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Program today

5’ break
Recap of lecture 2 History of Monte Carlo

Complete our tour of The MC method

important distributions .
Generating random numbers

Independent identically
distributed (i.i.d.) RVs

Central Limit Theorem

Algorithms (LCG, Mersenne Twister, ...)

Transformation method

Transform uniform distribution into
Answers to quiz 2 various other distributions

Acceptance-rejection method

Implementation in ROOT and
Python

Quiz 3
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Textbook by L. Lista reminder

Lecture Notes in Physics 941
ILIAS:

/Reading material / Textbooks /
StatisticalMethodsForDataAnalysis
InParticlePhysics_LLista.PDF Luca Lista

An excellent book which | recommend StatIStlcal
you read through (especially the
Random Numbers and MC methods MethOdS for

chapter which we’ll cover today, and the Data Ana |yS|S |n

later chapters on discoveries and upper

limits, which we will cover soon). Pa rtid e PhySiCS

(See required reading slide at the end of lecture) Second Edition

@ Springer
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Revi
Independence T

Two events E and F are defined as independent if:  P(EF) = P(E)P(F)

Otherwise E and F are
called dependent events

If £ and I are independent, then:  P(E|F) = P(E)

- P(EF) ~ defof
Intuition through proof: P(E|F) = conditional

P (F ) probability (ecture 1, s49)

_ P(E)P(F) Independence
Knowing that F' happened —

does not change our belief P (F ) of L and F
that E happened
= P(E)
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Review

Key point regarding RVs

Translate a problem statement into a
random variable

l.e., model real life situations with
probability distributions
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Review

RV grld (from lecture 02)

. Variable
Number of Time until
Experiment- ..'%.. SUCCESSES Success
Fixed/known ."u,.
One trial Ber (p) Geo (p) One success
r=1
Several NegBin (7, p) Several
trials Successes
Interval | of ti
of time Exp (T) Interval of time

to first success

Lets add the big one...
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Normal Random Variable



Normal RV

e The Gaussian (or Normal) PDF of a continuous variable x (—o0 < X < o) is
defined as

1 —(x — p)?

\/ 27o? 20

Depends on two parameters, g and 6. This notation is clearly motivated by the mean
and variance: http://www.pp.rhul.ac.uk/~cowan/sda/

o0 1 . . 2
E[X] = [ X exp = p) dx =pu
o\ 270c? 26°

o0 . _ 2 02 r
V[X]=J (x — p)* : 6XP< i), >dx=0'2

06

f(x;u,0)

04

D02
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http://www.pp.rhul.ac.uk/~cowan/sda/

Why the Normal?

e Common for natural phenomena:
Actually, log-normal

Height, weight, etc.

e Most noise Iin the world is Normal Just an assumption
e Often results from the sum of many random Only if equally
variables weighted

e Sample means are distributed normally

* A Normal maximizes entropy (i.e., randomness) for a
glven mean and Varlance ILIAS: /Reading material / LO3 /WhyTheNormalDistribution?, InfoTheoryAndMaxEntropy
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The normal distribution
seems to be the center of
the galaxy of distributions
towards which all other
distributions gravitate

E. T. Jaynes, Probability Theory: the Logic of Science,
Cambridge University Press, 2003
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Properties of Normal RVs

e Linear transformations of Normal RVs are also Normal RVs
f Y =aX + b, then Y ~ N (au + b, a’c?)

® Proof:
o ElY|= ElaX+b]l=aE[X]|+b=au+b Linearity of expectation
e Var[Y] = Var[aX + b] = a*Var[X] = a’c? Variance is not linear
e Yis also Normal [Ross, section 2.3.4, page 34]

e The PDF of a Normal RV is symmetric about the mean u

Flp—x)=1-=F(u+x)
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Piece by piece

http://www.pp.rhul.ac.uk/~cowan/sda/
i T 1 Ll

f(x;u,0)
>

04 +

A fun read for history buffs:
ILIAS: /Reading material / LO3 / TheEvolutionOfTheNormalDistribution
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http://www.pp.rhul.ac.uk/~cowan/sda/

Let’s use it

e You spend some minutes, X, cycling between classes

Average time spent: 4 = 4 minutes

Variance of time spent: o2 = 2 minutes”

e Suppose X is normally distributed. What is the probability you spend > 6
minutes traveling?

