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Semiconductors 1 Comment 1

The figure shows the energy bands of an insulator or semiconductor for one
direction in the reciprocal lattice.

The occupied k states are shown in red.

In the 1st Brillouin zone of an insulator, all k states of an energy band for all
directions of the wave vector k⃗ must be occupied by two electrons.

The solid is a metal if there are regions of an energy band with unoccupied k
states in the 1st Brillouin zone.

In a semiconductor, the highest occupied energy band is called the valence band
and the lowest unoccupied band is called the conduction band.
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Semiconductors 1 Comment 2

Because of the energy gap between the valence band and the conduction band,
the electrical conductivity of a semiconductor approaches zero at zero
temperature, i.e. σ → 0 for T → 0.

The electrical conductivity increases with increasing temperature, since more and
more electrons can be excited from the valence band into the conduction band.
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Semiconductors 2 Comment

The figure gives an overview of the energy gaps of various semiconductors.

The black line connects the elements silicon, germanium and tin.

The blue line connects the III-V semiconductors and the red line the II-VI
semiconductors.

A look at the periodic table of the elements shows what is meant by a III-V or a
II-VI semiconductor.

The combination of elements from different groups of the periodic table affects the
size of the smallest energy gap between the valence and conduction bands.
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Semiconductors 3 Comment

Germanium crystallizes in the fcc lattice of the diamond structure.

The figure on the left shows the 1st Brillouin zone of the fcc lattice.

The first panel shows the density of states and the second panel the energy bands
for some selected directions of the wave vector.

The lowest energy of the conduction band is at the L point of 1st Brillouin zone.
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Semiconductors 4 Comment

The figure shows the conduction band and the valence band in more detail.

In contrast to the previous figure, the L point is plotted to the right of the Γ point.

At the Γ point there are three valence bands that have exactly the same energy
when the lattice symmetry is the undisturbed diamond structure.

The figure shows the case where the lattice is doped with impurity atoms that act
as donor atoms.

The energy of the donor atoms is plotted as a dashed line just below the
conduction band minimum.

The energy gap is so small that a large number of electrons can be thermally
excited into the conduction band from the donor atoms.
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Semiconductors 5 Comment

The figures compare the band structures of silicon and germanium.

The lowest energy of the silicon conduction band is near the X point of the 1st

Brillouin zone.

The areas drawn in red in the 1st Brillouin zone of silicon and germanium show the
surfaces of lowest energy of the conduction band.

The k states of these regions are first populated when electrons are excited into
the conduction band.
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Semiconductors 6 Comment 1

The figure shows schematically the doping of semiconductors.

The horizontal bars show the relevant localized energy levels of the donor and
acceptor atoms, Ed and Ea, respectively.

The electrons of the donator and acceptor atoms are localized and the
corresponding energy band is simply a horizontal line.

The energy gap between the lowest energy of the conduction band and the
relevant energy level of the donor atom is small, so the probability that an electron
of the donor atom will be excited into the conduction band is very high.
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Semiconductors 6 Comment 2

Also, the energy gap between the relevant energy levels of the acceptor atom and
the highest energy of the valence band is small, so the probability that an electron
of the valence band will be excited to an energy level of an acceptor atom is very
large.

Since the effective mass of the electrons (quasiparticles) at the top of the valence
band is negative, the electrical response to an applied electric and/or magnetic
field can be described by positive charge carriers.

The positive charge carriers are commonly referred to as “electron holes”.
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Energy levels of donor and acceptor atoms in the energy band gap of silicon
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Semiconductors 7 Comment

The figure gives an overview of the energy levels of donor and acceptor atoms in
the energy band gap of silicon.
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Semiconductors 9 Comment 1

The figure shows the electron density in the conduction band of silicon.

The dashed line shows the intrinsic electron density of pure silicon.

Because of the large energy gap, the electron density is very small for
temperatures below 400 K.

The energy gap between the valence and conduction bands of silicon is quite
large and a high temperature is necessary to excite electrons from the valence
band into the conduction band.

