
MoMeDa_1

May 5, 2024

1 Moderne Methoden der Datenanalyse SS2024

2 Practical Exercise 1
2.1 A Short Introduction to Jupyter Notebooks
You can find some detailed information on the jupyter notebook concept in the documentation of
the project.
Here are some basic instructions: - Each code block, a so called “cell”, can be executed by
pressing shift + enter. - You can run multiple cells by marking them and then pressing shift +
enter or via the options in the “Run” menu in the top bar. - The order of execution matters! The
order in which the cells have been executed is indicated by the integers in the brackets to the left of
the cell. For instance In [1] was executed first. This means that code at the end of the notebook
can affect the code at the beginning, if the cells at the beginning are executed after the cells at the
end. - You can change between three cell types in Jupyter Lab: “Code”, “Markdown” or “Raw”.
* The “Code” cells will be interpreted by Python. * The “Markdown” cells will be rendered with
Markdown and can be used for documentation and text, such as this cell. You can use them for
your answers and also add LaTeX formulas such as 𝑓(𝑥) = 1

𝑥 . If you double click this Markdown
cell you can see the raw code of this LaTeX equation. By pressing shift + enter the cell will be
rendered with Markdown again. * The “Raw” cells won’t be interpreted at all. - If you want to
reset your notebook, to “forget” all the defined functions, classes and variables, go to Kernel ->
Restart Kernel in the top bar. Your code and text will remain untouched when doing this. - If
you write or read files and provide only the file name, the notebook will look for the file in the
directory it is located itself. Use relative paths or absolute paths to read or write files from or to
somewhere else.
For some more information on the JupyterLab interface and some useful shortcuts you can check
out: - the JupyterLab interface documentation - an overview of some shortcuts - and another
shortcut overview
If you have any issues with the notebook or additional questions, contact your tutors or try google.

2.2 Exercise 1
To complete the exercises, follow the steps described within this notebook and fill in the blank
parts of the code.
You can make use of common Python packages such as numpy or pandas for handling of data and
matplotlib for plotting. Alternatively, you can use CERN’s ROOT to solve the exercises. Hints for
both approaches will be provided.

1

https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://www.markdownguide.org/
https://jupyterlab.readthedocs.io/en/stable/user/interface.html
https://yoursdata.net/jupyter-lab-shortcut-and-magic-functions-tips/
https://blog.ja-ke.tech/2019/01/20/jupyterlab-shortcuts.html
https://blog.ja-ke.tech/2019/01/20/jupyterlab-shortcuts.html

Some of the cells in this template will throw errors, as some code is missing! It is your
job to add the code!
You do not have to implement both the Python and the ROOT approach to the
exercises! Simply delete the cells containing the templates and hints containing the
approach you choose not to use.

2.2.1 Exercise 1.1
Write a code snippet (function, class, etc.) that - creates N Gaussian distributed random numbers
with mean m=0 and a standard deviation of sigma s=1 and - plots these numbers as a histogram.
The parameter N should be an argument of the code snippet.

Python Approach: If you want to use the Python approach, you should have a look at the
package numpy and the therein provided method numpy.random.normal in particular. This method
can create a numpy array of random numbers.
A simple way to visualize these numbers is the hist method provided by the matplotlib sub-package
pyplot.

[3]: import numpy as np
import matplotlib.pyplot as plt

[4]: def create_gaussian_histogram(N, mean=0., sigma=1.):
Create a numpy array with gaussian distributed numbers
random_numbers = np.random.normal(loc=mean, scale=sigma, size=(N))
Visualize the content of the array as histogram with the help of matplotlib.
plt.hist(random_numbers, bins=30)
plt.show()

Return the numpy array
return random_numbers

[5]: gaussian_numbers = create_gaussian_histogram(N=100000)

2

https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html
https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.hist.html

ROOT Approach: If you want to use ROOT, you should check out gRandom->Gaus(). You can
use this method to fill a ROOT TH1F histogram one by one with the random numbers.
Alternatively you can use the FillRandom method to fill the histogram directly with Gaussian
distributed numbers, e.g. my_hist.FillRandom("gaus", 1000). If you want to use a ROOT’s
gauss function with other values for mean and sigma than the default values, you have to define a
one dimensional function TF1 with the respective parameters first:
gaussian = TF1("gaussian","gaus",-3,3)
gaussian.SetParameters(1,0,1) # last parameter is sigma, second to last is the mean of the gaussian.

