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Program today

5’ break
Recap of lecture 1 Tour of important probability
Review 5 warmup questions mass (density) functions
(Conditional) independence Quiz 2

Random variables
Expectation values, Variance

Answers to Quiz 1
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Textbook by S. Ross reminder

ILIAS:

/Reading material / Textbooks /

IntroProbModels SRoss.PDF
Introduction to

Prohability Models
Contains many worked out examples and 10th Edition
proofs which we will discuss today and snnnnn M IHISS

next week

(See required reading slide at the end of lecture)
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Review

Interpretation of probability

e Although any function satisfying the 3 axioms of Kolmogorov is a probability,
still need to specify interpretation of elements in sample space S.

Most important interpretations: relative frequency and subjective probability.

* Probability as a relative frequency: (Frequentist Interpretation)

Elements of S correspond to possible outcomes of a repeatable
measurement.

e Subset E of S: occurrence of any of the outcomes in the subset.

e Often E is called an event.

® An event is said to occur if the outcome of a measurement is in the
respective subset.

e Assign probability for E as:

~ number of occurrences of outcome E in n measurements
P(E) = lim

n—oo n
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Review

Interpretation of probability

* Subjective probability: (Bayesian Interpretation)

Here, elements of § correspond to hypotheses or
propositions, i.e. statements that are either true or false.

One interprets the probability associated with a hypothesis as
a measure of degree of belief:

P(E) = degree of belief that hypothesis E is true
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Review

Interpretation of probability

e Subjective probability: (Bayesian Interpretation)

Sample space S needs to be constructed such that the elementary
hypotheses are mutually exclusive.

e Otherwise not only one of them can be true.

The use of subjective probability is closely related to Bayes’ theorem.

e Subset A appearing therein can be interpreted as the hypothesis

that a certain theory is true, and subset B that an experiment will
yield a particular result.

P(theory | data) o< P(data | theory) - P(theory)
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Criticisms of the probability interpretations

¢ Criticisms of the frequency interpretation:
n — o0 can never be achieved in practice. When is n large enough?
We want to talk about the probability of events that are not repeatable.
e Ex. 1: P(it will rain tomorrow), but there is only one tomorrow.

e Ex. 2: P(universe started with a Big Bang), but only one universe.

P is not an intrinsic property of A, it depends on how the ensemble of possible
outcomes was constructed.

e Ex.: P(person | talk to is a physicist) depends on whether | am in a football stadium or
at a scientific conference.

e Criticisms of the subjective interpretation:
“Subjective” estimates have no place in science.

How to quantify the prior state of our knowledge upon which we case our probability
estimate?

Modern Methods of Data Analysis I 7



“Bayesians address the questions
everyone Is Interested In by using
assumptions that no one believes.
Frequentists use impeccable logic
to deal with an issue that is of no
Interest to anyone.”

m;: %‘%GUIDE _LOUIS LyOnS

D t ‘An ly sis ﬁor
Physic TS L;n"ce Students

Author of:
Data Analysis for Physical Science Students

1¢ ’”";, £

Gl Fp

”\\ 4, Eou;s Ly ns
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https://primo.bibliothek.kit.edu/primo-explore/fulldisplay?query=any,contains,lyons,%20louis&facet=creator,include,Lyons,%20Louis&vid=KIT&search_scope=KIT&sortby=rank&tab=kit&docid=KITSRC060485868&lang=de_DE&mode=simple&fromRedirectFilter=true

https://xkcd.com/1132/

DID THE SUN JUST EXPLODE?

(ITS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, ITROWS TWO DICE. IF THEY
BOTH COME UP SIX, IT UES TO US,
OTHERWISE, IT TELLS THE TRUH.

LETS TRY.
DETECTOR! HAS THE

SN GONE NOA?
) EDLL,?

%50

FREQUENTIST STRNSTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILITY OF THIS RESULT

HAPPENING BY CHANCE 1S 3;=0027 BET YOU $50
IT HASNT

SINCE p<0.05, T CONCLUDE.

