in the sc-lattice Photoemission Spectroscopy Electron dynamics Revision

Photoemission Spectroscopy 2 Comment

The interpretation of the experiment is easy.

The electrons are bound to the solid with at least the energy WA.

If the energy of the photons exceeds this energy, electrons can be knocked out of
the solid.

The kinetic energy is determined by the energy of the photons reduced by the
binding energy of the electrons.

The work function WA = U0/e of the electrons results from the intersection of the
straight line with the voltage axis.

WA is in the range of a few eV.
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Photoemission Spectroscopy 3
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Photoemission Spectroscopy 3 Comment

Photoelectron spectroscopy requires an ultra-high vacuum system, a powerful
photon source whose frequency can be best tuned, and an electron detector that
can determine the direction and energy of the photoelectrons.

The figure outlines the experimental setup.

The photoelectrons are guided to the entrance slit of the detector by electron
optics.

The detector consists of two metallic spherical shells to which a voltage is applied.

The electric field between the spherical shells deflects the electrons depending on
the speed and directs them to a position-sensitive detector, which can thus
determine the number and kinetic energy of the incident electrons.
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Photoemission Spectroscopy 4

The kinetic energy of the
photoelectrons is determined by

Ekin = hν −WA − EB

The kinetic energy of the measured
photoelectrons is set by the
experiment.
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Photoemission Spectroscopy 4 Comment 1

The figure outlines how a photoemission spectrum comes about.

The left side of the figure shows the energy level diagram of a solid.

The energy is plotted against the density of states.

The conduction electrons are shown at the highest energy.

The work function WA separates the Fermi energy EF from the energy of the
vacuum Evac.

The binding energy of the electrons is measured against the Fermi energy.

Directly at the Fermi energy, the binding energy EB is zero.
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Photoemission Spectroscopy 4 Comment 2

This results in the formula framed in red for the kinetic energy of the
photoelectrons.

The energy of the photon is reduced by the work function WA and the binding
energy of the electrons EB.

If the energy of the photons is high enough, the bound core electrons of the atoms
can also be excited.

The energy of the photons usually ranges from the UV to the soft X-ray range, i.e.
≈3 eV to 10 keV.

The right side of the figure shows the photoemission spectrum, which results from
the sketched energy structure of the solid.
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Photoemission Spectroscopy 4 Comment 3

As shown on the previous slide, the photoelectrons can be measured at different
angles with respect to the surface.

The kinetic energy of the measured photoelectrons is set by the energy analyzer.

In an experiment, the energy of the photoelectrons can either be scanned for a
fixed observation angle, or else the observation angle for a fixed energy of the
photoelectrons.
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Photoemission Spectroscopy 5

Only momentum parallel to the surface is
conserved

k∥ =
1
ħ
√
2meEkin sin ϑ

but k ′
⊥ ̸= k⊥ and not determined by a

simple formula.

The wavenumber of the photons is
small compared to the 1st Brillouin
zone.
The momentum of the photons can
always be neglected.
The conduction electrons are
knocked out of their quantum states
without changing the momentum of
the electrons.
As in optics, the electron waves are
refracted on the surface.
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Photoemission Spectroscopy 5 Comment 1

As already noted for Brillouin and Raman scattering, the wavenumber of light in
UV and soft X-rays is small compared to the dimensions of 1st Brillouin zone.

If electrons are excited, the momentum transfer by the photons can be neglected.

The electrons are knocked out of their quantum states without changing the
momentum of the electrons.

If the wave of the excited electrons hits the surface, refraction occurs, similar to
optics, and there is also a critical angle of total reflection, similar to optics.

As in optics, the component of the wave vector does not change parallel to the
surface during the transition from solid to vacuum (cf. 2nd lecture).
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Photoemission Spectroscopy 5 Comment 2

In Maxwell’s equations of optics, this condition was already sufficient to define the
law of refraction at least for an isotropic refractive index.

However, the transition from an electron wave in a solid to a plane wave in a
vacuum is not as simple or well defined.

There is no simple formula for the relationship between k⊥ and k ′
⊥ .

