
Computerpraktikum am 21.07. und 22.07.2022

Verantwortlich für Vorlesung bzw. Computerpraktikum:
Dr. P. Goldenzweig, Dr. R. Wolf, F. Metzner
Tutoren: M. Bauer, P. Ecker, M. Horzela, Dr. S. Stefkova, Dr. N. Trevisani, T. Voigtländer

Computerpraktikum zur Vorlesung

Moderne Methoden der Datenanalyse - Blatt 10

Exercise 10: Deep Learning

The classification of handwritten digits is a standard problem in the field of image classification.
In this exercise, we will process labeled images of handwritten digits from the MNIST1 dataset in
order to train and test (deep) neural networks on this task. The goal of this exercise is for you
to dive into a state-of-the-art software package for large-scale deep learning, to experiment with
your own neural-network designs and to compare your results with modern setups.

TensorFlow is one of the most popular and powerful tools in the machine learning community and
can be used to build, train and execute large-scale machine-learning models. The core concept of
TensorFlow is the representation of the information flow as tensors in a graph. In this exercise
the wrapper Keras is used, which hides this concept to a large extent and makes the library much
easier to use.

The exercise is shipped with a script for the download of relevant data and one notebook. All
needed software such as TensorFlow (www.tensorflow.org) and Keras (www.keras.io) is already
installed on the Jupyter Machine.

Figure 1: Example images from the MNIST dataset

The MNIST dataset (http://yann.lecun.com/exdb/mnist/) contains a total of 70,000 images
of handwritten digits. The images are in greyscale with 28 × 28 pixels each (see Figure 1 for
some examples). Execute the script download dataset.py to download and extract the dataset
as binary. The script also converts some example images from the binary dataset as png files
(greyscale-inverted images of Figure 1). Have a look at the example images and at the code.

In preparation of the training (Exercise 10.1), read the code in the function train() in the
Jupyter notebook and identify the part, where the machine learning model is defined. The model
contains many components of modern architectures, e.g., convolutional, dense, and maximum
pooling layers. Also specified in the code are the loss function, the optimizer algorithm, and the
validation metrics used for the training. The full documentation is available on the Keras webpage
(www.keras.io).

1(Modified) National Institute of Standards and Technology

www.tensorflow.org
https://keras.io/
http://yann.lecun.com/exdb/mnist/
https://keras.io/


2

• Exercise 10.1: Training and Testing obligatory

Explain the meaning and function of the various parts of the example model and understand
how the total number of trainable parameters, 1765, comes about. Hint: Look at the output
of the code line model.summary() and keep in mind that there are bias terms. What would
be the number of parameters for a conventional (dense) neural network with one hidden
layer of n nodes and 10 outputs?

Now, modify the model defined in train() and try to achieve the best global accuracy. Hint:
You will need to increase the model capacity, e.g., larger number of convolution filters or
additional dense layers, and the number of epochs. With increasing model capacity, you will
quickly understand why GPUs play such a big role in machine learning. What would be a
good method to evaluate the optimal number of training epochs? Hint: Plot the accuracy of
the model on training and validation sets as a function of training epochs. Can you explain
the worse training accuracy compared to the validation accuracy?

For your trained model, produce an estimate of your achieved accuracy by running the
function apply() manually on about twenty images, i.e. example input *.png. How does
your estimate compare with the result on the test dataset computed with the function
test()? Do the results match?

• Exercise 10.2: Application on other data voluntary

Use GIMP (or any other graphics editor) to create images of your own handwritten digits and
evaluate whether the performance you experience with your own example images matches the
performance achieved during training on the MNIST dataset. You need to create greyscale
png images with 28 × 28 pixels, the background of the image has to be black and the digits
have to be written in white color. The file your own digit.xcf can be used as template.
Does the model classify your images correctly? If not, what can be possible reasons that it
does not work as expected?

Have a look at the website http://yann.lecun.com/exdb/mnist/, which holds a leader-
board for the test dataset with the performance of modern (deep) machine learning mod-
els. You might want to compare your model with popular computer vision models such as
LeNet-5, VGG-16, AlexNet or Inception-v4 to get an idea of the complexity of modern
neural network architectures.

http://yann.lecun.com/exdb/mnist/