‘IHAT THE SUN HAS EXPLODED. )

Taa]
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Answer Time: 5 quick questions



5 quick questions

What’s the probability to not toss five heads in a row in coin toss?
e P=(1-0.5

Name the following distributions:

Binomial Poisson
n\ g n—k Are=2
Pr(k;n,p) =Pr(X =k) = |, |p"(1-p) f(k;A) =Pr(X =k) = T
2 1 - Lo f(z;20,7) = - exp(—5(x — p) T2 (x — p))
f(:L’ |y 0°) = e 2° z—z | 2 fx(@1,... @) = - .
2702 ™ 1+( y ) (2m)F x|
Gaussian Breit-Wigner/Lorentzian/Cauchy Multi-D Gaussian
Mean and variance of an independent random variables x;
1 . 1 _\2 2 1 _\2
Mean: 7 — — . Variance: 2= - :— o = (z; — )
L= Z Li Y z; @ x)biased n—1 ; without bias
| know what Bayes’ theorem is about (Yes/No). — Now hopefully yes!
: . ay 5 : N X; — l_z -
Write down the definition of a x2 function. __ 5 &i=#) 7= — wV-lx — )

2
O:
i=1 L
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Independence

Two events E and F are defined as independent if:  P(EF) = P(E)P(F)

Otherwise E and F are
called dependent events

If £ and I are independent, then:  P(E|F) = P(E)

- P(EF) ~ defof
Intuition through proof: P(E|F) = conditional

P(F) prObabiIity (Lecture 1, s48)
Knowing that I happened _ P(E)P(F) " Independence
does not change our P(F) of £ and F
belief that E happened
| - = P(E)
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Generalizing independence

P(EFG) = P(E)P(F)P(G) and
Three events E, F, and P(EF) = P(E)P(F) and

G are independent if: P(EG) = P(E)P(G) and
P(FG) = P(F)P(G)

n events El? E29 e En Forr = 1,....n:

are independent if: for every subset £, E,, ..., L :
P(E.E,,...,E) = P(E,),P(E,),...,P(E.)

Often interested in experiments consisting of independent trials: . . . . .
, , , e.g., flip a coin n times, roll a die n times, send a
 n trials, each with the same set of possible outcomes

: : . multiple choice survey to n people, send n web
- n-way independence: an event in one subset of trials is independent s to k ol -
of events in other subsets of trials requests 1o k airierent Servers
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Independent ‘ ' P(EF) = P(E)P(F)
Independence? events E and F’ P(E|F)=P(E)

Are [ and I independent in the following diagrams?

E
E
- 2 4
4 9 9
1
F 4 |
S Fy s
1 2 4 2 ?
P(E):Z .HB—5 9" 3 P(EF) = P(E)P(F)
2v'1 2
: No PF) =g +2 =2 9733 Yes
PFY =2 07973
P(E)P(F) = 1 + P(EF) = @ - Independence is not mutual exclusion!

- Independence is difficult to visualize graphically
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De Morgan’s law

EorF E and F
P(EUF) P(ENF)

Q.
<
9
O
&
&

o]
<

Just add! Inclusion- Just multiply! Chain Rule
P(E) + P(F Exclusion
(E) + P(F) orinciple P(E)P(F) P(E)P(F|E)
P(E) + P(F) — P(ENF) o
P(F)P(E|F)
Corollary 3
(Lecture 1, s44) (Lecture 1, s48)
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De Morgan’s law

S P(EN F)%) = P(E¢ U F%)

P(E\E,---E)
=1-P((E\E, - - E)°)
=1-P(EFUESU---UEf)

Great if E Z.C mutually exclusive

S P(EUF)%) = P(EC N F©%)

P(E,UE,U---UE)
=1-P((E,UE,U---UE,)")
=1—-P(E[ES---Ef)