If the semiconductor is doped with donor atoms, the energy gap is much smaller,
so that electrons from the donor atom can be excited into the conduction band
even at low temperatures.
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Semiconductors 8 Comment 2

The electron density in the conduction band is the density of donor atoms over a
wide temperature range.

Only when the temperature becomes very high does the electron density increase
again, since electrons can be excited from the valence band into the conduction
band via the large energy gap.
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Ferromagnetism 1 Comment 1

The periodic table shows that most elements become superconducting at low
temperatures.

Many elements spontaneously become superconducting at low temperatures.

For some elements, hydrostatic pressure must be applied before
superconductivity can be observed.

Few elements show magnetism.

Chromium is antiferromagnetic below the so-called Néel temperature of 311 K.

Manganese is complicated because it forms four different crystal structures that
have very different physical properties, e.g. α-Manganese is antiferromagnetic
below the Néel temperature of 100 K.

Iron, cobalt and nickel are ferromagnetic below the Curie temperature.



Semiconductors Ferromagnetism BCS theory London equations Revision Contents

Ferromagnetism 1 Comment 2

The Curie temperature of iron is 1000 K, of cobalt 1400 K and of nickel 630 K.

Magnetic order is also observed for the rare earth metals.

Complicated magnetic spiral structures are caused by the interplay between the
localized 4f electrons and the conduction electrons of the 5d and 6s orbitals.

Magnetic order is only observed for a small number of elements.

However, the transition temperatures between the magnetically ordered phase
and the paramagnetic phase are comparatively high.

This is in striking contrast to the usually very low transition temperatures of
superconductivity.

Since the ferromagnetism of iron plays such a large role in daily life, it is worth
commenting on the ferromagnetism of band electrons.
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Ferromagnetism 2
The exchange interaction can lead
to ferromagnetism of the conduction
electrons.

but in contrast to atoms
Bloch waves extend over the whole
crystal
The excitation energy is extremely
small
There are many electrons involved

Stoner criterium ID(EF)/2n > 1
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Ferromagnetism 2 Comment 1
The figure shows the energy level scheme of helium.

When an electron is excited from the ground state, the spins of the two electrons
can remain antiparallel or align in parallel.

If the spins are parallel, the excited electron cannot even virtually return to the
ground state due to the Pauli principle.

Therefore, the Coulomb repulsion of the parallel spin configuration is smaller than
that of the antiparallel configuration and the binding energy of the parallel spin
configuration is therefore larger.

In contrast to the narrow atomic obitals, the conduction electrons occupy Bloch
waves that extend throughout the entire crystal.

Nevertheless, the Coulomb repulsion keeps the electrons away from each other,
and due to the Pauli principle, this effect increases with parallel electron spins.
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Ferromagnetism 2 Comment 2

This increases the binding energy of the conduction electrons when they are
ordered parallel to one another.

Edmund Stoner first described this effect by adding additional energy to an energy
band proportional to the number of electrons with opposite spin.

This additional energy is denoted by the letter I.

This creates spin-polarized energy bands and the density of states is no longer the
same for the two spin orientations.

Stoner showed that ferromagnetism of conduction electrons is possible if the
criterion outlined in red is met.

What is important is the additional energy due to the antiparallel spin orientation
and, above all, the density of states at the Fermi energy.
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Ferromagnetism 3 Comment

The figure schematically illustrates the increase in binding energy due to the spin
polarization of the energy band.
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Ferromagnetism 3 Comment 1

The figure shows once again the density of states and the band structure of
copper.

The 4s electrons are the conduction electrons, which behave almost like
quasi-free electrons.

Unlike the neighboring elements nickel, cobalt and iron, copper is not a magnet.

The main difference between nickel, cobalt, iron on the one hand and copper on
the other hand is that the Fermi energy for nickel, cobalt and iron is in the region of
the 3d bands, while the Fermi energy for copper is exclusively in the region of the
4s band.

It is therefore interesting to note the differences between the 4s band and the 3d
bands shown in the figure.
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Ferromagnetism 3 Comment 2

The density of states of the 4s band is small compared to the density of states of
the 3d bands.