However, the formula outlined in red shows that the component of the wave vector
parallel to the surface can easily be calculated from the kinetic energy of the
photoelectrons.



Quasi-free electrons in the sc-lattice Photoemission Spectroscopy Electron dynamics Revision

Photoemission Spectroscopy 6
Angular resolved photoemission spectroscopy (ARPES) results from Cu(111)
surface
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Photoemission Spectroscopy 6 Comment 1

As an example, consider the photoemission spectrum for the (111) face of a single
copper crystal.

A diagonal of the cubic unit cell is thus perpendicular to the surface.

The figure on the left shows the 1st Brillouin zone of copper, with the Fermi surface
showing the characteristic bulges near the L point.

In a ring around the L point, the k states reach Fermi energy on the hexagonal
face of the 1st Brillouin zone.

The binding energy EB of the electrons states within the black area is greater than
zero according to the definition in the figure on page 4.
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Photoemission Spectroscopy 6 Comment 2

The figure on the right shows the 1st Brillouin zone with the wave vector of an
electron that will be excited by a photon.

The wave vector can be broken down into a component parallel k⃗∥ and a
component perpendicular to the surface k⃗⊥.

When the (111) plane is used, the component k⃗⊥ is parallel to a line connecting the
Γ point with the L point of the hexagonal face of the 1st Brillouin zone.

The kinetic energy of the photoelectrons and the observation angle ϑ are
determined by the setting of the spectrometer.

By adjusting the kinetic energy and the angle ϑ in an appropriate way, k⃗∥ can be
set and the energy be scanned.
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Photoemission Spectroscopy 7

Ekin =
ħ2k2∥

2m sin2 θ
= hν −WA − EB



Quasi-free electrons in the sc-lattice Photoemission Spectroscopy Electron dynamics Revision

Photoemission Spectroscopy 7 Comment 1

The figures show the photoemission spectra near the L point.

Intensity is encoded by color. The intensity is high (red) when Ekin and k⃗∥
correspond to occupied k-states.

As sketched on page 4, the intensity is proportional to the density of states under
the selected experimental conditions.

In the figure a) on the left, the observation angle (i.e. k⃗∥) is varied for a fixed kinetic
energy Ekin = hν −WA − EB of the photoelectrons.

The occupied k states are arranged in a ring around the (1,1,1)-direction.

In figure b) the kinetic energy of the photoelectrons is scanned at different
observation angles in such a way that k⃗∥ points in a certain direction called y.
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Photoemission Spectroscopy 7 Comment 2

The energy of the occupied k states forms a parabola whose minimum lies on the
connecting line between the Γ point and the L point.
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Photoemission Spectroscopy 8
The figure shows the band structure of copper again for comparison.
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Photoemission Spectroscopy 8 Comment

The left side of the band structure shows the energy change along a line
connecting the Γ point and the L point.

The green vector shows the component k⊥ of the k⃗ vector when the Cu(111)
surface is used.

Only the parallel component k∥ is fixed by the experimental conditions.

The perpendicular component k⊥ has to be derived indirectly, since the simple law
of refraction in optics cannot be applied to electron waves.

The comparison with the band structure shows that the minimum of the parabola
in the APRES measurement corresponds to the maximum of the energy band
between Γ and L.
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Semiclassical Electron dynamics 1

How react electrons on quasi static applied electric and magnetic fields?

The influence of the fields on the energy of the electrons is small and often
much smaller than the thermal energy kBT

Only electrons on the Fermi surface can respond to an applied E⃗ and B⃗ field

The Schrödinger equation

Eφk⃗(⃗r ) =

(
−ħ2∇ 2

2m
+ Epot(⃗r )

)
φk⃗(⃗r )

is not suitable since Epot(⃗r) ̸= Epot(⃗r+ R⃗)
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Semiclassical Electron dynamics 1 Comment 1

The discussion of electrical conductivity in the context of the Sommerfeld model
(cf. Lecture 24) showed that the influence of an external electric and/or magnetic
field on the energy of the conduction electrons is usually much smaller than the
thermal energy.