X~./V(pt=4,02=2)

P(X > 6) = ) f(x)dx

6
Don’t try too hard...
> 1 (- w?
= e 22 dx =...7
6 O 271' Cannot be solved
analytically
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Computing probabilities with Normal RVs

e Foranormal RV X ~ A/ (u, 6°), its CDF has no closed form

. (& = p)*

* 1
PX <x)=Fkx) = J e 22 dy
-0 O

e However, can solve for probabilities numerically using a function ®

F(x)=c1>(x_”>
O
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CDF of Z

o Defined as: P(Z < 7) = ®©(2)

® has been numerically computed

e.d.,

P(Z < 1.31) = ®(1.31)

|}

39

¢ @) o) -

N

\

dll -

2.) —

ST G

Standard Normal Table only has
probabilities ®(z) forz > 0

Standard Normal Table
Note: An entry in the table is the area under the curve to the left of z, P(Z < z) = ®(z)

Y/ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359
0.1 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
0.3 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
04 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0.6 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549
0.7 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7703 | 0.7734 | 0.7764 | 0.7793 | 0.7823 | 0.7852
0.8 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
09 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
1.0 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
1.1 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
1.2 0.8849 | 0.8869 | 0.8888 | 0.8906 | 0.8925 | 0.8943 | 0.8962 | 0.8980 | 0.8997 | 0.9015
1.3 0.9032 § 0.9049 § 0.9066 | 0.9082 | 0.9099 | 09115 | 09131 | 09147 | 09162 | 09177
14 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319
1.5 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545
1.7 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
1.8 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
1.9 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767
2.0 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817
2.1 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857
2.2 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890
23 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916
24 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936
2.5 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952
2.6 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974
2.8 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981
29 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986
3.0 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990
3.1 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993
3.2 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995
3.3 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997
34 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998
3.5 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998
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First Standard Normal Table

| _ ; Computed by Christian
TABLLE P REMIE RE. Kramp, French astronomer
Intégrales de e='' dt, depuis une valeur ~ (1760-1826), in Analyse des
quelcongue de t jusqu'a t infinie, Refractions Astronomiques
BRROEE et Terrestres, 1799

¢  Intégrale. D:ff. prem. | Diff.IL. | Diff. I1I.
0,00 | 0,88622692 | 999968 20f | 199
0,01 | 0,87622724 | 999767 | 400 | 199 Used a Taylor series
0.02 | 0,86622937 | 999367 | Sgg | 200 expansion to the third power

0,05 | 0.85623590)f 998768 | 799 | 199
0,04 | 0,84624822 | 997969 | 998 | 197
0,05 | 0,83626853 | 9g9bg7r1 | 1195 | 199

| 0,66 | 0,82629882 | 995776 | 1394 | 196

J e *dx = 0.856236
0.03
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Let’s try again

e You spend some minutes, X, cycling between classes

Average time spent: 4 = 4 minutes

Variance of time spent: o2 = 2 minutes”

e Suppose X is normally distributed. What is the probability you spend > 6
minutes traveling?

X~./V(pt=4,02=2)

g (x — p) . B
1. Compute 7 = 2. Look up ®@(7) in table
0 Z 0.00 0.01
00 foswo losom0 | 4 Is there an easier way?
PX 2 6)=1-F0) b - @04
6— 4 05 Tospis [ospw ~ 1 —0.9207 Use Python
=1-® I §E §§§§§ Eﬁ:} _ from scipy import stats
< \/5 ) 10 Tosus Toses = 00793 X = stats.norm(mu, std)
T X.cdf(x)
. ~ 1—®(1.41) o Wy — J
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html

Who gets to

# of successes in N independent
trials w.p. of success p

. « Computing probabilities on
n - Bln(N, p) Binomial RVs can be
computationally expensive

Eln] = Np * Two reasonable approximations,
Var[n] = Np(1 — p) but when to use which?

Y ~ Poi(v) ? Y ~ N (u, 6°)

v=Np p=
o> = Np(1 —p)
N large ( > 20) N large ( > 20)
psmall ( < 0.05) p mid-range (Np(1 — p) > 10)
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Independence of multiple RVs

- o

Forr = 1,....n:
nevents b, b,, ..., E

n
: : for every subset £, E,, ..., L :
are independent if: y 1> &2

r

P(E,,E,,...,E) = P(E,)P(E,) - - - P(E.)