Great if E independent
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Example: Network reliability

e Consider a parallel network with:

A B
n independent routers, each with probability ﬁ‘_
p; of functioning, where (1 < i < n) :
— —
E = functional path from A to B exists ,
o Whatis P(E)? " @—
Let F; = event of router i functioning (i = 1,2,..,n), where P(F}) = p,
P(E) = P(Fl U F2 U...U Fn) [i.e., P( > 1 router works)] Application of
De Morgan’s

=1— P(Flc N cm N...N F,f) i.e., 1 — P(all routers fail)] Law

=1-(1-P)(1-Py)---(1-P)=1-[]1-py
=1

Independence!
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Conditional paradigm

For any events A, B, and E, you can condition consistently on E,
and all formulas still hold

Axiom 1 O<PA|E)L1

Corollary 1 P(A|E)=1—-P(A‘|E)
Transitivity P(AB|E) = P(BA | E)

Chain rule P(AB|E) = P(B|E)P(A | BE)

P(B|AE)P(A | E)
P(B|E)

Bayes’ Thm P(A|BE) =

Modern Methods of Data Analysis I 20



Conditional independence

Two events A and B are defined as conditionally independent
given E if

P(AB|E) = P(A|E)P(B|E)

Independence relations can change with conditioning

A and B

does NOT always mean Independent
given E

A and B
iIndependent

Modern Methods of Data Analysis I 21



Art and condition

Likes:

What if £ E,E5E, are not independent? (e.g. all impressionist paintings)

P(E\E,E5E)) # of people who like all 4

P(E,| E\EyE3) = - . .
P(E\E5E) # of people who like the first 3

Need to keep track of an exponential # of statistics!
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Art and condition

K: likes impressionist art
W ~
Likes: o R ¥

Assume: £ E5ExE, are conditionally independent given K

P(E,E,E;E
P(E, | E,E,E;) = (E1E25by) P(E,|E,E,E;K) = P(E,| K)
P(E EyE5) ——

An easier probability to
store and compute
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Independence is very important in ML and probabilistic modeling.
Knowing the joint probability of many events requires exponential
amounts of data. By making (conditional) independence claims,
computers can decompose how to calculate the joint probability.

= Faster to compute and requires less data to learn probabilities.

“Exploiting conditional independence to generate fast
probabilistic computations is one of the main contributions
computer science has made to probability theory”

-Judea Pearl| 2011 Turing Award,

“For fundamental contributions to Al through the development
of a calculus for probabilistic and causal reasoning”
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Art and condition

K: likes impressionist art

E\E5EsE, are E\EELE, are
dependent conditionally independent
given K

Dependent events can become ‘ ' Independent events can become
conditionally independent. conditionally dependent

Knowing exactly when conditioning breaks or creates independence
IS a big part of building complex probabilistic models

Modern Methods of Data Analysis I 25



Note: Random Variables
also called distributions



Random Variables

A random variable is a real-valued function defined on a sample space

Random variables are NOT events!

An Is a particular assignment of a random variable
Example:
3 coins are flipped
Let X = # of heads X=2 P(X=2)
X is a random variable probability

(number between 0 & 1)

What would be a useful function to define?
The probability of the that a random variable X takes on the value

For discrete RVs, this is a probability mass function
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Discrete RVs and PMFs

e A random variable X is discrete if it can take on countably many
values

X = x, where x € (X, X5, X3, ... ) is the support of X

® The probability mass function (PMF) of a discrete random variable

IS. shorthand notation o0 Probabilities must sum to 1
P(X = x) = p(x) = X Z p(X) =1 Verify any PMF
( ) p( ) pX( ) = : you create
1=
Example:

3 coins are flipped
Let X = # of heads
X is a random variable

X=x PX=x) Set of outcomes
X=0 1/8 {LT,T}

X=1 3/8 {H,T,T}, {T,H,T}{T,T,H}
X=2 3/8 {HH,T}, {HTH}{T,HH}
X=3 1/8 {H,H,H}

X >4 0 {}
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Sidebar: Notation

e (Careful with the notation in the Cowan textbook

He uses x (i.e. small x) for both the random variable and the value it can
assume