The associated energies due to the applied electric and magnetic fields are small.

Therefore, only electrons in the thermally softened region of the Fermi surface
contribute to electrical transport phenomena.

However, it turns out that the Schrödinger equation outlined in red cannot be
solved even with standard perturbation theory.

Although the electric and magnetic fields are the same throughout the crystal, the
associated potential energy (e.g. Epot(⃗r) = e⃗rE⃗) depends on the location r⃗.
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Semiclassical Electron dynamics 1 Comment 2

As a result, the potential energy in the crystal lattice is no longer periodic, and
Bloch waves are no longer the solution to the Schrödinger equation.

A purely theoretical solution to the problem was found in 1929 by Rudolf Peierls,
who was then working in Arnold Sommerfeld’s group.

Peierls’ solution is very successful and is known as semiclassical electron
dynamics.

The crucial idea of   his approach is to group the Bloch waves into wave packets in
order to be able to examine the influence of the external fields locally at the
location of the wave packets.
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Semiclassical Electron dynamics 2
wave packets

wave packets move with the group velocity

vx(⃗k0) =
∂ω(⃗k)
∂kx

∣∣∣∣∣⃗
k=k⃗0

=
1
ħ
∂E(⃗k)
∂kx

∣∣∣∣∣⃗
k=k⃗0
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Semiclassical Electron dynamics 2 Comment
The figure illustrates the formation of a wave packet.

The Bloch waves around a wave vector k⃗0 are superimposed with the amplitude
F(k).

This leads to a wave packet with the spatial extent ∆x, and ∆x and ∆k are related
by the uncertainty relation.

Since ∆k is very much smaller than the dimensions of the 1st Brillouin zone, the
wave packets extend over many primitive unit cells of the crystal lattice.

Since the Bloch waves are taken from a specific energy band, the velocity of the
wave packet is the group velocity, which is related to the energy dispersion
E(⃗k) = ħω(⃗k) of the selected band.

The group velocity results from the derivation of the frequency with respect to the
components of the wave vector.
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Semiclassical Electron dynamics 3
equation of motion of a wave packet

ħ ˙⃗k = qE⃗+ qv⃗× B⃗ with q = −e

acceleration of a wave packet

a =
dv
dt

=
d
dt

(
1
ħ
∂E(k)
∂k

)
=

1
ħ2

(
∂2E(k)
∂k2

)
ħk̇

comparison with Newton’s equation of motion

a = m−1F

effective mass tensor

m−1 =
1
ħ2

∂2E(k)
∂k2
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Semiclassical Electron dynamics 3 Comment 1

The remarkable result of Peierl’s theory is that the equation of motion of a wave
packet in an electromagnetic field is formally identical to Newton’s equation of
motion.

The theory of Peierls is therefore known as semiclassical electron dynamics.

The first equation, outlined in red, provides this amazingly simple result of a fairly
sophisticated calculation.

The wave vector k⃗ refers to the center of gravity of the wave packet, which was
named k⃗0 in the first slide.

The index 0 is omitted below.
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Semiclassical Electron dynamics 3 Comment 2

The time derivative of the crystal momentum ħk⃗ is equal to the sum of the electric
force qE⃗ and the Lorentz force qv⃗× B⃗.

In Newtonian mechanics, the time derivative of the momentum corresponds to the
force F⃗.

If you calculate the acceleration of a wave packet, i.e. the derivation of the speed
over time, it turns out that the acceleration is determined by an effective mass.

The reciprocal of the effective mass is proportional to the second derivative of the
band energy with respect to the components of the wave vector.
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Semiclassical Electron dynamics 3 Comment 3

The inverse effective mass is a tensor.

To simplify the notation, I use the scalar notation and omit the subscripts of the
tensor.