\_ J

We have independence of n discrete RVs X, X5, ..., X if forall x;,x,,...,X,:

We have independence of n X, Xy, ..., X ifforall x;, x5, ..., X,
P(Xl S xl,Xz S X2, 50 C ,Xn S .xn) == HP(Xl S xl) beXz’m,Xn(xl,xZ ..... .xn) = Hin(xi)
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1.1.d. random variables

o Consider n variables X, X,,...,X

n
X, X5, ..., X areindependent and identically distributed (i.i.d.) if
o X{,X,5,...,X areindependent, and
e all have the same PMF (if discrete) or PDF (if continuous)
o E[X]=pufori=1,...,n

o Var[X]=ofori=1,...,n

Quick check: Are X, X,,..., X i.i.d. with the following distributions?

1. X; ~ Exp(7), X; independent /

2. X: ~ Exp(t;), X; independent x (unless 7; equal)

3.X; ~Exp(r), X, =X, =--- =X, x dependent! (x; =x, =...=x)
4. X; ~ Bin(n, p), X; independent x (unless n; equal)
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In physics terms

1. Assume physics and experimental conditions stay the same.

2. Assume each event (collision/measurement) has no influence over
others.

As always in physics:

Pretend this is true and let uncertainties take care of the rest
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Central Limit Theorem Arguably the most important

result in statistics

Consider n independent and identically distributed (i.i.d.) variables Xy, X5,..., X,
with E[X;] = p and Var[X;] = ¢?

ZX N (nu, ne?)

Asn — o0

l.e.,

» The sum of n independent continuous RVs X; with means y; and
variances O'iz become a Gaussian RV with mean and variance Y= Z u, o°= Z o’

. . - Asn — oo
® This holds under fairly general conditions regardless of the

form of the individual PDFs of the other Xi
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Simple ex.: Sum of dice rolls

Roll n independent dice

Let X, be the outcome of roll 1

X; are i.i.d.

How many

jx

Ui1ls Ll

0.12 b 0.125

0.10C U

0.0 b 0.075

0.0%< .l :

0.0z ‘:: 0.025 .I I.

ways can you

roll a total of
4 vs. 10?7

5x

i=1

Modern Methods of Data Analysis

Sum of 1

die roll

W] 2

V) i

O.08

.06 I I

8 O

WIS -

-III III-
3 b ) 1z 16

Sum of 3
dice rolls

2

>

i=1

Sum of 2
dice rolls

£ 9 10 11 12

0.04
0.02 I I
_--I Ba_

f= 10 12 14 16 18 20

Z X
i=1
Asn — o©

n X
ZX,- ~ N (np, no?)
i=1

Sum of 4
dice rolls
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What about the

Let X;,X,,...,X, bei.id., where E[X;] = u and Var[X;] = 6%. Asn — 00:

_ 1 € L
Define: X =— E X (sample mean) Y = E X (sum)
n

Y ~ ./V(n//t, I’le) (CLTas n — o0)

_ 1
X=—=Y
n
X - ﬂ/(?, (7) The average of i.i.d. RVs

/ Is normally distributed
with mean u and

variance ¢*/n
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“I know of scarcely anything so apt to impress the imagination as the
wonderful form of cosmic order expressed by the Central limit theorem.
The law would have been personified by the Greeks and deified, if they
had known of it. It reigns with serenity and in complete self-effacement,
amidst the wildest confusion. The huger the mob, and the greater the
apparent anarchy, the more perfect its sway. It is the supreme law of
Unreason. Whenever a large sample of chaotic elements are taken in hand
and marshaled in the order of their magnitude, an unsuspected and most
beautiful form of regularity proves to have been latent all along.”

—Sir Francis Galton
)( (Yes, the Galton Board)

n “..- .-: >‘ )
ZXi ~ N (nu, no?) “nggad
i=1 ik

Asn — o R ER
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Putting it all together

Let X;,X,,...,X, bei.id., where E[X;] = u and Var[X;] = 6%. Asn — 00:

Y Sum of i.i.d. RVs
2
ZXi ~ N (nu,no*)
=1

Working with

the CLT Average of i.i.d. RVs
(sample mean)

] <« o2
o Z Xi -~ t/’/.(//t 2 _) Interpret: As we increase n
L L

(the size of our sample):

- The variance of our sample
mean ¢2/n decreases

« The probability that our
sample mean X is close to
the true mean p increases
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Key take home message

No matter what the distribution of the population is, the distribution of mean
samples from the population will always be Normally distributed

pA pA Gaussian
samples
of size n
X .
X
—
>
population sampling distribution
distribution of the mean

l.e., No matter what the distribution of the sample is, iIf you sample batches of data
from that distribution and take the mean of each batch, the mean values from
those batches will be Normally distributed
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https://en.wikipedia.org/wiki/Central_limit_theorem#/media/File:IllustrationCentralTheorem.png

Proof of the CLT

The Fourier Transform of a PDF Is called a characteristic function

Take the characteristic function of the probability mass of the
sample distance from the mean, divided by the SD | Z X;—

Vn 2
Show that this approaches an exponential function in the limit as
n—=00  fu)=e"

This function is in turn the characteristic function of the Standard
Normal, Z ~ A4(0,1)
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Question from last lecture:

Do errors need to be Gaussian for propagation of errors to hold?