The 3d bands are narrow and the density of states of the 3d bands is confined to
an energy range that is small compared to the energy range of the 4s band.
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Ferromagnetism 4 Comment

The figure shows the density of states of iron, cobalt and nickel for up and down
spin in the ferromagnetic phase.

The density of states is similar to the 3d density of states of copper with the
difference that the Fermi energy is in the region of the 3d bands.

The exchange interaction induces a robust difference between the up and down
spin states.
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(CurieEisen3.mp4)

CurieEisen3.mp4
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Ferromagnetism 5 Comment

The video shows a small piece of iron attached to the end of a pendulum.

Since iron is ferromagnetic, the pendulum is attracted to a permanent magnet.

Iron loses its magnetic moment when heated above the Curie temperature of
758° C.

The video shows the alternating heating and cooling of the small piece of iron.

If the temperature of the piece of iron is below the Curie temperature, the
pendulum is attracted to the permanent magnet.

If the temperature of the piece of iron is greater than the Curie temperature, the
pendulum can swing freely.

(The rather cool yellow flame is irrelevant to the experiment. It’s just a nasty
imperfection of the Bunsen burner.)
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Superconductivity Comment

Superconductivity is not an exotic phenomenon.

Many elements of the periodic table and countless alloys and chemical
compounds become superconducting below a critical temperature.

The periodic table shows that superconductivity and magnetism are mutually
exclusive.

Only a few elements (oxygen, iron and europium) not only order magnetically, but
also become superconducting under pressure.
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BCS theory 1
John Bardeen, Leon Cooper, Robert Schriefer 1957 (NP 1972)
Cooper pairs

{+k⃗ ↑,−k⃗ ↓}

spacial extent of the Cooper pairs

ξ0 ≈ 2− 1000nm

macroscopic wave function

ψ = ψ0e−iEt/ħ
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BCS theory 1 Comment 1

Superconductivity was discovery by Kamelingh Onnes in 1911.

The first microscopic theory of superconductivity was published in 1957 by
Bardeen, Cooper and Schriefer.

The theory is very successful and is called the BCS theory.

The basic idea of   the BCS theory is that two counter-propagating electron waves
with the same wave number, i.e. k⃗ and −k⃗, form a new quantum state with lower
energy.

The figure illustrates the idea of   the mechanism that couples the two electron
waves.

Since atoms are not fixed in their lattice site but can oscillate freely around an
equilibrium position, atoms can react to electrical charges flying past them.



Semiconductors Ferromagnetism BCS theory London equations Revision Contents

BCS theory 1 Comment 2

The figure shows atoms moving in the direction of an electron flying through the
crystal lattice.

The speed of the electrons is in the range of the Fermi velocity and therefore very
high compared to the movement of the atoms.

The atoms remain in the deflected position on the electron time scale for a very
long time, creating a channel that can be used by an electron propagating in the
opposite direction to reduce its potential energy.

This gain in energy joins two electrons in a new shared quantum state.

Due to the Pauli principle, this new quantum state can be occupied by two
electrons with opposite spin quantum numbers.
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BCS theory 1 Comment 3

This coupling mechanism of two electrons with opposite wave vectors k⃗ and −k⃗
was discovered by Leon Cooper in 1956.

This new quantum state is called a Cooper pair.

Electrons blocked in their k states contribute neither to electrical conductivity nor
to superconductivity.

Only quasiparticles i.e. electrons whose energy is close to the Fermi energy can
form Cooper pairs.

These quasiparticles are described by wave packets that have a certain spatial
extent.
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BCS theory 1 Comment 4

Cooper pairs can only form when wave packets with opposite wave vectors
overlap.

The Cooper pairs therefore have a certain spatial extension, which is given by the
correlation length ξ0.

The correlation length ξ0 is comparatively large, so that many electrons are in the
range of a Cooper pair.
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BCS theory 1 Comment 5

Cooper pairs behave similar to bosons, since the electron spins of a Cooper pair
add up to the total spin S = 0.

Similar to photons (S = 1), any number of Cooper pairs can occupy a single
quantum state and thus form a macroscopic wave function that extends over the
entire solid.

This is similar to the laser where many photons form a macroscopic
electromagnetic wave.

