

Moderne Methoden der Datenanalyse

Klassifikation (ANN, BDT)

4. Juli 2017

Fakultät für Physik Institut für Experimentelle Kernphysik - IEKP

www.kit.edu

Vorlesungsprogramm

Einführung: Überblick und grundlegende Konzepte (1)
 Einführung: Überblick und grundlegende Konzepte (2)
 Zufallszahlen und Monte-Carlo Methoden

Hypothesentests
 Parameterschätzung
 Parameterschätzung (Goodness-of-fit)
 Optimierungs- und Parametrisierungsmethoden

Konfidenzintervalle (1)

- Konfidenzintervalle (2)
- Klassifikation (lineare Methoden)
- Klassifikation (ANN, BDT)
- Klassifikation (SVM and Deep Learning)
- Messen und Entfalten
- Systematische Unsicherheiten

R.ULRICH

A.MEYER

7. KLASSIFIKATION

3 4. Juli 2017 | 7. Klassifikation (ANN, BDT, SVM)

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

Klassifikation (2)

Einlagiges Perceptron
 Gradientenabstiegsmethode
 Beispiel

- Entscheidungsbäume
 Wald aus Entscheidungsbäumen und Boosting
- AdaBoost 🖉
- Beispiele

7.5 Artificial Neural Networks

7.6 Boosted Decision Trees

Literatur:

Hastie, Tibshirani, Friedmann, The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Narsky/Porter: Statistical Analysis Techniques in Particle Physics, Wiley

I.Goodfellow and Y.Bengio and A.Courville: Deep Learning Book <u>http://deeplearningbook.org</u>

ROOT-Paket TMVA: TMVA User Guide <u>http://tmva.sourceforge.net/docu/</u> TMVAUsersGuide.pdf

Erinnerung: Supervised Learning

- Multivariate Analyse: Merkmalvektor folgt d-dimensionaler PDF
 Curse of dimensionality: d-dimensionales Histogramm des (endlich großen Datensatzes) ist für d groß praktisch leer N/n_b^d → 0, für d → ∞
 - Supervised Learning: Bestimmung ("Training") des Klassifikators anhand von vorklassifizierten Daten.
 - Beispiele: SPAM-filter, Postleitzahlen, Higgs-data challenge, u.v.m.
 - Auswahl und Vorverarbeitung der Eingangsvariablen zur Reduktion der Dimensionalität des Merkmalvektors.
 - In der Physik können Randbedingungen aus der Theorie verwendet werden
 - Training und Test der Verallgemeinerbarkeit mit statistisch unabhängigem, vorklassifizierten Testdatensatz (vermeide Unter- oder Übertraining)
 - Wahl der Methode je nach Problemstellung: Transparenz vs Mächtigkeit.
- Vorige Vorlesung: Bewährtes lineares und analytisches Verfahren: Fisher-Diskriminante (LDA)
 - Heutige Vorlesung: nicht-lineare supervised-learning Verfahren

Bestimmung der Fisher Diskriminante

Setzt man $\frac{\partial J(\vec{a})}{\partial a} = 0$, so erhält man Fishers lineare Diskriminante

$$t(\vec{x}) = \vec{a}^T \vec{x} \quad \text{mit } \vec{a} \propto W^{-1}(\vec{\mu}_s - \vec{\mu}_b)$$

wobei $W = V_s + V_b$

Näherung der Likelihood: k-Nearest Neighbours

- Approximiere Verteilungsdichte im *d*-dimensionalen Raum aus Zahl der Signal- und Untergrundereignisse (Monte Carlo) in einer Umgebung
- PDF(x) aus Anteil k/N von Signal und Untergrundereignissen im Volumen h^d

PDF_{s,b}(
$$\vec{x}$$
) = $\frac{1}{N_{s,b}} \sum_{i=1}^{N} K(\vec{x} - \vec{x}_i)$

K ist sog. Kernelfunktion, z.B. Rechteck-Volumen mit euklidischem Abstand

$$K(\vec{x}_i) = \frac{1}{h^d} \prod_{j=1}^d \mathbb{R}\left(x_j - (\vec{x}_i)_j - \frac{1}{2}\right) \text{ mit } \mathbb{R}(x) = 1 \text{ wenn } x \in [0, 1]$$

