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Exercise 8: Unfolding

In almost any experiment, the measured variable is not directly the physics quantity of interest.
Instead, the answer of the experimental apparatus has to be translated by the experimentalist,
e.g., the signal height might be related to the energy of a particle. In real experiments, it is
impossible to always find the true value of the physics quantity, since the translation suffers from
various uncertainties. E.g., the measured signal might be distorted due to noise and systematic
limitations of the experiment. Moreover, the response function of the experiment is convoluted
in the measured signal. In most cases, an analytical deconvolution of the signal is impossible or
at least not practical. Instead, numerical methods are applied to find the distribution of true
values and their uncertainties for a given distribution of measured values. This process is called
unfolding.

In this exercise, we consider only discrete distributions with N bins, corresponding either to
histograms of continuous variables (like energy) or naturally discrete variables (like the mass
number of atomic nuclei). Provided that the true and measured distributions have the same
number of bins, the experimental response can be described by an N ×N migration (or transfer)
matrix R, where each element Rij describes the probability of a true value in bin j to be classified
or measured, respectively, in bin i. This is reflected in the relation

~g = R · ~f,

where ~f is a vector with N elements containing the true values for each bin, R is the migration
matrix corresponding to the experimental response, and ~g is a vector containing the measured /
observed values for each bin. This means that an ideal experiment would have the unit matrix as
migration matrix.

The first step of the unfolding procedure is the determination of the migration matrix, e.g., by
calibration measurements or simulations. We assume that this step has been done already, and
the exercises focus on the second step: unfolding of a given measured distribution provided that
the migration matrix is known.

• Exercise 8.1: Simple case with 2 categories voluntary

The simplest situation is an experiment with N = 2, for example the number of fouls per
team in a soccer match between team A and B. Let us assume that the referee is biased and
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favors team B. Whenever the referee detects a foul committed by team B, he gives a free
kick to team A in only 70 % of the cases, but a free kick to team B in the remaining 30 %
of the cases. Vice-versa, when team A commits a foul, team B gets the free kick in 90 % of
the cases, but team A only in the remaining 10 % of the cases.

Thus, the diagonal entries of the migration matrix R are 0.9 and 0.7, and the off-diagonal
elements are 0.1 and 0.3 (think about which is the correct location of each element).

In the match there have been 22 free kicks for team A, and 24 for team B. Construct
the migration matrix R, and estimate by inversion of R how many fouls each team has
committed. You can do this on a sheet of paper, or in Python with Numpy arrays.

• Exercise 8.2: Regularization obligatory

Now we consider a counting experiment with 7 categories (bins): each bin contains a number
of observed events (e.g., particle decays, cars with different colors, classes of stars in an

astronomical survey). We start from the following true distribution ~f of 3000 events in the
7 bins:

35 218 814 1069 651 195 18

In our experiment some of the events are misclassified. For an event which truly belongs to
bin i, there is a 30 % chance each that it is measured instead in bin i− 1 or bin i+ 1 (except
if the measured bin would be outside of the possible range from 1 to 7). Consequently, the
migration matrix R has 0.3 in all elements next to the diagonal, and 0.4 in the diagonal
elements except for the corner elements which are 0.7.

First, let’s consider an ideal experiment without any uncertainties:

a) Obtain the observed distribution of events ~g. Then, unfold the observation by multi-
plication with R−1, and compare the result to the true data. For this, plot the true
distribution, the observed distribution, and the unfolded distribution.

Now we consider a more realistic case with uncertainties on the observed events (e.g., Pois-
sonian uncertainties in the case of particle decays). Thus, the number of observed events
deviates from the ideal case, and it is more difficult to reconstruct the original distribution.
In our specific case, the experiment has observed the following distribution ~gobs for the true
distribution ~f given above:

99 386 695 877 618 254 71

b) Unfold the observation by multiplication with R−1, and compare the true, observed, and
unfolded distribution by plotting them together. Which problems do you encounter?

Such unphysical oscillations in the unfolded result are typical for many unfolding techniques.
Suppressing them is a major challenge when unfolding real data. One way to achieve this
is regularization. There are various sophisticated methods for regularization (cf. lecture).
Here is a simple method which can be programmed easily in Python:

– Diagonalize the migration matrix R: Rdiag = U−1RU such that the eigenvalues λi of R
form the diagonal of Rdiag.
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– Construct the observation vector ~gdiag = U−1~gobs and multiply each component i of the

resulting vector with the corresponding component of ~λ−1, where ~λ−1 is a vector containing
the reciprocals of the eigenvalues of R.

– The regularization: Set all elements i of ~gdiag to 0, for which λi is smaller than a chosen
threshold λreg. The choice of λreg is critical and a compromise between suppressing the
unphysical oscillations, and keeping as much information as possible of the measurement.

– The unfolded result is U · ~gdiag.

c) Apply the regularization method. Use different thresholds λreg from −1 to 1. As a
cross-check: if the algorithm is implemented correctly, the result should be identical
to the one of exercise 8.2 b), provided that λreg is smaller than the smallest eigenvalue
of R. Discuss different choices for λreg: as measure for how similar the true and the
unfolded distributions are, calculate the mean quadratic deviation (average over all
bins). For which choice of λreg is the unfolded distribution most similar to the true
distribution?

Finally, we will apply an iterative method for unfolding. We start with a flat assumption
for ~f0, i.e., each element is 3000/7 in our case, since we have 7 bins and 3000 events. Then,

we fold ~f0 by multiplication with R and compare the resulting ~g0 with the observation
gobs. Depending on the discrepancy between g0 and gobs, we tune our next guess for the
true distribution ~f1 and repeat the procedure to obtain ~g1. If the tuning is reasonable, the
guessed distribution will become closer to the the true distribution with each step. However,
in the presence of uncertainties, too many iteration can lead to unreasonable results. Thus,
choosing the number of iterations is again a challenge, similar to choosing the best threshold
λreg in the regularization method.

We will apply the following unfolding algorithm to improve our guess from iteration step k
to step k + 1 (in a simplified version for symmetric response matrices):

1) ~gk+1 = R · ~fk
2) Tuning: calculate a vector ~c with weights to scale each bin i: ci = giobs/g

i
k+1. Consequently,

the weight for bin i is 1 if the observation is already reproduced by the result of step k.

3) Calculate ~fk+1: Multiply each element of ~fk with the corresponding element of the vector
R · ~c.

d) Apply the iterative method on the distribution you would observe without any ex-
perimental uncertainties. How many iterations do you need to achieve a maximum
deviation of 0.1 % per bin between the true distribution and the unfolded observation?

e) Now, apply the method on the observation with uncertainties ~gobs. Try and discuss
different choices for the number of iterations.

f) The choice of ~f0 is similar to the choice of a prior in a Bayesian analysis and influences

the result. Try different choices for ~f0 and test the influence on the result for small and
large number of iterations.

Hint:
Numpy offers several matrix operations, for example:

linalg.inv(R) returns the inverse of the migration matrix R.
lambda, U = linalg.eig(R) returns the eigenvalues and the matrix U of eigenvectors you need
to diagonalize R.