® In general, error propagation is founded on the assumption that:

The error is small (where the scale for smallness is set by the ratio of 1st to 2nd
derivatives) compared to the value of the quantity (otherwise we can’t use the Taylor
expansion);

The measurement errors in the input variables are independent, & the measurement
errors are independent from one measurement to the next;

There are many measurements of each variable.

¢ |f you have a sufficient # of variables with small but non-Gaussian errors, the

CLT says that the result will be Gaussian distributed (here you can compute the
std. dev. of the non-Gaussian individual distributions, and use them as a surrogate in your

error propagation calculation).

e |If, however, you have a small # of variables AND the distribution is non-
Gaussian, you need to perform a MC simulation:

Sample the distribution of your input variables, transform them according to the error
propagation formula, plot the resulting output distribution, and compute it’'s shape.
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Next time

e Central Limit Theorem:

Sample mean X ~ A (u, 6%/n)

If we know p and 02, we can compute probabilities on the sample mean X of
a given sample size n

¢ In real life:
Yes, the CLT still holds...

But we often don’t know u or o~ of our original distribution

However, we can collect data (a sample of size n)

Question: How can we estimate the values i or ¢ from our sample?

e Answer: Covered in next lecture on parameter estimation

Right now let’s take a tour of the Monte Carlo method

We’ll need this as well
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A few more continuous RVs
for you to review at home...



Multi-dimensional Gaussian

*» The N-dimensional generalization of the Gaussian distribution is defined
by

V) = I DLV S P
f(x,ﬂ,V)—(zﬂ)m'Vll,zeXp[ SX VX —p)

Here X and p are column vectors containing Xy, « <.y Xy andilyy «««y fpy-

| V| is the determinant of the symmetric N X N covariance matrix V

Expectation values and (co)variances are: Elz;] =
Vieg] = Vi
COV[:B,', .’L'J = Vij .
° |n2D: 1

1v2 -

X eXp {_2(1-1_'02) [(xlglpl)? + (x'*’—a_?"—?)z — 2p (&a—;&) (x:’_;z&)] }

Correlation coefficient: » = cov[zi,z2]/(c102)
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Log-normal distribution

e |f a continuous variable y is Gaussian with mean u and variance
02, then x = exp(y) follows the log-normal distribution:

11 —(log £ — p)?
— exp ( 5

f(x;ﬁ‘a0'2) — \/27[_7 v

Expectation value and Efz] =exp(u+ 16°), V[z] = exp(2u+ o?)[exp(c?) — 1]

Vari a n Ce : http://www.pp.rhul.ac.uk/~cowan/sda/
~~ 1 T T T
Q
Note: in this notation u and B — k=0, o=t
S 08 o % --- n=0,6=1.5 -
o2 are not the mean and A 1=0, 6=0.5

variance of x, but of the 06
corresponding Gaussian o
distribution for log x.
02 H .77 TRIT o
0 e
0 1 2 3 4
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Chi-square distribution j

® The)(2 (chi-square) distribution of the continuous variable Z
(0 < 7z < o) is defined by

n/2—1 e —z/2

f(zn) = , n=1,2,...,

212 T(1n/2)

The parameter 7 is called number of degrees of freedom and the gamma

function:
0

['(x) = J e~ 1 dt
0

To calculate )(2, need to know:

I'(n) = (n — 1)! for integer n,

(x+ 1) = xl'(x) and T(1/2) =/
Expectation value and variance:

(©0)

n2-1,-22 g, —

E[z] = L Zzn/Z F(n/Z)Z

n/2—le—zl2 dZ — 5

0 1
_ 2
Viz] = L (z —n) Sl F(n/Z)Z
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Chi-square distribution i)

http://www.pp.rhul.ac.uk/~cowan/sda/

] ] ] . . /E“ 0.5 1 ﬁ
e The )(2 distribution is important due & h. The y” probability
: - = 04 L density for various & .
to its relation to the sum of “* [l valuesofthe  ——= n=2
squares of Gaussian distributed 0g [REEETEET e
random variables. Given N
independent Gaussian random 02
variables x; with known means y; 0.1 _
and variances O'iz, the variable . e
15 20
<
(Xi — ﬂi)z
= ~
Z = Z Also holds if x; are not independent but are

=1

is distributed like a y* distribution
with NV degrees of freedom.