Klassifikator ist das (genäherte) Likelihood-Verhältnis $PDF_{B}(\vec{x})/PDF_{B}(\vec{x})$

- Kein Trainingsvorgang (\rightarrow langsam), auch für nicht-lineare Probleme verwendbar
- Anwendung erfordert eine große Zahl von Monte-Carlo Ereignissen
- Verwendung einer Metrik erfordert Normierung der Eingangsvariablen
- Alternative Metriken: Dreieck, Gauß, Epanechnikov, Mahalanobis-Distanz ...

7 4. Juli 2017 | 7. Klassifikation (ANN, BDT, SVM)

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

7.5 KÜNSTLICHE NEURONALE NETZE

8 4. Juli 2017 | 7. Klassifikation (ANN, BDT, SVM)

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

Künstliche Neuronale Netze

Diese Vorlesung: Funktionsweise konventioneller Feed-Forward-Netze, die mittels Fehlerrückführung trainiert werden.

Deep Learning → nächste Vorlesung

Komplexe, selbstorganisierende Netzwerke nicht behandelt.

Biologische Neuronale Netze

Menschliches Gehirn:

Viele Prozessoren = Neuronen: O(10¹¹)

Einzelner Prozess-Schritt langsam: O(10 ms) ~ 100 Hz

Massiv parallel: O(10¹⁴) Synapsen

Lernen durch Selbstorganisation -Details menschlicher Lernprozesse sind wenig verstanden

Tolerant gegenüber unvollständiger oder verrauschter Information

Quelle: www.willamette.edu/~gorr/classes/cs449/brain.html

Künstliche Neuronale Netze (ANN)

Artificial Neural Network (ANN)

Gängige Methode des überwachten Lernens

Inspiriert von biologischen neuronalen Netzen

Nicht-lineares Verfahren

Feed-Forward Netz im Computer
 Typisch: O(10³) Neuronen (bei Deep Learning bis zu 10⁷)
 Einfache Topologie
 Schnell (O(ns)) ~ GHz
 Langsam beim Lernen (Training)

Künstliche Neuronale Netze

Bisher behandelte Methoden konnten durch analytische Berechnung der Parameter angewandt werden.

Suche jetzt: allgemeine skalare Funktion t(x) des *n*-dimensionalen Merkmalvektors *x*, so dass eine Kosten- oder Fehlerfunktion (engl. Loss Function) $\mathbf{Er}(t_{true}, t(\vec{x}))$ minimal wird

Allgemeiner Ansatz:
$$t(\vec{x}) = \sum_{i} w_i h_i(\vec{x})$$
 mit i=1,*n* beliebigen Funktionen $h_i(x)$

Gewichte *w_i* werden durch Minimierung der Fehlerfunktion bestimmt

Bemerkung: Ansatz ähnlich wie LDA (Fisher-Diskriminante), aber:
 h_i(x) i.a. nicht-linear
 Keine Obergrenze für die Anzahl der Funktionen

Einlagiges Perzeptron

Rosenblatt, 1958

One-Layer Perceptron (keine verborgenen Lagen)
Prüfgröße t(x): Gewichtete Summe der n Eingabewerte x_i

Aktivierungsfunktion $A \rightarrow$ Schwelle

$$t(\vec{x}) = A\left(w_0 + \sum_{i=1}^n w_i x_i\right)$$

Zusätzlich oft: Bias $w_0 \rightarrow$ Verschiebung

Supervised Learning: Bestimmung der Gewichte *w*_i für optimale Trennung

A monoton: Einlagiges Perzeption nur für linear separierbare Probleme

Aktivierungsfunktion

Monotone Abbildung
 Bedingung zur Optimierung (Training)
 A sollte differenzierbar sein

Konventionelle ANN meist: $R \rightarrow [-1, 1]$

- Logistische Funktion
 - = Sigmoidfunktion
 - = Fermi-Funktion

Hyperbolischer Tangens

Heute auch häufig (e.g. DL):
Rectified Linear Unit (ReLU)
g(z) = max(0,z)

