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Exercise 5.1: Parameterization of Data

• Exercise 5.1.1: obligatory

If the underlying probability distribution function (PDF) of a dataset is unknown, empirical
fit functions have to be employed. The most common empirical fit functions are n-th order
polynomials with constant coefficients pk to be determined by the fit:

Pn(x) =
n∑

k=0

pk x
k.

The fit results can usually be “stabilized” by using orthogonal polynomials

Ln(x) =
n∑

k=0

pk lk(x),

where lk(x) are Legendre polynomials, which can be defined recursively by

l0(x) = 1; l1(x) = x;

(k + 1) lk+1(x) = (2k + 1)x lk(x) − k lk−1(x)

The Legendre polynomials fulfill the orthogonality relation

1∫
−1

dx lm(x) ln(x) =
2

2n− 1
δmn,

where δmn denotes the Kronecker delta.

Fit the data points given by the following pairs of x and y values assuming a constant
uncertainty of σy = 0.5 for y, and no uncertainty for x:

x = { -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,

0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 }

y = { 5.0935, 2.1777, 0.2089, -2.3949, -2.4457, -3.0430, -2.2731,

-2.0706, -1.6231, -2.5605, -0.7703, -0.3055, 1.6817, 1.8728,

3.6586, 3.2353, 4.2520, 5.2550, 3.8766, 4.2890 }
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a) Use the polynomials P2(x), P3(x), . . . , P7(x) and define them as fit functions.

b) Use the Legendre polynomials L2(x), L3(x), . . . , L7(x) and define them as fit functions.

Plot the data and the fitted curves for all fits. In total 12 fits have to be performed.
Compare the resulting values for pk and their correlation matrices (to be obtained most
conveniently via the GetCorrelationMatrix() methodof the Root class TFitResult or via
the scipy.optimize.curve fit() function).

In which sense is the fit using orthogonal polynomials “more stable”? Discuss which order
n you would choose for the polynomial fit function.

Hint: When using Root to solve this exercise, a convenient framework for fitting and vi-
sualisation of problems like this one is included in the Root class TGraphErrors and its
methods.

• Exercise 5.1.2: obligatory

In an accelerator experiment, the following data are numbers of events measured in 60 energy
intervals equally distributed between 0 and 3 GeV:

6 1 10 12 6 13 23 22 15 21 23 26 36 25 27 35 40 44 66 81
75 57 48 45 46 41 35 36 53 32 40 37 38 31 36 44 42 37 32 32
43 44 35 33 33 39 29 41 32 44 26 39 29 35 32 21 21 15 25 15

The data shows a signal resonance visible on top of a background sample. For the un-
certainties of all data points we assume the statistical uncertainty according to a Poisson
distribution.

The goal of this exercise is to extract information on the signal by parameterizing both signal
and background. The information we are interested in are the width of the signal (which is
related to the lifetime) and the number of signal events. Let us assume that the background
can be parametrized as a polynomial of second order in the energy (i.e., a function with 3
parameters), and the signal as a Lorentz function (also 3 parameters) given by

L(x;Anorm, µ,Γ) =
Anorm

π

Γ/2

(x− µ)2 + (Γ/2)2

There are two possible methods to extract the signal:

a) Fit the data with a function with 6 parameters composed of the sum of the signal
function plus the background function.

b) Define two intervals, left and right of the signal peak, to fit the background function.
Then, fit the signal function to the data in the signal region after subtracting the fitted
background function.

There are (at least) two ways how to exclude certain data points for the fit. Either you
can define new arrays for the fit which contain only a subset of the original data points,
or you can define your own fit function which excludes certain intervals. For a Root
example how to do this (not in Python, but in C) see here: https://root.cern/doc/
master/fitExclude_8C.html

Hint: Define the interval as a variable in the beginning and choose a reasonable value.
You can see your results in part (a) as a guide.

https://root.cern/doc/master/fitExclude_8C.html
https://root.cern/doc/master/fitExclude_8C.html
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Plot the fitted functions on top of the data. Determine the width of the Lorentz peak and
the number of signal events and their statistical uncertainties, and compare the results of
both methods.

Exercise 5.2:

Minimization via Simulated Annealing obligatory

Data analysis often requires to find the optimal solution, e.g., the minimum of a function in a
multi-dimensional space. As an example we use the following two-dimensional function which has
several local minima, but just one global minimum:

f(x, y) = (x2 + y − a)2 + (x+ y2 − b)2 + c · (x+ y)2 (1)

with arbitrary parameters a, b and c (for c = 0 this function would be the Rosenbrock function,
which is often used to validate minimization algorithms). For this exercise sheet, we make the
arbitrary choice a = 11, b = 7, c = 0.1. With these parameters, the function f(x, y) has four local
minima of different depth.

In this exercise you will write your own minimization algorithm following the Simulated Annealing
strategy and test with the above defined function. Use the code fragment given in the jupyter
notebook as help.

a) Play with the parameters: initial and final temperature, cooling speed, and step size. Choose
a starting point close to the global minimum, and check if the algorithm converges into the
minimum.

b) Choose a starting point close to a local minimum which is not the global minimum, e.g.,
(x, y) = (3,−2). Find a set of parameters for the algorithm such that it converges to the
global minimum, but still keeping the number of iterations as low as possible, and motivate
your choice.
For tuning the parameters, you have two possibilities: Either you perform a scan over a
meaningful range for each parameters, or you study how the algorithm reacts on changing
certain parameters and then try to tune them by hand. In any case, first think what is
the role of each parameter in the algorithm. E.g., both, the difference between initial and
final temperature, and the cooling speed directly affect the number of iterations, but the
temperature scale in addition affects the probability for jumps.

c) Repeat the analysis for different random seeds. If the minimum found depends on the
random seed, re-tune the parameters of the algorithm until the result is independent of the
random seed.