Plotting with ROOT in jupyter notebooks is a bit tricky, which is why we will give you some
detailed hints on how to do this. First of all, the plot will not be shown if it is created in a function.
Thus, your function should return the created TH1F object and you can then draw it on a canvas:
canvas = TCanvas("c1", "c1")

root_histogram = create_gaussian_histogram_with_root(N=1000)

root_histogram.Draw()
canvas.Modified()
canvas.Update()
canvas.Draw()

3

https://root.cern.ch/doc/master/classTRandom.html#a0e445e213eae1343b3d22086ecb87314
https://root.cern.ch/doc/master/classTH1.html#a77e71290a82517d317ea8d05e96b6c4a
https://root.cern.ch/doc/master/classTH1F.html
https://root.cern.ch/doc/master/classTH1.html#a1e9d6258ae798a0eb52aef58a72758a5
https://root.cern.ch/doc/master/classTF1.html

A second problem arises if you try to run the code a second time, because the created ROOT
objects are still present in the notebook and jupyter will not be able to create them again unless
you delete them first, e.g. with a code snippet such as:
try:

del canvas
except NameError:

pass

This will delete the ROOT object canvas if it was already created. If it has not been created, yet,
the try-except approach will catch the NameError that will be thrown, as the object canvas does
not exist, yet. In this case nothing will be done (look up what the python build-in keyword pass
does). You can also restart the jupyter kernel to achieve this, but this is rather inconvenient.

[1]: from ROOT import TH1F, gRandom, TFile, TCanvas, TF1, gROOT
from IPython.display import display, HTML

Welcome to JupyROOT 6.30/04

[9]: def create_gaussian_histogram_with_root(N, mean=0., sigma=1.):
Create an histogram with 20 bins from -3 to 3
root_histogram = TH1F("myHisto", "Histogram containing random numbers", 20, -

3, 3)

Initialize the random numbers generator
gRandom.SetSeed(1234)
gaussian = TF1("gaussian","gaus",-3,3)
gaussian.SetParameters(N,mean,sigma)

Generate N random numbers following a gaussian distribution and fill the␣
↪histogram with them

root_histogram.Fill(gaussian.GetBinContent(bin))

return root_histogram

[10]: try:
del c1

except NameError:
pass

try:
del root_histogram

except NameError:
pass

c1 = TCanvas("c1", "c1")

root_histogram = create_gaussian_histogram_with_root(N=100000)

4

root_histogram.Draw()
c1.Modified()
c1.Update()
c1.Draw()

AttributeError Traceback (most recent call last)
Cell In[10], line 13

9 pass
11 c1 = TCanvas("c1", "c1")

---> 13 root_histogram = create_gaussian_histogram_with_root(N=100000)
15 root_histogram.Draw()
16 c1.Modified()

Cell In[9], line 11, in create_gaussian_histogram_with_root(N, mean, sigma)
8 gaussian.SetParameters(N,mean,sigma)

10 # Generate N random numbers following a gaussian distribution and fill␣
↪the histogram with them

---> 11 root_histogram.Fill(gaussian.GetBinContent(bin))
13 return root_histogram

AttributeError: 'TF1' object has no attribute 'GetBinContent'

Warning in <TROOT::Append>: Replacing existing TH1: myHisto (Potential memory
leak).

2.2.2 Exercise 1.2
Extend your code from Exercise 1.1 so that the histogram data is written to a file.
This step is a bit more tricky if you are following the python approach, so please take a look at the
hints. If you are using ROOT, you can write your TH1F histogram directly to a ROOT file.

Python Approach: Numpy does not provide a dedicated class for histograms as ROOT does.
In Exercise 1.1 we created an array containing the random numbers and visualized these numbers
as histogram.
You can use numpy’s numpy.histogram method to interpret the data as histogram. However, this
method will not create or return a “histogram” object, it will simply give you the bin counts and
the bin edges of the histogram in form of two numpy arrays. You will have to decide yourself how
to handle these return values.
Option 1) Store the data, not the histogram.
You can use numpy.save or pandas.to_hdf (you have to convert your data into the pan-
das.DataFrame or the pandas.Series format for this) to save the data you created directly. You
can also write the data to a csv file or any other format you might be familiar with. Using this

5

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html
https://numpy.org/doc/stable/reference/generated/numpy.save.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_hdf.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

option, you have to recreate the histogram again, because you stored the raw data and not the
histogram interpretation. This has the advantage of being able to reinterpret the data.
Option 2) Define a histogram object that can be stored to a file.
Storing the data in form of a histogram has two advantages: Firstly, it is clear how the data should
be interpreted, and secondly, when handling large amounts of data, the histogram is a storage
efficient way to save the data. Instead of saving each individual data point, only the bin count and
the bin edges are stored. This means, if you consider a histogram with n bins, 2*n+1 (1 bin count
per bin -> n bin counts; and n+1 bin edge positions) numbers have to be stored. Keep in mind,
however, that the amount of information stored in the histogram is also reduced compared to the
full raw data set, as you only store one interpretation of the data.
You can also use Python’s pickle to directly dump the tuple of bin counts and bin edges returned
by the numpy histogram method to store these python objects in a pickle file. See also the example
given on the python website which shows how a python dictionary is written and loaded again.
The downside of these methods is, that you have to put a bit more effort into defining the object
that is stored.
You can try to implement both options, but focus on the Option 2).

[9]: import pickle

np.save("data", gaussian_numbers)

with open("hist.pickle", "wb") as outfile:
pickle.dump(np.histogram(gaussian_numbers), outfile)

Save the data...

Have a look at the custom histogram class HistogramClass below and try to understand
how it works and which features it provides!
You can use this class or try your own method.

[10]: # Define a histogram object
import pandas as pd

class HistogramClass:
def __init__(self, data, bins=20, bin_range=None):

if isinstance(data, tuple) and all(isinstance(e, pd.Series) for e in␣
↪data):

self._bins = len(data[0].index)
self._bin_counts = data[0].values
self._bin_edges = data[1].values
self._mean = data[2].values[0]
self._std = data[2].values[1]
self._entries = data[2].values[2]
self._underflow = data[2].values[3]
self._overflow = data[2].values[4]

elif isinstance(data, np.ndarray) and isinstance(bins, int):

6

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html#examples
https://docs.python.org/3/library/pickle.html#examples

self._bins = bins
bin_counts, bin_edges = np.histogram(data, bins=bins, range=bin_range)

self._bin_counts = bin_counts
self._bin_edges = bin_edges

if bin_range is not None:
bounds = (data >= bin_range[0]) & (data <= bin_range[1])

else:
bounds = np.full(shape=data.shape, fill_value=True)

self._mean = np.mean(data[bounds])
self._std = np.std(data[bounds])
self._entries = len(data[bounds])

self._underflow = 0 if bin_range is None else len(data[data <␣
↪bin_range[0]])

self._overflow = 0 if bin_range is None else len(data[data >␣
↪bin_range[1]])

else:
raise ValueError("The parameter 'data' must be a 1 dimensional numpy␣

↪array and the parameter 'bins' an integer!")

@property
def bins(self):

return self._bins

@property
def bin_edges(self):

return self._bin_edges

@property
def bin_mids(self):

return (self._bin_edges[1:] + self._bin_edges[:-1]) / 2.

@property
def bin_counts(self):

return self._bin_counts

@property
def mean(self):

return self._mean

@property
def std(self):

return self._std

@property
def entries(self):

7

return self._entries

@property
def underflow(self):

return self._underflow

@property
def overflow(self):

return self._overflow

def draw(self, *args, **kwargs):
plt.hist(x=self.bin_mids, bins=self.bin_edges, weights=self.bin_counts,␣

↪*args, **kwargs)

def save(self, file_path):
with pd.HDFStore(path=file_path, mode="w") as hdf5store:

hdf5store.append(key="bin_edges", value=pd.Series(self.bin_edges))
hdf5store.append(key="bin_counts", value=pd.Series(self.bin_counts))
meta_info = pd.Series([self.mean, self.std, self.entries, self.

↪underflow, self.overflow])
hdf5store.append(key="meta_info", value=meta_info)

@classmethod
def load(cls, file_path):

with pd.HDFStore(path=file_path, mode="r") as hdf5store:
bin_edges = hdf5store.get(key="bin_edges")
bin_counts = hdf5store.get(key="bin_counts")
meta_info = hdf5store.get(key="meta_info")

assert len(bin_counts.index) + 1 == len(bin_edges.index)

instance = cls(data=(bin_counts, bin_edges, meta_info))
return instance

[31]: hist = HistogramClass(gaussian_numbers, bins=20)
hist.draw()
hist.save("hist.hist")
TODO: Initialize a HistogramClass filled with your data
TODO: Draw and save the histogram.

8

ROOT Approach: With ROOT you can just store the TH1F object to a ROOT file using the
build-in methods.

[32]: root_file = TFile("root_histogram_with_gaussian_random_numbers.root",␣
↪"recreate")

TODO: Write the ROOT histogram to the root_file

2.2.3 Exercise 1.3
Load the histogram you wrote to disk in Exercise 1.2 again and plot it.

Python Approach: Using the interface of the HistogramClass this is now easy. You can initial-
ize a HistogramClass instance from a given file by using the class method HistogramClass.load.

[33]: hist = HistogramClass.load('hist.hist')
hist.draw()

9

ROOT Approach: Create the TFile object for the file you saved earlier and get your ROOT
TH1F histogram from it. Use a canvas as described in Exercise 1.1 to draw the loaded histogram.

[14]: # TODO: Load and your ROOT histogram again and draw it to a new canvas

Compare the sizes of the different files, if you made the effort to implement more
than one approach to store a histogram and/or the raw data You can use for instance
os.path.getsize or !ls -lh to do this. Evaluate the file sizes for different amounts of gaussian
random numbers N.

[15]: import os

TODO: Try any of the methods to check the file sizes of your histograms or raw␣
↪data,

if you saved them in different formats

2.2.4 Exercise 1.4
Fit a Gaussian function to the histogram(s) you created in the previous exercises.

Python Approach: To perform a fit to your numpy histogram, you can use the fitting tools
provided in the scipy.optimize package, for instance the curve_fit method. You can find an

10

https://docs.python.org/3/library/os.path.html#os.path.getsize
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

example on how to use it here.
You will have to define the function describing the gaussian distribution you want to fit to the
histogram. To plot this function you can use the matplotlib.pyplot.plot plot function.

[34]: from scipy.optimize import curve_fit
import scipy.stats as stats

TODO: Define your Gaussian fit function
#stats.norm.pdf(x, mu, sigma)

TODO: Implement the fit
centers = (hist.bin_edges[:-1] + hist.bin_edges[1:])/2
binwidth = hist.bin_edges[1] - hist.bin_edges[0]
(mu, sigma), ((Dmu,_),(_,Dsigma)) = curve_fit(stats.norm.pdf, centers, hist.

↪bin_counts/np.sum(hist.bin_counts)/binwidth, p0=(0,1))

Plot the histogram and the fitted function.
hist.draw(density=True)
x = np.linspace(np.min(hist.bin_edges), np.max(hist.bin_edges), 200)
plt.plot(x, stats.norm.pdf(x, mu, sigma))
plt.show()

11

https://riptutorial.com/scipy/example/31081/fitting-a-function-to-data-from-a-histogram
https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html

ROOT Approach: Define a ROOT TF1 gaus function to be fitted to the ROOT histogram. To
perform the fit, use the predefined Fit method of the ROOT histogram.
Draw the histogram again onto a new canvas using the same approach as above to visualize the
result of the fit.

[17]: # Define a gaussian function
TODO: Define the TF1 gaussian function to be fitted to the histogram

Fit the histogram with this function
TODO: Perform the fit of the gaussian to the ROOT root_histogram

c3 = TCanvas("c3", "c3")
TODO: Draw the histogram to the canvas c3 to show the fitted function and the␣

↪histogram itself

2.2.5 Exercise 1.5
Make the plot nicer and save it as vector graphic, e.g. eps or pdf. The latter can be displayed
within jupyter lab by clicking on it in your file browser on the left.
The plot should: - use blue filled boxes for the histogram with horizontal error bars to indicate
the bin width - show the fitted gaussian function as red line with a thickness/width of 3 - label
the x and y axes with “x” and “Entries”, respectively - display the mean and standard deviation
of the histogram in the legend - display the fitted parameters with uncertainties as well as the fit
probability in the legend.

Python Approach Matplotlib provides a lot of information about the available plot style options
in the documentation of the respective plot functions. You will also find a lot of matplotlib examples
when googling for certain key words. To get change the style of your plot more drastically, you
might have to change the plot function you are using. Have a look at matplotlib.pyplot.errorbar
instead of matplotlib.pyplot.hist, for instance.
Obtaining the fit probability in python is not as simple as with ROOT, so you can skip it.

[35]: fig = plt.figure(figsize=(10,8))
from scipy.optimize import curve_fit
import scipy.stats as stats

TODO: Define your Gaussian fit function
#stats.norm.pdf(x, mu, sigma)
plt.errorbar(hist.bin_mids,

hist.bin_counts,
color="blue",
fmt=".",
xerr=binwidth/2,
capsize=2,
label=f"μ={hist.mean:.4f}, σ={hist.std:.3f}")

#hist.draw(rwidth=0.5)

12

https://root.cern.ch/doc/master/classTH1.html#a63eb028df86bc86c8e20c989eb23fb2a

x = np.linspace(np.min(hist.bin_edges), np.max(hist.bin_edges), 200)
plt.plot(x,

stats.norm.pdf(x, 0, 1)*np.sum(hist.bin_counts)*binwidth,
linewidth=3,
color="red",
label=f"μ={mu:.4f}\pm{np.sqrt(Dmu):.4f}, σ={sigma:.

↪4f}\pm{np.sqrt(Dsigma):.4f}")

plt.legend()

plt.ylabel("Entries")
plt.xlabel("x")
plt.savefig("plt.pdf", format="pdf", bbox_inches="tight")
plt.show()

[19]: from IPython.display import IFrame
IFrame("plt.pdf", width=800, height=600)

13

[19]: <IPython.lib.display.IFrame at 0x7efc91a147c0>

ROOT Approach To improve the histogram plot, you can for instance have a look at the options
described in the overview of ROOT’s TStyle Class

[20]: from ROOT import TH1F, TFile, TF1, gStyle

TODO: Change the properties of gStyle, the ROOT histogram and the gaussian fit␣
↪function

to improve the style of the plot

c4 = TCanvas("c4", "c4")

TODO: Draw the histogram to the canvas c4 and save it as vector graphic (pdf␣
↪files can be viewed with JupyterLab)

2.2.6 Exercise 1.6 (Obligatory)
Fill a histogram with the quotient 𝑓(𝑥1, 𝑥2) = 𝑥1/𝑥2 of two Gaussian distributed random numbers
𝑥1 and 𝑥2 with the mean 𝑚1 = 2 and standard deviation 𝜎1 = 1.5 and 𝑚2 = 3, 𝜎2 = 2.2,
respectively.
Assuming standard error propagation without correlations

𝜎2
𝑓 = ∑

𝑖
(𝜕𝑓
𝜕𝑥𝑖

)
2
𝜎2
𝑖

calculate the propagated uncertainty for this function 𝑓(𝑥1, 𝑥2) (using the mean values of 𝑥1 and
𝑥2).
How does the result compare with the properties of the created histogram?

2.2.7 Theoretical Calculation

𝜎2
𝑓 = (𝜕𝑓

𝜕𝑥1
)

2
𝜎2
1+(𝜕𝑓

𝜕𝑥2
)

2
𝜎2
2 = (1

𝑚2
)

2
𝜎2
1+(−𝑚1

𝑚2
2
)

2
𝜎2
2 = (1.5

3)
2
+(2 ⋅ 2.2

32)
2
= 3961/8100 ≈ 0.4890

Python Approach Use the methods you learned in the previous exercises to create three numpy
arrays containing the random numbers with the properties of 𝑥1, 𝑥2 and 𝑓(𝑥1, 𝑥2) where the last
is simply the quotient of the first two arrays. Plot and evaluate the histograms of these random
numbers.

[36]: def create_histograms(N, mean1=2., sigma1=1.5, mean2=3., sigma2=2.2, bins=100):
Create numpy arrays with gaussian distributed numbers for x_1 and x_2
TODO: Create the arrays gauss1 and gauss2 with the random numbers
gauss1 = np.random.normal(loc=mean1, scale=sigma1, size=(N))
gauss2 = np.random.normal(loc=mean2, scale=sigma2, size=(N))

Calculate the array containing the quotient of x_1 and x_2

14

https://root.cern.ch/doc/master/classTStyle.html

f = gauss1/gauss2

fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True)
print
ax[0].hist(gauss1, bins=bins)
ax[1].hist(gauss2, bins=bins)
ax[2].hist(f, bins=bins, range=(-5,10))

plt.show()
Return the numpy arrays
return gauss1, gauss2, f

[37]: x1, x2, quotient = create_histograms(N=1000000)

[23]: # TODO: Create three HistogramClass instances from the three arrays you created.
Use 100 bins and a range from -10 to 10.
hist1 = HistogramClass(x1, bins=100, bin_range=(-10,10))
hist1.draw()
plt.show()
hist2 = HistogramClass(x2, bins=100, bin_range=(-10,10))
hist2.draw()
plt.show()

15

histf = HistogramClass(quotient, bins=100, bin_range=(-10,10))
histf.draw()
plt.show()

print(f"hist1: mean={hist1.mean:.4f}(Theo: 2), std={hist1.std:.4f}(Theo: 1.5)")
print(f"hist1: mean={hist2.mean:.4f}(Theo: 3), std={hist2.std:.4f}(Theo: 2.2)")
print(f"hist1: mean={histf.mean:.4f}(Theo: 0.6666), std={histf.std:.4f}(Theo: 0.

↪4890)")

TODO: Plot the histograms and determine their mean and standard deviation to be
able to compare them with the original values and the theoretical␣

↪calculation.

16

17

hist1: mean=2.0021(Theo: 2), std=1.4986(Theo: 1.5)
hist1: mean=2.9957(Theo: 3), std=2.1904(Theo: 2.2)
hist1: mean=0.6628(Theo: 0.6666), std=1.6497(Theo: 0.4890)

Root Approach Similar to the methods used in Exercise 1.1, use the ROOT method
gRandom.Gaus to generate the random numbers 𝑥1 and 𝑥2 and fill TH1F histograms with them.
Fill also a histogram with the quotient f = x_1/x_2. Draw and evaluate the three histograms with
the methods you learned in the previous exercises.

[24]: def create_root_histograms(N, bins=100, bin_range=(-10., 10.)):
Create histogram for the distribution of x, y and f(x,y) = x/y with 100␣

↪bins from -10 to 10
min_bin, max_bin = bin_range
Initialize three TH1F ROOT histograms for x_1, x_2 and f

Initialize the random numbers generator
gRandom.SetSeed()

Generate 2 x N random numbers following a gaussian distribution
one with mean = 2 and sigma = 1.5 and
one with mean = 3 and sigma = 2.2 and

for i in range(N):
pass # TODO: Fill the three histograms with the TH1F.Fill method

TODO: Return the three ROOT histograms

[25]: x1_hist, x2_hist, f_hist = create_root_histograms(N=100000)

Draw the three histograms onto the canvases c5, c6 and c7

c5 = TCanvas("c5", "c5")

c6 = TCanvas("c6", "c6")

c7 = TCanvas("c7", "c7")

TypeError Traceback (most recent call last)
Cell In[25], line 1
----> 1 x1_hist, x2_hist, f_hist = create_root_histograms(N=100000)

3 # Draw the three histograms onto the canvases c5, c6 and c7
5 c5 = TCanvas("c5", "c5")

18

TypeError: cannot unpack non-iterable NoneType object

Write down what you observe when you compare the result of the theoretical calcu-
lation with what you obtained using the random numbers.
Die Standardabweichung für den Quotienten der gaussverteilten Zufallszahlen entspricht nicht dem
nach gausscher Fehlerfortpflanzung errechnetem Wert. Dies liegt daran, dass die gaussche Fehler-
fortpflanzung in dieser Art nur für lineare berechnungen funktioniert. Da hier durch eine der größen
Geteilt wird liefert die Fehlerfortpflanzung falsche ergebnisse.

[]:

19