Mehrlagiges Perzeptron

Multi-Layer Perceptron (MLP)
 Verallgemeinerung: Eine (oder mehrere) verborgene Lagen

Feed-forward Network

Jede Lage wird nur aus vorheriger Lage gespeist

Wichtigster Fall: eine einzelne verdeckte Lage (engl: "hidden layer") mit *m* Knoten (oft: *m>n*)

Nicht-lineare Prüfgröße:

$$t(\vec{x}) = A^{(2)} \left(\sum_{j=0}^{m} w_j^{(2)} \cdot A^{(1)} \left(\sum_{i=0}^{n} w_{ij}^{(1)} x_j \right) \right)$$

Mehrlagiges Perzeptron

- Netzwerk mit *n* Eingabeknoten, *m>n* verborgenen Knoten und einem Ausgabeknoten → Gewichtsmatrix *W* mit
 m+1 Gewichten *w_i*⁽²⁾
 *m**(*n*+1) Gewichten *w_{ii}*⁽¹⁾
- Mit geeigneten Aktivierungsfunktionen kann mehrlagiges Perzeptron beliebige kontinuierliche Funktionen auf Unterräumen von Rⁿ annähern.

- Training: Bestimmung der Gewichte durch Anpassung → Minimierung der Fehler- oder Kostenfunktion
- Bemerkung: sehr viele Parameter, Vorverarbeitung des Merkmalvektors und genaue Überwachung des Trainingsprozesses

Beispiel: XOR Funktion

Netz mit einer einzelnen verborgenen Lage: $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$

$$y = f^{(2)}(\boldsymbol{h}; \boldsymbol{w}, b)$$

$$h_i = g(\boldsymbol{x}^\top \boldsymbol{W}_{:,i} + c_i)$$

x,y: Ein- und Ausgabewerte

w,W: Gewichte

g: Aktivierungsfunktion (ReLU): g(z)=max(0,z)

b,c: Bias

Insgesamt:
$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$

http://www.deeplearningbook.org/ Seite 171 ff

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

Beispiel: XOR Funktion

Feedforward Netz: $f(x; W, c, w, b) = w^{\top} \max\{0, W^{\top}x + c\} + b$. Lösung:

$$\boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 $\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ $\boldsymbol{b} = 0.$

Beweis:

http://www.deeplearningbook.org/ Seite 171 ff

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

Training: Minimierung der Fehlerfunktion

Suche Gewichtsmatrix *W*, so dass Fehlerfunktion minimal:

- Gängigste Methode: Fehler-Rückführung ("error backpropagation")
- Iteratives Verfahren zur Bestimmung der optimalen Gewichte W
- Startpunkt: wähle zufällige oder geschätzte Startwerte für W

Fehlerfunktion (auch Kosten- oder Verlustfunktion, engl. Loss Function): Maß für Übereinstimmung des Klassifikators mit Erwartung

$$\mathbf{Er}(t_{\mathrm{true}}, t(\vec{x}))$$

Häufig verwendet: linearer ("mean average distance" (MAD)) oder quadratischer Abstand ("mean squared error" (MSE)) gemittelt über Ereignisse des Trainings-Datensatzes.

MSE:
$$\mathbf{Er}(\vec{x}|W) = \sum_{a=1}^{N} \mathbf{Er}(\vec{x}_a|W) = \frac{1}{2} \sum_{a=1}^{N} (t_{\text{true}} - t(\vec{x}_a|W))^2$$

Gradientenabstiegsverfahren

- Verwende Ereignisse mit bekannter Klassifikation (d.h. t_{true} = 0 oder 1)
 Iterative Minimierung der Fehlerfunktion und Aktualisierung der Gewichte
- Gradientenabstiegsverfahren: möglich, wenn Aktivierungsfunktion differenzierbar. Beispiel hier: sigmoide Funktion

$$A(x) = \frac{1}{1 + \exp(-x)} \to \frac{dA(x)}{dx} = \frac{\exp(-x)}{(1 + \exp(-x))^2} = A(x)(1 - A(x))$$

