MoMeDa,_ 3

June 6, 2024

1 Moderne Methoden der Datenanalyse SS2024

2 Practical Exercise 3

2.1 Exercise 3: Maximum Likelihood and x? Methods

Fitting parametrized functions to measured data is daily business in research. By this, models
can be tested against experiments. Moreover, parameters of the models and their uncertainties
can be determined. The physicist often refers to this process as “fitting” — in general it is called
“parameter estimation”.

2.2 Exercise 3.1: Decay (obligatory)

Generate uniformly distributed random numbers. Then apply the transformation method to gen-
erate random numbers following an exponential distribution exp(—z/7) for £ > 0. These values
can be interpreted as measurements of decay times ¢ (e.g., of radioactive particles) corresponding
to a lifetime 7, which have the following distribution:

flt,7) = % - exp (—;)

a) Show analytically that the maximum likelihood estimator for 7 is the mean 7 of the sample (7
= mean of all measured decay times t,).

N N Ny
[Ltr) = [2 exp(—2) = 5 exp(— 2= 0
i=1 i=1
N
~0=9 <T§V exp(- @)) @)

ZZ
= (-N—gm N+1 TN+2 Zt exp(— ' Z)) (3)
1 1
= NTN+1 = INt2 Zti)
i=1

| XN
:N; (5)

b) Generate 1000 samples with 7=1, each with N = 10 values of t. Evaluate the mean 7 for each
sample and create a histogram of the resulting means. Compare the mean of 7 with the true value
T=1.

[2]: # Similar to the previous ezercises, you can use ROOT or the pythonic approach. ..

Pure python:
import numpy as np
import matplotlib.pyplot as plt

from scipy import optimize, stats

ROOT:
#from ROOT import gRandom, TCanvas, TH1F, TF1

Define the function to generate the random numbers first. Use the methods introduced on the
previous exercise sheets to get uniformly distributed numbers and then transfrom them as required.

[3]: | def generate_data(N: int, tau: float = 1.0) -> np.ndarray:
Generate random numbers according to exp(-z/tau) for x>0 using the,
wtransformation method

FYI: The type hints in the function signature above tell you that

- the function expects an integer value for the argument N~

- has a second parameter “tau” for the lifetime, which has a default,
<value of 1.0 as required by the exzercise

- and will return a numpy array.

rg = np.random.random(N)
r = - np.log(rg+tau)

return r

[4]: tau = 1
for N in [l1le2,1e3,1e4,1e5]:
print (int ((np.log(N)/np.log(2))**1.5))
plt.hist(generate_data(int(N),tau), density=True, bins=int ((np.log(N)/np.
~log(2))**1.5))
x = np.linspace(0,10)
plt.plot(x, np.exp(-x/tau)/tau)
plt.show()

17

31

1.0+

10

48

1.0+

10

67

1.0+

10

1.0+

2.2.1 Hints for pure Python approach:

You can use matplotlib’s matplotlib.pyplot.hist (= plt.hist) function to plot a histogram of
given data. You can use for instance 100 bins.

2.2.2 Hints for ROOT approach:
Use ROOT’s builtin TH1F histogram class, as introduced in exercise 1.

[5]: # TODO: Add code here to gemerate the 1000 data samples, create a histogram of,
~the mean values of the data and draw <t

def create_histo_and_calculate_bias(N):
tauhat = np.array([np.average(generate_data(N,tau)) for _ in range(1000)])
plt.hist(tauhat, bins=30)
plt.axvline(x=np.average(tauhat),color="red", label=f"avg = {np.
-average (tauhat) : .3f}")
plt.legend()
plt.show()

create_histo_and_calculate_bias(10)

https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.hist.html

[6]:

100 — avg = 1.010

c) Assume that the probability density function (p.d.f.) has been parametrized in terms of A = 1/7,
which means:

ft,A)=A-exp(=A-t)

Create a histogram of the estimations A Compare the mean value of) with the true value A=1,
and determine numerically the bias for NV = 5,10, 100.

Calculate the bias also for the experiments made in the exercise part b) and compare the results
of the two approaches b) and c).

Use a similar approach as above to obtain the histograms using the alternative function definition.

TODO: Add code here to gemerate the 1000 data samples, create a histogram ofy
~the mean values of the data and draw <t

def create_lambda_histo_and_calculate_bias(N):
lamdahat = [1/np.mean(generate_data(N)) for _ in range(1000)]
plt.hist(lamdahat, bins=30)
plt.axvline(x=np.average(lamdahat),color="red", label=f"avg = {np.
~average (lamdahat) : .3f}")
plt.legend()
plt.show()

print(f"Bias = {np.average(lamdahat)-1}")

for N in [5,10,100]:
create_lambda _histo_and calculate bias(N)

—— avg = 1.234
160 -

140 ~

120 ~

100 ~

80 4

60

Bias = 0.23440257749638338

—— avg = 1.104
120 -

100 ~

80

60

20 4

2.5 3.0

Bias = 0.10447815535638649

[7]:

—— avg = 1.014

Bias = 0.014135368346126942

d) Compare the results of the maximum likelihood method and the x? method: Make three
different histograms with 1000 bins from 0 to 10 containing N generated decay times t (try
N = 10,1000,100000). Fit the function f(¢,7) to each histogram using the x? method and the
binned likelihood method. Compare the fitted parameters and the x? values of both methods and
discuss the results.

The following function template contains some hints for the ROOT approach. If you are us-
ing the pure python approach, you can get replace function body with respectively. Use mat-
plotlib.pyplot.hist (= plt.hist) and scipy.optimize as in the previous exercises instead.

#from ROOT import kRed, kGreen # Use this if you want get some color into your,
<ROOT plots..

from scipy.optimize import minimize
from scipy.optimize import curve_fit

def make_histogram_and_fit(N):
t = generate_data(N)
n, binedges = np.histogram(t, bins=1000, range=(0,10), density=True)

def v(lower, upper, tau):

10

https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/3.5.0/api/_as_gen/matplotlib.pyplot.hist.html

for

nll:
x"2:

return -(np.exp(-upper/tau)-np.exp(-lower/tau))

def loglikelihood(tau):
return -np.sum(n*np.log(v(binedges[:-1], binedges[1:], tau)))

minimized = minimize(loglikelihood, (3,), method="Nelder-Mead")
taunll = minimized.x[0]
print(f"nll: {taunll}")

def density(t, tau):
return 1/tauw*np.exp(-t/tau)

def x2(tau):
return np.sum((density((binedges[:-1]+binedges[1:]1)/2, tau) - n)**2)

#tauz2 = curve_fit(density, (binedges[:-1]+binedges[1:]1)/2, n)[0][0]
minimizedx2 = minimize(x2, (3,), method="Nelder-Mead")

taux2 = minimizedx2.x[0]

print (£"x"2: {taux2}")

tlin = np.linspace(0,10,200)

plt.hist(t,bins=1000, range=(0,10), density=True)
plt.plot(tlin, 1/taunll#*np.exp(-tlin/taunll), label="nll")
plt.plot(tlin, 1/taux2*np.exp(-tlin/taux2), label="X"2")
plt.legend()

plt.show()

N in [10,1000,100000]:
make_histogram_and_fit(N)

0.7319824218749946
0.5790527343749943

/tmp/ipykernel_8136/2111959965.py:14: RuntimeWarning: invalid value encountered
in log

return -np.sum(n*np.log(v(binedges([:-1], binedges([1:], tau)))

11

20.0 1 nll

— X"2
17.5 4
15.0 +
12.5
10.0 +
7.5 4

5.0 +

2.5

0.0

nll: 1.0174804687499952
x"2: 1.1307128906249955

12

1.2 A — nll
— X2

nll: 0.9972656249999954
x"2: 0.9981445312499952

13

1.0 — nll
—_— X2

3 Exercise 3.2: MINUIT (voluntary)

The goal of this exercise is to make you familiar with the minimizer package MINUIT which was
developed at CERN in the 70s in FORTRAN. This well-tested toolbox provides different minimization
algorithms, the most famous one being MIGRAD. The package is particularly liked by physicists due
to it’s sophisticated methods for the parameter uncertainty estimation.

For the purpose of this exercise, it is suggested to use the Python frontend to MINUIT, which is
available in the form of the package iminuit.

Take the function f(¢,7) and the generated data set from the previous Exercise 3.1, and perform
an unbinned log likelihood fit for N = 10, 1000, 100000 entries.

Plot a histogram from 0 to 10 with the N entries and the fitted function normalized to the number
of entries. Display the value of the negative logarithmic likelihood as a function of the fit parameter
7 from 0.5 to 5. How is this plot related to the uncertainty of the fitted parameter?

The iminuit Python package provides predefined cost function classes which also cover the un-
binned case we are interested in. However, to learn how to define your own cost function, you
should use the scipy-like interface which allows you to provide your own cost function in form of
the argument fun. You can use either of the two approaches and take a look at the output that
MINUIT provides after the cost function is minimized.

Please note, that the minimizers provided in scipy.optimize are also capable of performing the

14

https://iminuit.readthedocs.io/en/stable/index.html
https://iminuit.readthedocs.io/en/stable/notebooks/cost_functions.html#Unbinned-fit
https://iminuit.readthedocs.io/en/stable/notebooks/cost_functions.html#Unbinned-fit
https://iminuit.readthedocs.io/en/stable/reference.html#module-iminuit.minimize
https://docs.scipy.org/doc/scipy/reference/optimize.html

[11]:

[12]:

[51]:

[52]:

minimization task. However, the MINUIT package has proven itself in particle physics for decades
and provides certain functionality which is not built into the scipy optimizers by default (e.g. the
handling of uncertainties).

Hint: Make sure, that you are using a current version of iminuit, e.g. 2.11.2! Check this with the
command in the next cell:

lpip list | grep iminuit

iminuit 2.25.2

For a predefined cost function use
from iminuit import cost, Minuit

or use the following, %f you want to define your own cost function
from iminuit.minimize import minimize as iminuit_minimize

Definition of the fit function

def fit_func(x, tau):
TODO
return ...

TODO: Generate the data as in the previous exercises, plot the histograms and,
~fit the fit function to the data.

Draw also the function with the estimated tau value obtained with the fit.

Do this for N = 10, 1000, 100000

Hint: Check out the tutorials / exampes available in the iminuit or scipy.optimize documentation,
depending on which method you choose.

15

https://iminuit.readthedocs.io/en/stable/
https://docs.scipy.org/doc/scipy/reference/optimize.html