Proof in Cowan Sec. 10.2

P
O,

N-dimensionally Gaussian distributed

— _ Ty/—1 .
g z=@—p)'V - (x ﬂ)J

Variables following a x? distribution will play an
important role in tests of goodness-of-fits!
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Cauchy (Breit-Wigner) distribution

e Cauchy or Breit-Wigner PDF of a continuous variable x

(00 < x < 00) is defined by

1 1
T 1422

Special case of Breit-Wianer distribution encountered in particle physics

http://www.pp.rhul.ac.uk/~cowan/sda/

f(z:T ) —_ _1_ 1ﬂ/z particle mass: xo 08
(a:, 0/ = T I‘2/4 + (:c — ;,;0)2 ) particle width: I < — Xp=0, I'=1
é -7 x0=2. r=1 \
06 . ' -

The expectation value and variance
are not well defined for this
distribution as the integrals

0 00
/ x f(xr)dx and / x f(x)dx are divergent 0.2
0

— 0

0.4

Use xo (= Mode) and I (= FWHM) 0
to give information about the PDF.
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Random variables in Python

W Paket numpy.random:
W binomial(n, pl[, size])
W chisquare(df], size])
¥ exponential([scale, size])
¥ lognormal([mean,
¥ sigma, size))
B multinomial(n, pvals|, size])
B multivariate_normal(mean, cov], size])
B normal([loc, scale, size])
B poisson([lam, size])
¥ power(al, size])
¥ standard_cauchy([size])
W standard_exponential([size])
¥ standard_normal([size])
W standard_t(dff, size])
W triangular(left, mode, right[, size])
W uniform([low, high, size])

https://docs.scipy.org/doc/numpy/reference/routines.random.html
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Answer Time: Quiz 2



1. Error propagation: You have 2 random variables x, o with a known covariance matrix
0.5. 0.2
U= <0.2 0.7) ’

and expectation values p; = 6 and puy = 1. You know want to determine the covariance of
two functions f; and f5 of x1 and z5 defined as

fi(z1,x2) = 21 + 22,

fo(w1,x2) = A/ 2% + 23 .

J aCObl an: Calculate the Jacobian A;; = [%} I and the covariance matrix D between f; and

fo. What is the correlation between f; and f,? Hint: Use D = ACAT.

1 1
A p— 1 o

2 2 2 2
\/ T T35 \/ T T35 T1=M1,T2=[2

New covariance:

]' 1 05 02 \/Iu%—huz

1 2

B B
Viitud A pitus | | N

1.6 0.84
0.84 0.57

Correlation:
p12 = D12// D11 /+/ D2y = 0.877. ..

D
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the Poisson parameter v, i.e. that

Property 1 of variance (L02, S35)

Recall we said it is
often easier to
compute than the

definition n=0

Hint: Use V[n] = E[n?] — (E[n])* and E[n?]
the properties of the exponential series (e7% = >° L).

2. Show that the expectation value and the variance of a Poisson random variable is given by

= En(n—1)+n|

Expectation of a sum = sum
of expectation (L02, S31)

Important property
of expectation

= E[n(n—1)] 4+ E[n] and

Solution: (sorry about the difference in notation)

v— A\, n— X, En|

— B(X)

Expected value and variance of Poisson random variables. We said that A is the expected
value of a Poisson(\) random variable, but did not prove it. We did not (yet) say what
the variance was. For the expected value, we calculate, for X that is a Poisson(\) random

variable:

|
— x!
. e\ . ..
= Z - since the x = 0 term is itself 0
T
r=1
= e A ..
= Z ( ol divided on top and bottom by x
a;' —_—
ap=Il

factor out e~ and A too

So in summary F(X) = A. For Var(X) = F(X?) — (F(X))? = E(X)(X = 1) + X) —
(EX))?*=FE(X)(X-1)+FEX)—(E(X))*=E(X)(X —1))+ X — )2 Now we calculate

~ x!
o0 —A\T
= Z(m)(w — 1)6 ' because x = 0 and x = 1 terms are themselves 0
z!
=2
o~ €T »
= ivide out by = and x —
> m=g Cvideoutd dz -1
x _—
=2
N AT ) 2
= \e Z @ —2) factor out e™* and A
z — 2)!
=2
P
2 -
=XeMNG Tt t)
_ )\26—)\6)\
= \?