In jeder Iteration ("Lernzyklus") werden die Gewichte W in Richtung des steilsten Abstiegs (Gradient) der Fehlerfunktion korrigiert ("Fehler-Rückführung")

$$W^{(n+1)} = W^{(n)} - \eta \nabla_W \mathbf{Er}(t_{\text{true}}, t(\vec{x}) | W)$$

η ist dabei die sog. "Lernrate": Schrittweite in Richtung Gradient

Fehlerrückführung

Ausgangspunkt: *n* Input-Variablen, *m* verborgene Knoten, *N* Ereignisse

$$t(\vec{x}) = A^{(2)} \sum_{j}^{m} w_{j}^{(2)} y_{j}^{(2)}(\vec{x}) \quad \text{mit} \quad y_{j}^{(2)}(\vec{x}) = A^{(1)} \sum_{i}^{n} w_{ij}^{(1)} x_{i}$$

Fehlerfunktion (MSE):

$$\mathbf{Er}_{\mathbf{a}} = \frac{1}{2} (t_{\text{true}} - t(\vec{x}_a))^2$$

Änderung der Gewichte der verborgenen Lage (2):

$$\Delta w_{j}^{(2)} = -\eta \sum_{a=1}^{N} \frac{\partial E_{a}}{\partial w_{j}^{(2)}} = -\eta \sum_{a=1}^{N} \frac{\partial E_{a}}{\partial t(\vec{x}_{a})} \frac{\partial t(\vec{x}_{a})}{\partial w_{j}^{(2)}} = -\eta \sum_{a=1}^{N} (t_{true} - t(\vec{x}_{a})) y_{j}^{(2)}(\vec{x})$$

Änderung der Gewichte der Eingabe-Lage (1):

$$\Delta w_{ij}^{(1)} = -\eta \sum_{a=1}^{N} \frac{\partial E_a}{\partial y_j^{(2)}} \frac{\partial y_j^{(2)}}{\partial t(\vec{x}_a)} \frac{\partial t(\vec{x}_a)}{\partial w_{ij}^{(1)}} = -\eta \sum_{a=1}^{N} (t_{true} - t(\vec{x}_a)) \cdot y_j^{(2)}(\vec{x}_a)(1 - y_j^{(2)}) \cdot x_{i,a}$$

4. Juli 2017 | 7. Klassifikation (ANN, BDT, SVM)

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

Lernzyklen

Richtige Wahl der Lernrate η (Schrittweite) ist wichtig

Zu groß: Algorithmus oszilliert um Minimum

- Zu klein: Langsame Konvergenz
- Optimales η bestimmbar aus negativ Inversem der Hesse-Matrix

$$\eta = -\left(\frac{\partial^2 \mathbf{Er}}{\partial W_i \partial W_j}\right)^{-1}$$

Ausrechnen durch Taylor-Entwicklung von Er(W) um Minimum $Er(W_0)$ und Vergleich mit

$$\Delta W = W^{(n+1)} - W^{(n)} = -\eta \nabla_W Er$$

Es gibt im hochdimensionalen Parameter-Raum viele Gebiete mit kleinem Gradienten (vor allem Sattelpunkte)

Langsames Anschalten der Schwellenfunktion (Temperatur) Regularisierung \rightarrow Penalty in der Verlustfunktion gegen hohe Gewichte:

$$M = \mathrm{Er} + \beta \sum_{ij} w_{ij}^2$$

ANN - Lernkontrolle

ANN Training

	Batch-Lernen (auch: Bulk-Lernen)	Stochastisches Lernen (auch: Online-Lernen)
Verfahren	Gewichtsänderung nach vollständiger Iteration über alle Trainingsereignisse → globaler Gradient	laufende Anpassung der Gewichte nach einem oder wenigen (<200) Ereignissen → lokaler Gradient
Geschwindigkeit	langsam bei großen Trainingsdatensätzen	schneller als Batch-Lernen (besonders bei Training mit teilweise redundanten Ereignissen)
Bemerkung	günstig für theoretische Betrachtungen zu Konvergenz	in Teilchenphysik (fast) immer bessere Wahl (z. B. verwendet in TMVA)

ANN profitieren stark von Präprozessierung der Merkmale (Normierung und Dekorrelation)

MLP mit zwei Eingangsvariablen, 8 verborgenen Knoten, sigmoide Aktivierungsfunktion, 600 Lernzyklen ("Epochen"), 10000 Ereignisse
 Training: 23 Sekunden, Ausführung: 0.04 Sekunden
 Sehr gute Trennung

Beispiel: "python TrainEvaluateResponse_v11.py Circle"

 MLP mit zwei Eingangsvariablen, 8 verborgenen Knoten, sigmoide Aktivierungsfunktion, 600 Lernzyklen ("Epochen"), 10000 Ereignisse
 Training: 23 Sekunden, Ausführung: 0.04 Sekunden
 Sehr gute Trennung

MLP mit zwei Eingangsvariablen, 8 verborgenen Knoten, sigmoide Aktivierungsfunktion, 600 Lernzyklen ("Epochen"), 10000 Ereignisse Training: 23 Sekunden, Ausführung: 0.04 Sekunden Sehr gute Trennung Kein Anzeichen von Übertraining TMVA overtraining check for classifier: MLP **MLP Convergence Test** (1/N) dN / dx Estimator Signal (test sample) Signal (training sample) 35 1.1 Background (test sample) Background (training sample) Training Sample Kolmogorov-Smirnov test: signal (background) probability = 0.153 (0.489) 30 **Test sample** 0.9 25 0.8 20 0.7

7.6 VERSTÄRKTE ENTSCHEIDUNGSBÄUME

30 4. Juli 2017 | 7. Klassifikation (ANN, BDT, SVM)

Statistische Methoden der Datenanalyse 2017 | Kurs 4022141 | Andreas B.Meyer, KIT und DESY

 Eingangsdaten: Merkmalvektor x
 Ausgabe: Klassifikation S und B
 Sequentielle Schnitte ("<" oder ">") X₂ in einzelnen Variablen:
 Merkmalraum zerlegt in (Hyper-)Rechtecke: Konstruktion festgelegt durch Sequenz von Entscheidungen

 Eingangsdaten: Merkmalvektor x
 Ausgabe: Klassifikation S und B
 Sequentielle Schnitte ("<" oder ">") x₂ in einzelnen Variablen:
 Merkmalraum zerlegt in (Hyper-)Rechtecke: Konstruktion festgelegt durch Sequenz von Entscheidungen

Entscheidungsbaum:

Einzelne Entscheidungen bilden Äste, die Endknoten heissen Blätter

Abbruchregel beendet den Prozess

Aufwachsen des Entscheidungsbaums

Suche signifikantestes Merkmal xi des Trainingsdatensatzes
 Teile Ereignisse in zwei Äste (an einer "Entscheidungsgrenze")
 Weitere Aufteilung der resultierenden Untermengen: verwende diejenige Variable zur Trennung, die die beste weitere Separation anhand des gleichen Teilungskriteriums liefert ("greedy algorithm").

Fortsetzung bis Abbruchkriterium

Bemerkungen:

- Merkmale können mehrfach oder gar nicht verwendet werden
- Trennung ist unabhängig von Skala \rightarrow Normierung der Variablen und Behandlung von Outliern nicht notwendig

Festlegen der Entscheidungsgrenze

Fehlidentifikation: $F = 1 - \max(p, 1 - p)$ Gini-Index: G = 2p(1 - p)

Cross Entropy $S = -(p \ln(p) + (1 - p) \ln(1 - p))$

Reinheit:

$$p = \frac{n_s}{n_s + n_b}$$

Bester Schnitt, wenn Gewinn durch Teilung maximal für beide Samples, Signal und Untergrund

Reinheitszuwachs: D = n_EG_E - n_sG_s - n_bG_b

Abbruch, wenn *D* < *D*_{crit}

Abbruchkriterien

Ziel: Äste mit möglichst hoher Reinheit

Bäume mit wenigen Ästen sind robuster (da Statistik in allen Blättern groß). Beste Resultate für kleine Entscheidungsbäume (< 10 Blätter)

Typische Abbruchkriterien:

Reinheitszuwachs ist unterhalb einer Schwelle, z.B. $D_{crit} > D = G_{E}$ -

 G_s - G_b (siehe vorige Seite)

Maximale Tiefe, maximale Anzahl von Blättern, minimale Anzahl der Ereignisse u.ä.

Wahl der Tiefe ist i.a. wichtiger als exakte Wahl des Reinheitskriteriums

Pruning: Nachträgliches Entfernen der Äste mit geringer Trennschärfe mithilfe einer Verlustfunktion (auf einem Test-Datensatz). TMVA Manual: Pruning nicht empfohlen, da niedriger liegende Äste ggf. bessere Trennung liefern könnten.

Wald aus Entscheidungsbäumen

Generalisierungsfähigkeit eines einzelnen Baumes ist i.a. gering: "weak learner"

Ein ganzer Wald (≥1000 Bäume) ist aber sehr mächtig
Robuste und scharfe Lösung durch Mehrheitsentscheidung vieler Bäume mit jeweils geringer Trennschärfe. Ensemble-Methode

Verbesserung der Klassifizierung:

- Random Forest: Jeder Baum wird anhand von zufällig ausgewählten Untermengen von Variablen entwickelt.
- Stochastische Teilmengen ("Bagging"): Teilmengen des Test-Datensatzes werden verwendet, um einzelne Entscheidungsbäume zu generieren.

Verstärkung der Merkmalvektoren ("Boosting"): Fehlklassifizierte Ereignisse werden mit Gewichten versehen und in den so trainierten Bäumen stärker berücksichtigt

AdaBoost

- Adaptive Verstärkung (engl. Adaptive Boosting, AdaBoost)
- Berücksichtigung falscher Zuordnungen mit höherem Gewicht beim Aufwachsen des nächsten "weak learner" Baums.
- Effekt: Höhere Wahrscheinlichkeit der korrekten Zuordnung, da Variablen mit relevanter Information stärker berücksichtigt werden.
- Gewicht α_i für fehlklassifizierte Ereignisse, berechnet aus Fehlklassifikationsrate err_{i-1} des vorigen Baums

$$\alpha = \frac{1 - \text{err}}{\text{err}}$$

Boosted Klassifikation:

$$y_{\text{Boost}}(\mathbf{x}) = \frac{1}{N_{\text{collection}}} \cdot \sum_{i}^{N_{\text{collection}}} \ln(\alpha_i) \cdot h_i(\mathbf{x})$$

mit $h_i(x)$: 1(-1) für Signal(Untergrund) und $N_{collection}$: Anzahl der Bäume

Abschwächung des Boosts: Langsameres Lernen: $\alpha \rightarrow \alpha^{\beta}$

AdaBoost und GradientBoost

- Sequenz von "weak learner"-Klassifikatoren, die gemeinsam (im Ensemble) eine gute Trennung liefern.
- Stochastic Gradient Boosting": Zusätzliche Randomisierung durch "bagging" Technik: beschleunigt Lernzyklen bei gleichzeitiger Abschwächung des einzelnen "weak learners"
- Man kann zeigen, dass Boosting in AdaBoost äquivalent ist zur Minimierung einer Verlustfunktion:

$$L(F, y) = \exp(-F(x) \cdot y)$$

wobei F(x) das Zwischenergebnis der Klassifikation; und *y*: wahrer Wert (0,1) GradientBoost verwendet:

$$L(F, y) = \ln(1 + \exp(-2F(x) \cdot y))$$

Vorteil: robusteres Verhalten bei Outliers und Rauschen

Nachteil: keine einfache analytische Lösung

Bestimme Gradient der Verlustfunktion und bestimme neue Gewichte durch Regression.

AdaBoost, NTrees=500, MinNodeSize=0.05, AdaBoostBeta=0.5, MaxDepth=3, nCuts = 20, SeparationType=GiniIndex, 10000 Ereignisse

- Training: 2 Sekunden, Testing: 0.5 Sekunden
- Schlechte Trennung und p(KS)=0

TMVA default: 5%

AdaBoost, NTrees=500, MinNodeSize=0.05, AdaBoostBeta=0.5, MaxDepth=3, nCuts = 20, SeparationType=GiniIndex, 10000 Ereignisse
 Training: 2 Sekunden, Testing: 0.5 Sekunden
 Schlechte Trennung und p(KS)=0

AdaBoost, NTrees=500, MinNodeSize=0.5, AdaBoostBeta=0.5, MaxDepth=3, nCuts = 20, SeparationType=GiniIndex, 10000 Ereignisse
 Training: 2 Sekunden, Testing: 0.5 Sekunden
 Gute Trennung

50%

AdaBoost, NTrees=5000, MinNodeSize=s.u., AdaBoostBeta=0.5, MaxDepth=3, nCuts = 20, SeparationType=GiniIndex, 10000 Ereignisse Training: 23 Sekunden, Testing 5-6 Sekunden Gute Trennung

TMVA default: 5%

Beispiel: "python TrainEvaluateResponse v11.py Circle"

AdaBoost, NTrees=5000, MinNodeSize=0.05, AdaBoostBeta=0.5, MaxDepth=30, nCuts = 20, SeparationType=GiniIndex, 10000 Ereignisse
 Training: 230 Sekunden, Testing 90 Sekunden
 Übertraining! Nicht-optimale Trennung

43 4. Juli 2017 | 7. Klassifikation (ANN, BDT, SVM)

Vermutlich: Reinheitszuwachs durch nächsten Schnitt zu gering

Reinheitskriterium erreicht

Zusammenfassung BDT

- Ensemble-Methode: Mittelwert aus vielen verschiedenen einfachen Modellen (weak learners) liefert ein komplexes Modell.
- Wälder aus verstärkten Entscheidungsbäumen (BDT) sind in der Teilchenphysik sehr populär
 - Eigenschaften:
 - Lokal 1-dimensionale Entscheidungen, funktioniert auch in vielen Dimensionen
 - Schnelles Verwerfen offensichtlicher Untergrundereignisse, robust gegenüber Outliern u.dergleichen
 - Keine Abhängigkeit von Metrik, keine Vorverarbeitung (Normierung etc.) notwendig
 - Relativ wenige Parameter, wenig Tuning-Bedarf
 - Vergleichsweise schnelles Training
 - Bäume (mit wenigen Ästen) sind leicht verständlich
 - Variablen sollten möglichst dekorreliert sein in Physik kein echtes Problem
 - TMVA liefert Ranking (Relevanz) der Variablen
 - Uber-Training kann kontrolliert werden

MVA und systematischer Fehler

- Bisher Diskussion auf rein statistischer Basis. Systematischer Fehler ist in der Praxis oft wichtiger, d.h. größer, als statistischer Fehler.
- Behandlung wie bei nicht-multivariaten Methoden: Variation der Input-Verteilungen im Analyse-Sample. Klassifikator bleibt unverändert.
 - Problem: Variablen mit großer systematischer Unsicherheit können auf die Ausgabegröße durchschlagen → Lösung: Ausschluss, oder künstliche Abschwächung einer Input-Größe im Training.

Bemerkungen:

- MVA müssen nicht im globalen Optimum verwendet werden
- Über- oder Untertraining liefert keinen systematischen Fehler, ist nur nicht optimal.
- Beispiel: Ereignisse mit negativem Gewicht → Ausschluss der Ereignisse oder Ignorieren der Gewichte

Zusammenfassung

MVA sind leistungsfähige Werkzeuge. Machine-learning ist ein hoch-aktuelles Feld. Immer mehr Anwendungen. Viele Aspekte sind nicht vollständig erforscht Vorgestellte Methoden aus dem Bereich Supervised Learning: Fisher Disk., k-Nearest Neighbours, ANN, BDT, SVM Optimale Anwendung erfordert ein gutes Verständnis der Methode. Wahl der Methode, der Merkmalvektoren und der Parameter Konfiguration spielt eine zentrale Rolle: Vorverarbeitung für Metrik, Normierung etc. Training und Test der Ergebnisse Die meisten MVA liefern ein Ranking der Variablen, berechnet aus (Inter-)Korrelationen und Effekt der Variablen auf das Ergebnis

Ausführliche Untersuchungen am konkreten Problem sind zentraler Bestandteil von Datenanalysen.