It is therefore possible to carry out interference experiments with these
macroscopic wave functions.

Electrical circuits based on the interference of the macroscopic wave functions of
a superconductor are called SQUIDs (Superconducting Quantum Interference
Device).
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Cooper pairs cannot lose energy due to scattering
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BCS theory 2 Comment 1

The figure on the left shows the electron-phonon scattering that leads to electrical
resistance in metals.

An electron emits or absorbs a phonon and is thereby deflected in a different
direction.

At low temperatures well below the Debye temperature, only acoustic phonons are
excited, which can only slightly deflect electrons.

At temperatures above the Debye temperature, all phonon modes within the 1st

Brillouin zone are excited and electrons can be strongly deflected by
electron-phonon scattering.

Strong deflections also occur when an electron is scattered off an impurity atom or
a crystal defect.
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BCS theory 2 Comment 2

The figure on the right shows the case that electrons form Cooper pairs.

These are represented in the figure by the blue dots connected by the blue line.

The scattering can only take place if the binding energy of the Cooper pair can be
overcome by the scattering.

If the energy of a phonon is less than the binding energy, the Cooper pair cannot
be broken by a phonon.

Cooper pairs move through the crystal lattice without being able to gain or lose
energy from the crystal.

The superconducting current flows without resistance.
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BCS theory 2 Comment 3

The binding energy of the Cooper pairs is usually very small, so that the transition
temperatures Tc of superconductors are often very low.

The transition temperature of a superconductor is called the critical temperature.
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BCS theory 3 Comment 1

Since the discovery of superconductivity in 1911, physicists and chemists have
tried to find substances with higher transition temperatures.

The figure shows how substances with higher transition temperatures have been
discovered over the years.

In the search for substances with higher transition temperatures, chance played a
major role.

The BCS theory of superconductivity did not bring a breakthrough in 1957 either.

The dark green dots show superconductors that can be well understood with the
BCS theory.

The green stars show so-called heavy fermion superconductors.
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BCS theory 3 Comment 2

The Cooper pairs are bound by magnetic interactions.

Therefore, this class of superconductors is used as model systems to study
unconventional superconductivity, although the critical temperatures are usually
very small.

The light blue diamonds show the cuprate superconductors.

The discovery of cuprate superconductors in 1986 was a breakthrough because it
made it possible to use liquid nitrogen as a coolant instead of expensive helium.

The cuprate superconductors are based on copper-oxygen planes and the Cooper
pairs are believed to form due to the interaction of the electrons with strong
two-dimensional magnetic correlations.
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BCS theory 3 Comment 3

Another class of high-temperature superconductors are the iron pnictide
superconductors discovered in 2006.

These superconductors are based on iron planes separated by pnictides.

Pnictides are the elements of the periodic table that are in the column below
nitrogen, e.g. phosphorus or arsenic.

The phase diagrams of the iron pnictides are very similar to the phase diagrams of
the heavy fermion and cuprate superconductors.

Finally, the figure also shows some carbon-based superconductors (red triangles).

They are based on buckminsterfullerenes (C60) or carbon nanotubes (CNT).

Even heavily doped diamond becomes superconducting at a critical temperature
in the range of 3K.
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energy gap at the Fermi energy



Semiconductors Ferromagnetism BCS theory London equations Revision Contents

BCS theory 4 Comment

The figure shows the density of states of quasi-free electrons.

The occupied states are marked in red.

An energy gap opens at the Fermi energy when the metal becomes
superconducting below the critical temperature Tc.

The electrons occupying k states near the Fermi surface form Cooper pairs.

At least the energy of the superconducting energy gap is necessary to break the
Cooper pairs.

The k states in the energy gap region are shifted to higher and lower energies as
the energy gap opens.

Therefore, the density of states is increased just below and just above the
superconducting energy gap.
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BCS theory 5

Measurement of the energy gap with a tunnel junction between a normal
conductor (e.g. Al Tc = 1.2K) and a superconductor (e.g. Pb: Tc = 7.2K)
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BCS theory 5 Comment 1

The superconducting energy gap can be measured with a tunnel junction between
a normal conductor and a superconductor.