The equation below, outlined in red, gives the formula for the reciprocal of the
effective mass.
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Semiclassical Electron dynamics 4

Fermi liquid theory (Lew Landau 1956):

Due to the Coulomb interaction, the electrons are never independent of each other
and form a so-called Fermi liquid

The excitations of a Fermi liquid are so-called quasiparticles.
There is a one to one correspondence between the k states of the
independent electron gas and the quasiparticles.
The quasiparticles move with group velocity and obey the semiclassical
electron dynamics.
The interaction between the quasiparticles approaches zero when their
energy approaches zero.
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Semiclassical Electron dynamics 4 Comment 1

Despite the success of semiclassical electron dynamics, it is not clear how the
wave packets of Peierls theory arise in nature.

It is also not clear why the Coulomb repulsion between electrons is not effective at
all.

The answer to this questions was given by Lew Landau who published in 1956 his
Fermi liquid theory for 3Helium.
3Helium is a fermion (spin 1/2) and liquid 3Helium (Tc = 3.19 K) is a Fermi liquid.

Soon it became clear that his theory can also be applied to conduction electrons in
a crystal lattice.

It is crucial for the Fermi liquid theory that the excitation energy is small.
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Semiclassical Electron dynamics 4 Comment 2

Due to the interaction between the electrons they are never independent of each
other.

Any excitation of an electron affects other electrons, leading to the formation of
quasiparticles.

Once the quasiparticles are formed, the Coulomb repulsion between the
quasiparticles becomes nearly ineffective.

Landau showed that when quasiparticles scatter due to the Coulomb interaction,
the number of final states approaches zero as the energy of the quasiparticles
approaches zero.

This effect effectively suppresses the scattering of the quasiparticles due to the
Coulomb interaction.
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Semiclassical Electron dynamics 4 Comment 3

Landau also showed that there is a one-to-one correspondence between the
independent electron states of the ground state and the quasiparticles.

The quasiparticles obey semiclassical electron dynamics.

Beyond these fundamental properties of quasiparticles, there are very subtle
effects that allow the experimental test of the Fermi liquid theory.
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Semiclassical Electron dynamics 5
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Semiclassical Electron dynamics 5 Comment 1

The figure shows the reduced band scheme of nearly free electrond in a simple
cubic lattice.

At the Γ point of the lowest band, the second derivative of the energy is positive
and the effective mass is also positive.

At the peak of the second band, the second derivative of the energy is negative
and the effective mass of the wave packets is negative.

Since the motion of a particle with negative mass is highly unusual in Newtonian
mechanics, Newton’s equation of motion is extended by −1:

a =
1
ħ2

(
∂2E(k)
∂k2

)
ħk̇ =

1
ħ2

(
∂2E(k)
∂k2

)
·q(E⃗+v⃗×B⃗) = − 1

ħ2

(
∂2E(k)
∂k2

)
·(−q)(E⃗+v⃗×B⃗)
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Semiclassical Electron dynamics 5 Comment 2

This changes the sign of the charge.

The wave packets at the top of the second band respond to the force of an applied
electric or magnetic field with a negative mass, or alternatively with a positive
charge.
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Semiclassical Electron dynamics 6: “electron holes”
current density of a band

j⃗ = −2e
V

∑
all occupied
k states

v⃗(⃗k)

and
0 = −2e

V
∑

all k states
of 1stBrillouinzone

v⃗(⃗k)

0 = −2e
V

∑
all occupied
k states

v⃗(⃗k)− 2e
V

∑
all unoccupied

k states

v⃗(⃗k) = j⃗− 2e
V

∑
all unoccupied

k states

v⃗(⃗k)

and
j⃗ = +

2e
V

∑
all unoccupied

k states

v⃗(⃗k)
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Semiclassical Electron dynamics 6 Comment 1

The current density j = ρv is defined as the charge carrier density multiplied by the
charge carrier velocity: i.e. j⃗ = −e

V v⃗ for one electron with velocity v⃗ in volume V.

According to this definition, the current density of an energy band can be
calculated by summing up all occupied k states.

Since each k state is occupied by two electrons, the charge of each k state is
twice the negative elementary charge, i.e. −2e.

These considerations lead to the first underlined formula for the current density of
an energy band.
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Semiclassical Electron dynamics 6 Comment 2
The electric current density is zero when no electric field is applied to the solid
because for every quasiparticle there is a quasiparticle propagating in exactly the
opposite direction.

If a band is not completely occupied by electrons, this equilibrium can be disturbed
by an external electric field and an electric current flows.

If a band is completely occupied by electrons, no current can flow even when an
electric field is applied due to the periodicity of the band energy in the reciprocal
lattice.

To illustrate this fact, consider the integral∫ 2π

x=0
sin(x)dx = 0 =

∫ 2π+a

x=a
sin(x)dx
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Semiclassical Electron dynamics 6 Comment 3

When integrating over the period of a periodic function, the integration interval can
be shifted without changing the value of the integral.

The equation in the second line formulates this fact for the k states.

This equation always holds, even when an external electric field is applied and the
Fermi surface is shifted in k-space.

The electric field is so small that its influence on the energy bands is negligible.
This is always the case as long as the electric field does not destroy the solid.

The sum over all k states can be divided into the occupied and the unoccupied k
states.

The current density can thus be calculated by summing over all occupied k states,
but also by summing over the unoccupied k states.
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Semiclassical Electron dynamics 6 Comment 4

In this case the charge of the charge carriers is not twice the negative elementary
charge but twice the positive elementary charge.

If the Fermi surface is simple (e.g. spherical or elliptical) and the second derivative
of the energy E(⃗k) is negative due to the influence of the periodic potential, the
electrons can be assigned a positive charge, and it is convenient to consider the
unoccupied electron-hole states instead of the occupied k states to calculate the
electric current.
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Semiclassical electron dynamics 7
Motion in a homogeneous magnetic field

ħ ˙⃗k = F⃗ = qv⃗× B⃗ with v⃗ =
1
ħ
∂E(⃗k)
∂⃗k

and q = −e

E(⃗k) = constant
k⃗∥ = constant

The orbits are determined by

E(⃗k, k⃗∥ = constant) = constant

→ there are closed and open orbits
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Semiclassical electron dynamics 7 Comment 1

If there is a magnetic field but no electric field, the time dependence of the k-vector
is determined by the Lorentz force.
˙⃗k is perpendicular to the energy gradient and perpendicular to the direction of the
magnetic field.

The energy of the electron (quasiparticle) does not change on its orbit.

Likewise, the component of the k-vector parallel to the magnetic field k⃗∥ does not
change.

The electron moves in a plane of constant energy characterized by the parallel
component of the k-vector, i.e. in a plane perpendicular to the magnetic field that
intersects the Fermi surface.

The energy of the quasiparticles is close to of the Fermi energy.
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Semiclassical electron dynamics 7 Comment 2

The figure shows the Fermi surface of copper in the periodic zone scheme.

Depending on the direction of the applied magnetic field, the quasiparticles follow
closed or open orbits.



Quasi-free electrons in the sc-lattice Photoemission Spectroscopy Electron dynamics Revision

Semiclassical electron dynamics 8

ħ ˙⃗k = F⃗ = qv⃗× B⃗

with

v⃗ =
1
ħ
∂E(⃗k)
∂⃗k

and
q = −e
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Semiclassical electron dynamics 8 Comment 1

The left side shows the equation of motion of quasiparticles in a homogeneous
magnetic field.

The figure shows a schematic band structure.

The occupied k states are shown by red lines and the unoccupied k states are
shown by blue lines.

There are energy gaps between the bands.

The k states at the top of the second band have a negative effective mass and
correspond to positively charged electron holes.

The conductivity of the band is described by the positively charged quasiparticles
of the unoccupied k states.
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Semiclassical electron dynamics 8 Comment 2

The third band is occupied by electrons that are excited across the band gap.

They occupy k states have a positive effective mass and the conductivity is based
on negatively charged quasiparticles (they are commonly referred to as electrons).

In a semiconductor, the second band is called the valence band and the third band
is called the conduction band.

The figure on the right shows a schematic 1st Brillouin zone in a plane
perpendicular to the applied magnetic field.

The occupied k states are shown in red and the unoccupied k states are shown in
white.

For the 3rd band, the quasiparticle orbit in the magnetic field surrounds the
occupied k-states.
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Semiclassical electron dynamics 8 Comment 3

For the 2nd band, the quasiparticle orbit encloses the unoccupied k states.

Depending on the direction of the energy gradient ∂E(⃗k)
∂⃗k

the orbits are traversed
clockwise or counterclock wise.

If the orbit encloses the occupied k states, it is called an electron orbit, while if the
orbit encloses the unoccupied k states, it is called a hole orbit.
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Semiclassical electron dynamics 9: 4 free electrons in sc lattice
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Semiclassical electron dynamics 9 Comment

The figure shows again the situation of four quasi-free electrons in the primitive
cell of an sc lattice.

First the Brillouin zones in the Γ-X-M plane, secondly the band structure in the Γ-X
and the Γ-M directions and on the right the 2nd Brillouin zone and 3rd Brillouin zone
for the 2nd and 3rd energy band.

It is obvious that there are hole orbits on the Fermi surface of the 2nd Brillouin zone
and electron orbits on the Fermi surface of the 3rd Brillouin zone.

It is not shown, but is easy to see, that there are also electron orbits on the Fermi
surface of the 4th Brillouin zone.

It is amazing that hole orbits exist even though only free electrons are taken into
account.
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Semiclassical electron dynamics 10
Hall effect of aluminum: electron configuration [Ne] 3s23p1
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Semiclassical electron dynamics 10 Comment 1

Aluminum has valence 3. The valence electrons occupy the 3s and 3p orbitals.

The three valence electrons can move almost freely.

Aluminum crystallizes in an fcc lattice.

The left figure shows the band structure of aluminum, which agrees very well with
the band structure of free electrons.

The periodic potential energy induces only small energy gaps.

The 1st Brillouin zone of the fcc lattice is shown on the right. The letter W denotes
the corners of the the square face.
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Semiclassical electron dynamics 10 Comment 2

The first energy band with the lowest energy is completely occupied by electrons
and cannot contribute to conductivity.

The conductivity is caused by the electrons in the 2nd and 3rd energy band.

The Fermi surface of the 2nd energy band is shown at the bottom right.

As for the electrons in a simple cubic lattice, the Fermi surface encloses
unoccupied k states.
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Semiclassical electron dynamics 11: Fermi surface of the 3rd band
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Semiclassical electron dynamics 11 Comment

The figures show the Fermi surface of the 3rd energy band of aluminum.

On the left side the result of a calculation and on the right side the
quasi-free-electron approximation.

As for the electrons in a simple cubic lattice, the Fermi surface of the 3rd energy
band encloses occupied k-states.

To show the closed Fermi surface, the center of the primitive cell is shifted from
the Γ point to the X point.
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Semiclassical electron dynamics 12

Hall coefficient of Aluminum Drude model

RH =
ρxy
B

=
1

−enNAl/V

NAl: number of aluminum atoms
n number of charge carriers per aluminum
atom
ωcτ → 0: n = 3 electrons per Al atom
ωcτ → ∞: n = −1, i.e. one electron hole per
Al atom
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Semiclassical electron dynamics 12 Comment 1

The figure shows the Hall coefficient as a function of ωcτ measured by R. Lück
1966.

The abscissa ωcτ needs a comment.

In the free electron theory the product of the magnetic field and the conductivity is
Bσ = Bq2

m
N
Vτ = qNVωcτ with ωc = Bq/m.

In the experiment, the conductivity σ and the magnetic field B were measured.

ωcτ is obtained by dividing Bσ by the electron density of aluminum of three
valence electrons per aluminum atom.

ωcτ measures the cycles that a quasiparticle (electron or hole) can go through in a
magnetic field.
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Semiclassical electron dynamics 12 Comment 2
For aluminum there are three valence electrons and the charge carrier density is
n · NAl. Here n denotes the number of valence electrons per aluminum atom and
NAl the number of aluminum atoms.

At high temperature and low magnetic field strength, i.e. ωcτ → 0, the Hall
coefficient corresponds to three valence electrons.

At low temperature and high magnetic field strength, i.e. ωcτ → ∞, the Hall
coefficient corresponds to one positive charge carrier per aluminum atom.

At high temperatures, the mean collision time is short and the mean free path of
the electrons is very short.

So it doesn’t matter that the Fermi surface is intersected by Bragg planes.

The reflection at the Bragg planes does not affect the average electron dynamics
and the quasi-free electron behavior is obtained.
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Semiclassical electron dynamics 12 Comment 3

It is worth noting that the Hall coefficient crosses the zero line at ωcτ ≈ 10−1.

In the free-electron model, this result would indicate that the carrier density
diverges, i.e. qNV → ∞.

That is certainly not true. The dramatic variation of the Hall coefficient shows that
the electron dynamics are strongly influenced by the Bragg planes when the
quasiparticles can complete cycles in the magnetic field.
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Semiclassical electron dynamics 13

transport theory (I.M. Lifshitz 1956)

B → ∞ σxy = −e(ne − nh)
NAl
V

1
B

= ρ−1
xy

RH =
1

−e(ne − nh)NAl/V

number of electrons in the 1st band: n1 = 2 · NAl

number of electrons in the 2nd band: n2 = (2− nh) · NAl

number of electrons in the 3rd band: n3 = ne · NAl

n1 + n2 + n3 = 3 · NAl = (2+ 2− nh + ne) · NAl → ne − nh = −1
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Semiclassical electron dynamics 13 Comment 1

Unfortunately, there is no heuristic way to see what happens as the mean collision
times get longer and the magnetic fields get stronger.

In 1956, I. M. Lifshitz et al. obtained an important theoretical result for the case
ωcτ → ∞.

Based on the semi-classical electron dynamics, I. M. Lifshitz et al. calculated the
red underlined formula for the transverse conductivity σxy for ωcτ → ∞.

Here, ne · NAl is the number of occupied k states enclosed by Fermi surfaces and
nh · NAl the number of unoccupied k states enclosed by Fermi surfaces.

The theory is only valid if there are only closed quasiparticle orbits.
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Semiclassical electron dynamics 13 Comment 2

For a strong magnetic field, it also follows that the transverse conductivity is the
reciprocal of the transverse resistivity, i.e. σxy = ρ−1

xy .

With this theoretical result, the simple formula for the Hall coefficient, outlined in
red, follows.

This formula appears to be a generalization of the formula in the quasi-free
electron approximation.

But this is not true: there is no interpolation between the ωcτ → 0 case and the
high field/low temperature ωcτ → ∞ case.

Between the two cases RH → 0 which is not possible either with the free-electron
approximation or with the high-field/low-temperature result.
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Semiclassical electron dynamics 13 Comment 3

This formula holds as long as the number of occupied k-states and unoccupied k
states enclosed by Fermi surfaces are not equal.

The number ne − nh is easy to calculate for aluminum.

The number of k states in 1st Brillouin zone is equal to the number of aluminum
atoms NAl.

The first band is completely occupied with 2 electrons per k states.

The second band is partially occupied and nh · NAl k states are unoccupied.

The third band is occupied with ne · NAl electrons.
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Semiclassical electron dynamics 13 Comment 4

Since there are three valence electrons per aluminum atom, the number
ne − nh = −1 agrees with the experimental result.

The Hall effect of aluminum confirms the validity of semiclassical electron
dynamics.

The discussion also shows that understanding the Hall effect is usually quite
difficult.
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Revision
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Summary in Questions 1

1. What determines the kinetic energy of a photoelectron?
2. Consider the experiment shown on slide Photoemission Spectroscopy 7.

Suppose that photons with a wavelength of 100 nm are used in the experiment.
The work function of copper is 4.3 eV. The kinetic energy measured by the
detector is set to a fixed value. Which energy of the detector has to be selected
if the Fermi energy is to be determined?

3. Which energy has to be chosen if the top of the 4s band is to be measured at
the L point?
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