® See this footnote on page 7:

2A possible confusion can arise from the notation used here, since z refers both to the
random variable and also to a value that can be assumed by the variable. Many authors use

upper case for the random variable, and lower case for the value, i.e. one speaks of X taking on
a value in the interval [z,z 4 dz]. This notation is avoided here for simplicity; the distinction

between variables and their values should be clear from context.
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Cumulative distribution function

e For a random variable X, the cumulative distribution function
(CDF) is defined as

F(a) = Fxy(a) = P(X < a) where —co < a < o©
e For a discrete RV X, the CDF is
Fla)=Fya)= ) p)

all x<a |

Example: ’b T
3 coins are flipped /ﬁ
Let X = # of heads 74 1 \

X is a random variable

i

14 -

q

_ !
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Expectation

e The expectation of a discrete random variable X is

E[X] — Z p()C) - X Sum over all values of X = x

that have non-zero probability
x:p(x)>0

e Important properties of expectation

Linearity:
o LlaX+b]l=aE[X]+Db

Expectation of a sum = sum of expectation

o E[X+Y]=EIX]+E[Y] Prove them!

Unconscious statistician: _
Can look this one up

o E [ g(X)] = Z g (x) p(x) Known as the law of the unconscious statistician (LOTUS) because of a
X

purported tendency to use the identity without realizing that it must be treated
as the result of a rigorously proved theorem, not merely a definition (wikipedia)
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Lying with statistics

“There are three kinds of lies:
lies, damned lies, and statistics”

Popularized by Mark Twain (1906)

Generally attributed to Sir Charles Dilke (1891)

SIR CHARLES DILKE.
L

M. ", tor the Forest of Dean.
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Lying with statistics

A school has 3 classes with 5, 10, and 150 students

What is the average class size?

N (7 B

Interpretation #1 Interpretation #2
¢ Randomly choose a class with ® Randomly choose a student with
equal probabillity equal probability
o X = size of chosen class e Y = size of chosen class
1 1 1 5 10 150
EX]=5(=)+10(=)+150( — ElY]=5— )+10| — )+ 150 ( —
3 3 3 165 165 165
165 22635
3 165

QVhat universities usually report J Cverage student perception of class sizej
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Variance:

Is E|X | enough?

Consider these 3 distributions

0.6 0.6 0.6

0.4 0.4 0.4

a1 11 1 s .|I|. >

0 0 0
1 2 3 4 5 { o 3 4 5 1 2 3 4 5

o E[X] = 3 for all distributions

¢ But the spread in the distributions is different

def: Var[X] = E[(X o E[X])z] Units of X*
SDI[X] = \/ Var[X] Units of X
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Properties of variance

 Property 1: Var[X] = E[X?] — (E[X])? _ Often easier to compute

than the definition

. — 2 Unlike expectation,
@ Property 2 Var[aX + b ] = d Var [X ] g varia:‘)ce i)s( not Iinlear

Prove them!
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A new world with RVs

e Event-driven probability e Random variables

Relate only binary events Link multiple similar events
together X =1, X =2, ...)

Can compute statistics: report
the “average” outcome

Once we have the PMF (PDF),
Lots of combinatorics can do regular math

e Either happens (E)

e or doesn’t happen (E©)
Can only report probability
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Answer Time: Quiz 1



1. Which of the following functions are good PDFs?

Yes

No

N (o) 30¢ Negative density

integral over sample 20}
space not finite

L L L L L L L L L L L L L L L L
10 5 / 5 10

(c) e™® (d) (2 —0.1) x exp(—|z|) with x € R

Yes

since sample
space: [0,10]

....................

(e) O(5—1z) (% + %) +26(z —5) with
© denoting the step function.
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2. Are mammographies useful?

At age 30:

Cl+) — p(+10) _ 0.8 |
p(Cl+) O h0 DRt 2 OIS 0350015 0:077010851 | 2Okt

Incidence & Prevalence v Age

But careful: Reality is more complicated!

o |
<))
8 © 7 BRUSTKREBSFRUHERKENNUNG
C | o . . o o
: - Ein Pladoyer fiir die Mammographie
a8 ¥

o

o

I I I I I
30 40 50 60 70 Das Forum - die Gastautoren:
Age Dr. Karin Bock, Leiterin Referenzzentrum Mammographie Siid West in Marburg

incidence (blue); prevalence (green)

Dr. Gerold Hecht, Leiter Referenzzentrum Mammographie Nord in Oldenburg

Prof. Dr. Walter Heindel, Leiter Referenzzentrum Mammographie Miinster

Prof. Dr. Sylvia Heywang-Kébrunner, Leiterin Referenzzentrum Mammographie Miinchen

| .
At ag e 70 u Dr. Lisa Regitz-Jedermann, Leiterin Referenzzentrum Mammographie Berlin

- NG N
0.8 « 0.04 = 0.3 . e ~— NN N

0. 8 *004 == 007*096 Die Mammographie zur Friiherkennung von Brustkrebs wird immer wieder

kritisiert. Wissenschaftlich ist es jedoch alternativlos, meinen unsere

p(Cl+) =

Gastautoren. Andere Verfahren liefern fiir sie noch unklarere Ergebnisse.

http://www.faz.net/aktuell/wissen/medizin-ernaehrung/keine-alternativen-zur-mammographie-15313597.html
https://stats.stackexchange.com/questions/185817/interpretation-of-bayes-theorem-applied-to-positive-mammography-results
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Bernoulli RV — success / failure

Consider an experiment with two outcomes: “success” and “failure”

def: A Bernoulli random variable X maps “success” to 1 and “failure” to 0

The probability for success is some constant value p

|

4) with ,oaramefer PMF PX=1)=p)=p
1) TheRV\,X B PX=0)=p0)=1-p
~ Ber(p)
p Expectation E[X]=p
Support: {0,1) Variance Var[X] = p(1 —p)
2) is distributed as a 3) Bernoulli
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Bernoulli RV — success / failure

~

\_

~

Run a program
Crashes w.p. p
Works w.p. (1 — p)

Let X: 1 if crash

X ~ Ber(p)
e PX=D=p

(o

_

~

Serve an ad

User clicks w.p. 0.2

Ignores otherwise
Let X: 1 if clicked

X ~ Ber(0:2)

o P(X=1)=02

o P(X=0)=038

_

Modern Methods of Data Analysis

~

* Roll two dice
Success: roll two 6’s

Failure: anything else

e Let X: 1 if success

X ~ Ber(i)

e EX]=%

~

|43



Binomial RV - in N trials

1,0
Consider an experiment: /N independent trials of Ber(p) random variables

def: A Binomial random variable 7 is the number of successes in N trials

The probability for success is some constant value p

/|

' N
# i)f trials PMF f(n,N,p) —_ (n >pn(1 _p)N—n
n ~ Bin
(N’ l? ) Expectation E[n] = Np
Support: {0,1,...,N} Variance Var[n] = Np(1 — p)
P(success)
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In other words

o Consider N independent trials / observations, each having two
possible outcomes

Call them “success” and “failure”
The probability for success is some constant value p

e Set of trials can be summarized by single discrete random
variable n, defined as # of successes.

Sample space: set of possible values of 7 successes given NV
observations

» |f one were to repeat the entire experiment many times with NV

trials each, the resulting value of 7 would occur with relative
frequencies given by the binomial distribution
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Derivation of the binomial distribution

e Let’s derive the form of the binomial distribution:
Probability of success is p

Probability of failure 1 — p

® Since each trial is assumed to be independent, the probability for
a series of successes and failures in a particular order equals the
product of individual probabillities:

E.g. probability of five trials to have

e of success, success, failure, success, failure

=p-p-(1—p)-p-(1—p)=p*(1-p)’

Generalized: probability for n successes and N — n failures is
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. Generalized: probability for n successes
Contlnued- mn and N — n failures

p"(1 = p)N"

e We are not interested in the order of these processes to happen,
only in the final number of successes

The number of sequences having n successes in NV events is

];,fzmjéw—n!
(n) = 7w

So the total probability to have n successes in N events is

N!

. _ ' n(1 _ \N—n
f(n,N,p)—n!(N_n)!p (I =p)

e withn=0,...,N
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Examples

http://www.pp.rhul.ac.uk/~cowan/sda/

= 04 R 04 |
Z =5 2z N=20
{2 02 L l p=0.5 | é 0.2 b p=0.1 _
o) ” ” 0 ~ 0 -I H “ 0 -
0 5 10 15 20 0 5 10 15 20
n n
2 04 D 04
2 N=10 Z N=20
0 “nH ”_n,. 0 HH‘”"HM
0 5 10 15 20 0 5 10 15 20
n n
D 04 = 04
Z N=20 Z N=20
':E 02 L p=0.5 | é 02 L p=0.6 |
. e . i
0 5 10 15 20 0 5 10 15 20
n
Recall: expectation value E[n] and variance V[n]are not functions of the random variable n,
but they depend on the parameters of the probability function.
5 N—n 2 2
Eln| = n "1 — =N Vin|=FEn“ — (En|)” = Np(l —
ml=) P ) P [n] = E[n*] — (E[n])” = Np (1 - p)

n=0
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Multinomial distribution |

e Generalization of binomial distribution to the case where there are more
than two outcomes (“success” and “failure”)

Rather m different possible outcomes are allowed with probabilities p;

e Now consider a measurement consisting of /V independent trials, each
which yields one of the possible m outcomes.

The probability for a particular sequence of outcomes, e.g. 7 on trial and j on
etc. in a particular order is the produce of the N corresponding

probabilities,
PiPj - - - Pk

The number of such sequences that will lead to n; outcomes of type 1, n,
outcomes of type 2, etc. is N

nilna!...n,,!
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Multinomial distribution I

* |f we are again not interested in the order of the outcomes, but only in the
total number of each type, the joint probability for n; outcomes of type 1,
n, outcomes of type 2, etc. is given by the multinomial distribution:

N )

1,72 nNm

|p1 p2 pm
m e

f(n17n27°°°7nm;N7p17p27°°°7pm): ' '
ni-no....MN

» E.g. for three possible outcomes 1, j and everything else:

N

)N—ni—nj
nz'nj'(N — Ny — nj)

f(n27n]7N7p17p2): 'p?%p;% (1—2?@—]93

The covariance V;; = cov|n;, n] is

Vij = El(n; — Elny)) El(n; — Elngl)

. therwi Vii = 07 = Np; (1 — p;
— _Npp; fori + j otherwise o; pi (1 —p;)
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Pause for a moment

N
%
lim (1 ——) —e
N—oo N



Binomial to the extreme

N!
f(n;N,p) = p"(1 —p)N" Elnl=Np=v =p=

1%
(N —n)! N
YO\

e () 5)
n!(N=n)! \ N N

—N(N_l)(N_z)(N_n+1)yn< U>N—n

nIN” N
=1 .
lim (=%) (%) (0=5) o\ oy
N—co " g (“N) (W)
— e v v fixed (ie, p — 0)
n
— U—e_y
n!
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In other words

* The binomial distribution, in the limit that /N becomes very large, p becomes very small,
but the product Np remains equal to some finite value v, becomes

n
. — —U
f(na I/) - €
n!
¢ This distribution is called the Poisson distribution for the integer random variable n, where
n = O, 1, e o0 ~ 04 http://www.pp.rhul.ac.uk/~cowan/sda/
3 v=2
The PDF has one parameter v "oz} ” ﬂ f 1 Examples
Expectation value and variance: . | ?”‘5“ ” = 20
O yn ’:2 0.4
E[l’l] — Z n_e—y =VU é v=5
. n! 02 |
n=
o Lol | H M Loa.
o0 Un 0 5 10 15 20-
Vin] = Z (n—vY—eV=uv n
n' <> 04
n=0 = v=10
™ 02 |
Proof: .
E[n]=Np=v  Recall the binomiall ol a0
0 5 10 15 20
Vin] =Np(1l —p)=v(1-0)=v .~ n
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Poisson RV - in an interval of time at a fixed rate

Consider an experiment that lasts a fixed interval of time

ef: A Poisson random variable 7 is the # of successes over the experiment
duration, assuming the time each success occurs is independent and
the average # of successes over time is constant

* Examples:

number of decays of radioactive material in a fixed time period in the limit that the total
number of decays is large

number of events of a certain type observed in a particle scattering experiment with a
given integrated luminosity L. The expectation value of the number of events is

Efficiency to observe an event

A/
v = ole
Cross section Luminosity
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Other discrete RVs

Consider an experiment: independent trials of Ber(p) random variables

def: A Geometric random variable X is the # of trials until the first success

X ~ GeO(p) P(X =x) =(1—-p)&Dp

Expectation E[X]=1/p
Support: {1,2,...} Variance Var[X] = (1 — p)/p?

def: A Negative Binomial random variable X is the # of trials until » successes

X ~ N@gBln(p) PMF P(X:x)=<1;_1>(1 YT

Expectation EX]=rlp

Support: {r,r + 1,...} Variance Var[X] = r(1 — p)/p?
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RV grid (so far)

Translate a problem statement into a RV.
l.e., model real life situations with probability distributions.

. Variable
Number of Time until
Experiment- ..'%... SUCCESSES Success
Fixed/known e,
One trial Ber (p) Geo (p) One success
r=1
Several NegBin (7, p) Several
trials Successes
Interval
of time
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Continuous RV definition

e A random variable X is continuous if there is a probability density function
f(x) > 0 such that for —co < x < 00:

b
Pla<X<b)= J f(x)dx

* |[ntegrating a PDF must always yield valid probabilities, and therefore the PDF
must also satisfy

fXdx=P(—0o < X< ) =1

4 J _ o

d
S sXc5Y) 2 | shk)As
vdb 52 9
92 P fom P( ) féﬂ
O—T Integrate f(x) to get probabilities

§ e e YUY = 28] g L y |
Y L1 ¢ Lo PDF Units: probability per units of X
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PMF vs PDF

random variable X e Continuous random variable X
Probability mass function (PMF) ® Probability density function (PDF)
To get probability: ® TJo get probability:
b b
Pla<X<b)=) p P(agXSb)=J f(x)dx
E[X] = ZXP(X) E[X] = “00 xf(x)dx
Fu001= 2, sty Elg00) = | gt

Both ElaX + b] =aE[X]+ Db Linearity of expectation

and continuous:
Var[X] — E[(X _ E[X])z] — E[X2] _ (E[X])2 Properties of

Var[aX + b] = a*Var[X] variance
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PMF vs PDF: cumulative Distribution Function

random variable X e Continuous random variable X
CDF e CDF
b a
Flag=PX<a)= Z p(x) Fla)=P(X<a)= J J(x)
all x<a —®

0.75

02 r
05

Recall 3 coin toss example from s30 o1 |

025

0 — L 'S 1 0 A 1 1
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 1.3 (a) A probability density function f(z). (b) The corresponding cumulative distri-
bution function F(z).

Important points:

- CDF is a probability, though PDF is not

- |If you learn to use CDFs, you can avoid integrating the PDF
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Uniform RV

® The uniform PDF for a continuous RV X with support x € (—o0, 00) is defined by

! a<z<p

f(z;a,8) = {50‘)‘

otherwise

¥

i.e. x is equally likely to be found anywhere between a and |

L
Mean and variance: Sl ’ \
X 1 — '

p |
E[X] ="a ﬁ_adx=5(a+ﬁ) (\avcﬁv °(, IG
S TRY)
o 1 VQ%“%&
VIX] = [ [x — =(a + B))? dx = —(f — a)*
. 2 p—a 12

An important feature of the uniform distribution is that any continuous random

variable X with PDF f(x) and CDF F(x) can easily be transformed to a new variable Y
which is uniformly distributed
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Uniform RV:

e The transformed variable y is simply given by

y=F (X)  The CDF of the variable x

e For any CDF y = F(x), one has

dy _d[* . .,
el J&xDdx" = f(x)
®* Hence one finds for the PDF of y
—1
dx dy
g(y) = f(x) = = f(x) . =1 O<y<l)
y Review: section 1.4 Cowan “functions of RVs”

This property of the uniform distribution will be used in the next lecture when we talk
about Monte Carlo Methods

Modern Methods of Data Analysis I 62



Exponential RV: until first success

Consider an experiment that lasts a duration of time until success occurs

def: An Exponential random variable X is the amount of time until first
success, with probability density defined by:

@ 1 : . http://wv:w.pp.rhul.a(:ﬂk/~cowan/sda/
5
1 ~ 08
. _ —tlt
f(x, T) — —¢€ X € [0,00) 06 |
T \
04
Characterized by a single parameter 0.2
Expectation value and variance: 0

L™ (™ 2, —xl 2

Elx]=—| xe™dx =1 Vixl=—| (&—1%edx=r1
T Jo T Jo

Example: decay time of unstable particle measured in its rest frame

e The parameter 7 then corresponds to the mean lifetime.
(Hence our choice for using “t”)
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RV grid (last piece)

. Variable
Number of Time until
Experiment- ..'%... SUCCESSES Success
Fixed/known e,
One trial Ber (p) Geo (p) One success
r=1
Sl NegBin (7, p) Several
. 9
trials Successes
Interval - o
of time nterval of time

to first success
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Quiz Time: 2nd Round



1. Error propagation: You have 2 random variables x;, x5 with a known covariance matrix

0.5. 0.2
o= (53 07):
and expectation values u; = 6 and pus = 1. You know want to determine the covariance of
two functions f; and f, of z; and x, defined as

fi(x1,22) = 21 + 2,

fo(x1, ) = ¢/ 2% + 5.

and the covariance matrix D between f; and

Calculate the Jacobian A;; = [gf]
Tl xi=p1,c0=p2

fo. What is the correlation between f; and f,? Hint: Use D = ACAT.

2. Show that the expectation value and the variance of a Poisson random variable is given by
the Poisson parameter v, i.e. that

00 n .
Eln| = Z%nme =v,
00 N

V[n]=2(n—u) e =V
n=0 |

Hint: Use V[n] = E[n?] — (E[n])’ and E[n?] = E[n(n— 1) +n] = E[n(n —1)] + E[n] and
the properties of the exponential series (e=% = >_°°  27),

n=0 n!
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For next time

* Required reading
Cowan textbook: chapter 2

Ross textbook: pages 21-44
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Next time

e Complete our tour of important PDFs
e Central Limit Theorem
® |.i.d.

e Monte Carlo
What is it?

e
Ty

i
B
.

[t
L

" h

s
[TLLRRRR RS
[FLERRRREL)

- -
W R i duind i -,
E T = o s T
= : —
LB B g - T . -
N

How do you produce it? AR 225 G

..... e e IR
- —'—-‘I ;

_ﬁm ~ 1 A - o~

v . y T1E —— * a

> oL, . 5 -
. P L - - - v Aol :
L g S e T 3

L L ’ e

How do you have fun with it?
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