In summary, Var(X) = A2 + X — A2 = \.
So both the expected value and the variance of X are equal to A.
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A brief history of Monte Carlo
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A brief history of Monte Carlo

* In 1945 two earthshaking events
took place:

The first nuclear bomb was
detonated in the Alamogordo
dessert

The first electronic computer was
built

e ENIAC (= Electronic Numerical
Integrator and Computer)

E /JO JU04j Ul Jew!‘equeddg .‘duewnJN UOA

e 20k vacuum tubes, 7200 crystal
diodes, 5M hand-soldered

connections 385 multiplication operations per second; five of the accumulators
were controlled by a special divider/square-rooter unit to perform up
® Total Welg ht: 27 tons on 167 m?2 to 40 division operations per second or three square root

operations per second.

e Your cell phone: is easily >100k
times more powerful whilst
consuming 400k times less power
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® First programmers:

Kay McNulty, Betty Jennings, Betty Snyder, Marlyn
Meltzer, Fran Bilas, and Ruth Lichterman

e First test problem: related to the the hydrogen bomb

ENIAC’s role in this made Monte Carlo (MC) methods a popular tool
to solve physics problems

® At the time scientists used massive groups to carry out calculations
(‘computers’) to investigate the distance neutrons would likely travel
through various materials (i.e., through an exploding atomic bomb)

e Easy to solve numerically, very hard analytically

e John von Neumann and Stansilaw Ulam realized that ENIAC could do
such calculations much faster using MC simulations
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Stanislaw Ulam’s brilliant idea

The first thoughts and attempts | made to practice [the Monte Carlo Method] were suggested by a question which occurred to me in 1946 as | was convalescing
from an illness and playing solitaires. The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? After
spending a lot of time trying to estimate them by pure combinatorial calculations, | wondered whether a more practical method than "abstract thinking" might not be
to lay it out say one hundred times and simply observe and count the number of successful plays. This was already possible to envisage with the beginning of the
new era of fast computers, and | immediately thought of problems of neutron diffusion and other questions of mathematical physics, and more generally how to
change processes described by certain differential equations into an equivalent form interpretable as a succession of random operations. Later [in 1946], |
described the idea to John von Neumann, and we began to plan actual calculations.is

e Being secret, the work of them needed a code
name

Nicholas Metropolis suggested using the name
Monte Carlo which refers to the Monte Carlo Casino
In Monaco, where Ulam’s uncle would borrow money
from relatives to go gamble

Monte Carlo methods became central for the
simulations required for the Manhattan project and
they became popular in other fields

e Key ingredient: sequences of (pseudo)-random
numbers

http://lib-www.lanl.gov/la-pubs/00326866.pdf
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The subrou-
tine box
below, called
from two
places,
updates the
pseudo-
random
'number used
to determine
the fates of
the simulated
neutrons.

<

subroutine

call ¢

subroutine
return

INNER LOOP: Running from 35* back to 18.0%, this loop repeats when a 1 to different loops.
neutron continues its journey within the same zone of the weapon. > ]
- G | N
: {
4 i
13
A n - N .
v » The complex formulae in 52* . ' i S
| e describe the scattering of a ‘ \
neutron after a collision. . » x
2 :
) 1 + 1 1 ¥
s — ‘l" A ) =2 = —
y ] » ~
-r -l LY
| f ; :
~ > L e > B
. (] ~ -
- t - " + _7 ')
f"_ of — ' L | r
) Y ~ O

OUTER LOOP: Boxes represent blocks of computer codes, and lines running between them represent control flows. The main
loop jumps from box 52* back to box 1°, It repeats when the neurton “escapes” from one zone of the weapon into another.

Control flows
% " o branch on the
sign of an expression.

subroutine K
call rtrn. In =¢ g: % .

’

The branches lead

-— : r A > A l

.

The program reads the details of a single simulated neutron from a punch card and traces its progress through the weapon.
The “PRINT” block defines the data format of the output card holding updated information on that neutron.




The Monte Carlo method

A numerical technique for calculating probabilities and
related quantities by using sequences of random numbers

Procedure (for the case of a single RV):

1. A series of random values ry, 15, . . . IS generated according to a uniform
distribution in the interval 0 < r < 1

_J1 O0<r<l
8(r) = 0 otherwise
2. The sequence ry, 1, ... is used to determine another sequence X, X, . ..

s.t. the x values are distributed according to a PDF f(x) of interest

The values of x can then be treated as simulated measurements, and from them the
probabilities for x to take on values in a certain region can be estimated
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Uniformly distributed random numbers

Accomplished with algorithms called random number generators

One could in principle us a random physical process (e.g., tossing coins),
but this is clearly not very practical

Simple example: Linear congruential algorithms (LCG)

Starting from an an initial integer value n, (aka the seed)
- generate a sequence of integers n, n,, . ..
- according to ;. | = (an;) mod m

T

multiplier a and modulus m are integer constants

modulo operator: remainder of an; divided by m

n; follow a periodic sequence in the range [1, m — 1]
r; = n;/m are uniformly distributed in [0, 1]

Sequence defined by a, m, Ny So not truly random — The resulting values are therefore
called pseudorandom

Periods of 10 possible with well chosen values
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Mersenne-Twister

e Based on Mersenne prime numbers

2" —1)

Fully described by 624 integer numbers, which are

used as starting values

e With these calculate n
elaborated algorithm

ew values following an

e Extremely long period of about (219937-1 =~ 16000

® Good distribution up to 623 dimensions and

performant

msb Tnteger 0 isb integer 1

624 x 32-bit integers

Integer 623
Initialize generator
 — >
/ Xi XOR
seed —
\ [ v
! X - x
A\ 6 € 0 7 8 9 6 5 ‘6C070965
5 7
| 1 / 623
/ ! v
*lneger teger 1 integer 622 integer 623
Extract number
B  ——
integer 0 integer 1 integer 623
\
— e—
XOR
i — I
|
AND XOR
9 D 2 € 5 6 8 0]— |
L )
AND ) XOR
E F C 6 0 0 0 o 1~
-
XOR
[ |
output
Generate numbers
| (M I I | I 1} O
( integer 0 “w teger 1 integer 3 . integer 397 integer 398 | integer 623 teger
‘ |
\ s |/ .
[} 0
x x F
‘QQOSBODF I‘QQOSIODF (9 9 0 8 B 0 D F
! V v
| XOR “ XOR
| VI ] S
\ YOR |

(integer 3%6)

XOR
31 e e s s i
XOR

v

integer 623
-

ri:r2:r3

Visualization of
generation of pseudo-
random 32 bit integers

using a Mersenne Twister
Wikipedia


https://en.wikipedia.org/wiki/Mersenne_Twister

How random are random numbers?

e Several stringent tests exist

G. Marsaglia: “Die-hard battery of tests of randomness” (1995)

P.L. Ecuyer and R. Simard: TestU01 (2007)

e Small crush (10 Tests), Crush (96 Tests), Big Crush (106 Tests)

http://dl.acm.org/citation.cfm?doid=1268776.1268777
® There exist more complicated generators that can pass the TestUO1
¢ Mersenne-Twister:

does not pass all tests of ‘Big Crush’
Disqualifies its use in some applications, e.g. cryptography

But: For most applications you will encounter, Mersenne-Twister is fine
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Try them (ROOT)

B TRandom: LCG

B schnell, kurze Periode: 10°

¥ niedrigste Bits nicht unkorreliert, nicht verwenden!
¥ TRandom1: RANLUX (Luscher, James '94)

B langsam, lange Periode: 10"

W Gbersteht TestUO1 Suite (auf hochstem Level)

@ http://arxiv.org/abs/hep-lat/9309020

¥ TRandom?&: Tausworthe (P.L’Ecuyer '96)
B schnell, Periodenldnge ok 10°

¥ TRandoma3: Mersenne-Twister ('98)
M hinreichend schnell, Periodenlange 1
B Default: gsRandom points to TRandoma

06000

B Methoden: Exp(tau), Integer(imax), Gaus(mean,sigma), Rndm(), Uniform(x1),
Landau(mpv, sigma), Poisson(mean), Binomial(ntot, prob) u.v.m.
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Alternative approach: Quasi-random #’s

® Pseudo-random numbers can get ‘clots’:

Lo seudo-random  Mersenne-

Quasi-random ___ gopol-

K - g A . 1.0
ST T Twister s L L Sequenz
Y . * e e - e Tt L tae L e, .’.-..' LR
T AL AL P A SRR e e e e e e
] PN I 2 L S ta ! 0.8 Tt e T T T T
R R T R R TP, OG-+ Brr e T el e I e
: e ,'_'.. .-_-....-. L. L .. cor ey Ler T et e T T e e e
dafer L e e o L T T
B I R e AT R PR RPN PR S
0'2_':.; ., '-. -X o :. ‘-'.:,. -': :':,..-:.. --:. _‘I. .,..'.. o ...~ l..'. - 0.2 1...',..: . ,:‘ :..:. ":. .'- . -::.~:- _'..' -.‘:'.‘.'.-. "'_ . -.-. .': . .-. K

3. @ et 1.-"- L ~.~“l..‘- Cd T g et s ' '--'. R I .'.-_“"_-..-‘ '.-.I. L. -‘_."‘--v:. ‘e
8.0 0.2 0.4 0.6 0.8 1.0 ) %.0 0.2 0.4 0.6 0.8 1.0

http://web.maths.unsw.edu.au/~fkuo/sobol/joe-kuo-notes.pdf

https://en.wikipedia.org/wiki/Sobol_sequence

* |nstead of aiming for a (pseudo)-randomness, try to get an
equiprobable coverage of an n-dimensional space

This is possible with Quasi-random numbers

But: Quasi-random numbers are correlated, only use for integration
applications (see later)
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The Monte Carlo method (step 2)

A numerical technique for calculating probabilities and
related quantities by using sequences of random numbers

Procedure (for the case of a single RV):

1. A series of random values ry, 1, . .. is generated according to a uniform
distribution in the interval 0 < r < 1

otherwise

2. The sequence ry, 1, ... is used to determine another sequence Xy, X, . ..
s.t. the x values are distributed according to a PDF f(x) of interest

The values of x can then be treated as simulated measurements, and from them the
probabilities for x to take on values in a certain region can be estimated
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The transformation method

Given a sequence ry, 7, ... uniformly distributed in [0,1] step1

Now =P Determine a sequence X, X,, ... distributed as PDF f(x)

In the transformation method this is accomplished by finding a suitable function x(r)
which directly yields the desired sequence when evaluated with the uniformly generated r

Values / http://www.pp.rhul.ac.uk/~cowan/sda/ \
Q 10 L Ll ¥
N
S (@)

Related to the 8r
transformation of variables
described in Cowan sec. 1.4

6 t+

4r 1

g(a')da'=[ fx)dx T

dS 0 2 4 6 8 10

\_ : _J

Here our task is to find a function x(r) that is distributed according to a specified f(x),
given that r follows a uniform distribution between 0 and 1
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Probability to obtain a value r in [r, r + dr]

'
grydr = | flx)dx

ds ) The probability to obtain a value of x in the

In order to obtain x(7) s.t. this is
true, one can require that:

~

corresponding interval [x(r), x(r) + dx(r)]
Probability thatr <r’ = Probability that x < x(r’) \
Ja » X(7)
r = g(r)dr' = J(xXNdx" = F(x(r))
J —00 —00 )

_

l.e., need to find a function x(r) such

that G(r) = F(x(r))

Since G(r) = rwith0 <r < 1:

Uniform PDF [recall lecture 2, slides 61-62]

Depending on the f(x) in question, it may or
may not be possible to solve for x(7) with

G and F are the CDFs corresponding to the PDFs g and f

But first let’s look at an example which we can solve analytically
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Exponential distribution ...asan example

~x(7) -
Fx(n)=| f&)dx'=| g(dr=r
J_ J_ oo
o 1 : i http://ww‘:’-pp-rhm-aC-'lﬁ/'*cowan/sda/
3 o
*~ 08 | Fl-s
x(r) 1 o e T =5
J _e—xflz'dx/ — r g
0 T 0.2
° 0 1 2 :.3 4 5
Integrate and )

x(r) = —7log(1 —r)

solve for x

Interpret: If 7 follows a uniform distribution between 0 and 1, then
x(r) = — rlog(1l — r) will follow an exponential distribution
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More examples of

Dreieck-Verteilung Breit-Wigner-Verteilung
flx) = 2z 0<2<1 fr) = 1 (T/2)?
z(r) = Jr /2 22+ (['/2)?

I' 1
| x(r) = ——tan |7w(r— =
fl) = (n+1Dz2" 0<z<1,n>-1 ) 2 {( Qