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Exercise 3: Maximum Likelihood and χ2 Methods

Fitting parametrized functions to measured data is daily business in research. By this, models can
be tested against experimental data. Moreover, parameters of the models and their uncertainties
can be determined. The physicist often refers to this process as “fitting” — in general it is called
“parameter estimation”.

• Exercise 3.1: Decay obligatory

Generate uniformly distributed random numbers. Then apply the transformation method to
generate random numbers following an exponential distribution exp(−x/τ) for x > 0. These
values can be interpreted as measurements of decay times t (e.g., of radioactive particles)
corresponding to a lifetime τ , which have the following distribution:

f(t, τ) =
1

τ
· exp

(
− t

τ

)
a) Show analytically that the maximum likelihood estimator for τ is the mean τ̂ of the

sample (τ̂ = mean of all measured decay times ti).

b) Generate 1000 samples with τ=1, each with N = 10 values of t. Evaluate the mean τ̂
for each sample and create a histogram of the resulting means. Compare the mean of
τ̂ with the true value τ=1.

c) Assume that the probability density function (p.d.f.) has been parametrized in terms
of λ = 1/τ , which means:

f(t, λ) = λ · exp (−λ · t)

Create a histogram of the estimations λ̂. Compare the mean value of λ̂ with the true
value λ=1, and determine the bias numerically for N = 5, 10, 100. Calculate the bias
also for the experiments made in the exercise part b) and compare the results of the
two approaches b) and c).

d) Now fits will be performed to estimate the parameter τ from binned samples of random
variables distributed according to f(t, τ). Compare the results for the estimate of τ
obtained with

• a fit based on the maximum likelihood method and
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• a fit using the χ2 method (= least squares method).

Take a look at the Appendix of this exercise sheet for the necessary formulas to define
the respective cost functions for these binned fits. Make three different histograms with
1000 bins from 0 to 10 containing N generated decay times t (try N = 10, 1000, 100000).
Fit the function f(t, τ) to each histogram using the χ2 method and the binned likelihood
method. Compare the fitted parameters and the χ2 values of both methods and discuss
the results.

• Exercise 3.2: MINUIT voluntary

The goal of this exercise is to make you familiar with the minimizer package MINUIT which
was developed at CERN in the 70s in FORTRAN. This well-tested toolbox provides different
minimization algorithms, the most famous one being MIGRAD. The package is particularly
liked by physicists due to it’s sophisticated methods for the parameter uncertainty estima-
tion.

For the purpose of this exercise, it is suggested to use the Python frontend to MINUIT, which
is available in the form of the package iminuit.

Take the function f(t, τ) and the generated data set from the previous Exercise 3.1, and
perform an unbinned log likelihood fit for N = 10, 1000, 100000 entries.

Plot a histogram from 0 to 10 with the N entries and the fitted function normalized to the
number of entries. Display the value of the negative logarithmic likelihood as a function of
the fit parameter τ from 0.5 to 5. How is this plot related to the uncertainty of the fitted
parameter?

The iminuit Python package provides predefined cost function classes which also cover the
unbinned case we are interested in. However, to learn how to define your own cost function,
you should use the scipy-like interface which allows you to provide your own cost function
in form of the argument fun. You can use either of the two approaches and take a look at
the output that MINUIT provides after the cost function is minimized.

Appendix: Formulas

χ2-function:

χ2(a) =
m∑
i=1

(yi − λ(xi; a))2

σ2
i

with m the number of bins or points, (xi, yi) the measurement points or, respectively, xi the
position of the i-th bin and yi the value of the entry, λ(xi; a) the fit function with parameter a,
and σi the Gaussian uncertainty (standard deviation) of yi (in case of a binned distribution this
corresponds to the Poisson uncertainty).

General unbinned likelihood:

https://iminuit.readthedocs.io/en/stable/index.html
https://iminuit.readthedocs.io/en/stable/notebooks/cost_functions.html#Unbinned-fit
https://iminuit.readthedocs.io/en/stable/reference.html#module-iminuit.minimize
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L(a) =
n∏

i=1

f(xi; a)

with n the size of the sample, xi the measurement values, and f(xi; a) a probability density
function with parameter a.

Binned likelihood for the case of a Poisson distribution:

L(a) =
m∏
i=1

p(ni; ν)

with m the number of bins, discrete values ni (number of events in the i-th bin), and p(ni; ν) the
Poisson function with parameter ν, which is:

p(ni; ν) =
νni

ni!
exp(−ν)