A nice example is the tunnel contact between aluminum and lead.

Both metals are separated by a thin layer of aluminum oxide.

Electrons can tunnel through this barrier.

The figure below left shows the tunnel junction with the current and the applied
voltage.

The figure on the right shows the current-voltage curve of the tunnel junction.
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BCS theory 5 Comment 2

If the current-voltage characteristic is measured at a temperature above the critical
temperature of lead, the linear current-voltage characteristic of an ohmic resistor is
obtained.

The resistance is mainly determined by the oxide barrier.

The figures on the left show the density of states at the Fermi energy when the
temperature is below the critical temperature of lead but above the critical
temperature of aluminum.

The figure on the left shows the case that no voltage is applied.

Because of the energy gap of lead, no electrons can tunnel from aluminum to lead,
since there are no k states in the energy gap of lead.
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BCS theory 5 Comment 3

If the potential energy of the electrons in aluminum is increased by an applied
voltage, an electric current can flow as soon as the Fermi energy of aluminum is
above the energy gap of lead.

Once this occurs, electrons can tunnel from the aluminum into the free k states of
lead and an electric current begins to flow.

If the current-voltage characteristic of the tunnel junction is measured at a
temperature below the critical temperature of lead but above the critical
temperature of aluminum, the current-voltage characteristic shown in red is
obtained.

The current begins to flow when the applied voltage satisfies the condition eU = ∆.
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BCS theory 5 Comment 4

The solid red line shows the ideal case when thermal excitations of electrons
across the tunnel junction can be neglected.

The dashed red line shows the more realistic current-voltage characteristic when
thermal excitations cannot be neglected.
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BCS theory 6

BCS energy gap

2∆(0) = 3.52 kBTc

and

∆(T → Tc) = ∆(0)

√
1− T

Tc
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BCS theory 6 Comment

The figure shows the temperature dependence of the energy gap that occurs
below the critical temperature.

The prediction of the BCS theory is confirmed by the experimental results.

The first formula on the right shows BCS theory’s prediction for the maximum
energy gap at low temperatures.

The second formula gives the temperature dependence of the energy gap just
below the critical temperature.
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BCS theory 7

BCS energy gap

2∆(0) = 3.52 kBTc

element Tc [K] 2∆(0)/kBTc

Cd 0.56 3.2

Al 1.196 3.4

In 3.4 3.6

Sn 3.72 3.5

Ta 4.48 3.6

V 5.3 3.4

Pb 7.19 4.3

Nb 9.26 3.8
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BCS theory 7 Comment

The boxed equation gives the relation between the superconducting energy gap
and the critical temperature according to the BCS theory.

The table shows the experimental results for some elements which confirm the
BCS theory.
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BCS theory
London equations
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London equations 1
Fritz and Heinz London (1935): equation of motion of superconducting charge
carriers

m
∂⃗v
∂t

= qE⃗

with the superconducting current density

j⃗s = qnsv⃗

follows
m

q2ns
∂⃗js
∂t

= E⃗

definition of the London penetration depth

λ2L =
m

μ0q2ns
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London equations 1 Comment 1

The first theoretical approach to superconductivity was formulated by Fritz and
Heinz London in 1935.

Their theory is known as the London theory of superconductivity.

The London theory assumes that there are superconducting charge carriers that
react to an applied external electric field according to Peierl’s equations of motion
with an effective mass.

This assumption is formulated by the first equation.

The superconducting charge carriers are the Cooper pairs, i.e. q = −2e.

The main difference between electron dynamics and Cooper pair dynamics is that
they are unaffected by the scattering processes.
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London equations 1 Comment 2

The second equation is the superconducting current density js, which results from
the density ns of the superconducting charge carriers, their charge q = −2e and
the drift velocity.

The underlined equation results from inserting the current density into the equation
of motion.

Dividing the prefactor on the left side of the equation by the magnetic field constant
μ0 ≈ 4π · 10−7 Vs/Am gives a quantity that is measured in square meters.

It turns out that this quantity is the square of the penetration depth of an external
magnetic field into the superconductor.

The equation outlined in red gives the definition of the London penetration depth.
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London equations 2

1st London equation

E⃗ = μ0λ
2
L
∂⃗js
∂t

with the 1st London equation and the 3rd Maxwell equation (induction law)

∇× E⃗ = −∂B⃗
∂t

= μ0λ
2
L
∂
∂t
∇× j⃗s

results the

2nd London equation
B⃗ = −μ0λ2L∇× j⃗s
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London equations 2 Comment

The formula outlined in red now gives the first London equation with the London
penetration depth.

If the first London equation is inserted into Faraday’s law of induction, then the
second London equation can be read from it.

The second formula outlined in red shows the second London equation.
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London equations 3
With the 2nd London equation and Ampere’s law ∇× B⃗ = μ0 j⃗s results

B⃗ = λ2L∇2B⃗

use ∇B⃗ = 0 (2nd Maxwell law) and ∇× (∇× B⃗) = ∇(∇B⃗)−∇2B⃗

in one dimension one gets B(x) = λ2L
∂2B(x)
∂x2 → B(x) = Bae−x/λL

a magnetic field cannot penetrate a
superconductor → Meissner effect
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London equations 3 Comment 1

Substituting the 2nd London equation into Ampere’s law gives the underlined
equation.

The figure illustrates the meaning of this equation.

The magnetic field Ba is applied along the z-direction parallel to the surface of a
superconductor.

The drop in the magnetic field within the superconductor perpendicular to the
surface can be calculated using the differential equation.

The solution is a simple exponential decay and the decay length is the London
penetration depth.
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London equations 3 Comment 2

The magnetic field can only penetrate the superconductor in a thin surface layer.

There is no magnetic field in the bulk of the superconductor.

This is the Meissner effect.

Shielding currents begin to circulate when a superconducting material is cooled
below the critical temperature in a magnetic field.

If the temperature is above the critical temperature, the magnetic field can
penetrate the material, since the shielding currents that occur due to Lenz’s law
are quickly reduced to zero by the ohmic resistance.

Shielding currents always suppress the magnetic field within the superconducting
material when the temperature is below the critical temperature.
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London equations 3 Comment 3

Therefore, shielding currents begin to flow even when a superconductor is cooled
in a magnetic field below Tc.

The shielding currents lead to a strong magnetic moment in the superconducting
material, which reacts very quickly to any change in the external magnetic field.
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London equations 4

(Moebiusband.mp4)

Moebiusband.mp4
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London equations 4 Comment

The video shows a superconductor located at a certain distance above a magnetic
rail.

Any change in distance changes the magnetic field strength, which leads to an
immediate reaction of the shielding currents.

The magnetic moment of the superconductor is always set in such a way that the
distance to the magnetic rail does not change.

The video shows a small piece of an high temperature superconductor.

Liquid nitrogen is used to cool the superconductor below the critical temperatures.

The superconductor is placed in a small container made of foamed plastic for
thermal insulation.
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London equations 5

London penetration depth of various elements

element Tc [K] λL(T → 0) [nm]

Cd 0.56 110

Al 1.196 16

Sn 3.72 34

Pb 7.19 37

Nb 9.26 39
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London equations 5 Comment

The London penetration depth is temperature dependent.

It is minimal for T → 0 and diverges for T → Tc.

λL(T) = λL(0)/
√
1− (T/Tc)4

The table shows the critical temperatures and the London penetration depth of
some elements.

The London penetration depth is in the range of a few 10 nm.
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Summary in Questions 1

1. Sketch the conductivity as a function of temperature for a metal and for a
semiconductor.

2. Why do impurities affect the electrical conductivity of semiconductors so much?
3. How do donor atoms differ from acceptor atoms?
4. Sketch the conduction electron density of a semiconductor doped with donor

atoms as a function of temperature.
5. There are three different temperature ranges. How do these temperature

ranges differ?
6. Explain the exchange interaction for conduction electrons.
7. Which conditions must be fulfilled for conduction electrons to order

ferromagnetically?
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Modern Physics (Winter Semester 2023/24)

Contents:

1 Classical Wave Phenomena (L1-3)
2 Essentials of Thermodynamics (L4)
3 Special Relativity (L4-6)
4 Wave-Particle Dualism (L7-10)
5 Atoms (L10-19)
6 Solids (L20-28)
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Classical Wave Phenomena
1 General Wave Phenomena

Waves in one dimension L1
Reflection and transmission L1
Standing waves L1
Waves in three dimensions L1
Electromagnetic waves L2

2 Classical wave optics
Reflection and Refraction L2
Coherence L2
Interference on thin films L2
Fabry-Perot Interferometer L2
Diffraction on a double slit L3
Diffraction on a grating L3
Diffraction on a single slit L3
Bragg’s Law L3
Laue equations L3
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Essentials of Thermodynamics

Temperature L4
Boltzmann factor L4
Maxwell’s velocity distribution function L4
Ideal gas laws L4
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Special Relativity

Michelson-Morley experiment L4/5
Einstein’s postulates L5
Lorentz transformation L5
Time dilation and length contraction L5
Experiment of Hall and Rossi L5
Twin paradox L5
Apparent effects due to the Lorentz transformation L5
Invariant distance L5
Relativistic invariants L5
Doppler effect L6
Relativistic mechanics L6
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Wave-Particle Dualism

Thermal radiation L7
Planck’s radiation law L7
Photoelectric effect L7
Laser L8
Compton effect L9
Pair production L9
Matter waves L9/10
Uncertainty relations L10
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Atoms

1 Early atomic physics
The electron and the elementary charge L10
The nucleus L10
The spectrum of the hydrogen atom L11
Bohr’s model of the hydrogen atom L11
The spectra of the alkali metals L11
Xray spectra L11
The Frank-Hertz experiment L11
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Atoms

2 The Schrödinger equation as a wave equation
Schrödinger equation L11
Box potential L12
Harmonic oscillator L12
Orbital angular momentum L12/13
Rotation of a diatomic molecule L13
Schrödinger equation of the H-atom L13/14
Normal Zeeman-effect L14
Dia- and paramagnetism L14
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Atoms

3 Quantum mechanics
Stern-Gerlach experiment L15
Spin of the electron L15
Dirac notation L15
Spin-orbit coupling L15
Addition of angular momenta L16
Anomalous Zeeman effect L16
Hyperfine interaction L17
Selection rules for elm. dipole transitions L17
Autler-Townes splitting L18
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Atoms

4 Atoms with many electrons
Periodic table of elements L18
Coupling schemes L19
Entanglement L19
Exchange interaction L19
Hund’s rules L19
Crystal-and Ligand-field and the quench of the orbital angular momentum L19
X-Ray Spectroscopy L19
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Solids

1 Types of binding
Ionic bonding L20
Hydrogen bridge bonding L20
van de Waals bonding L20
Covalent bonding L20
Metallic bonding L20

2 Crystal lattices
Bravais lattice and Wigner-Seitz cell L20
Reciprocal lattice L20
Brillouin zones L20
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Solids

3 Lattice vibrations
Vibrational modes and phonons

Monatomic chain of atoms L21
Crystal with one atom per primitive unit cell L21
Diatomic chain of atoms L21
Crystal with n atoms per primitive unit cell L21
Phonons and Crystal momentum L21
Umklapp scattering L21

Brillouin and Raman scattering L22
Inelastic neutron scattering L22
Heat capacity of the crystal lattice L22
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Solids

4 Electrons in crystal lattices
Electrical conductivity and Ohm’s law L23
Drude model L23
Sommerfeld model

Fermi sphere L24
Fermi distribution function L24
Electric conductivity L24
Density of states L25
Heat capacity of the electron gas L25

Bloch waves L25
Energy bands and Fermi surfaces

Quasi-free electrons in the sc-lattice L25
Sodium L26
Copper L26
Silicon L26
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Solids

4 Electrons in crystal lattices
Quasi-free electrons in the sc-lattice L27
Photoemission Spectroscopy L27
Semiclassical electron dynamics L27
Semiconductors L28
Ferromagnetism L28
Superconductivity L28
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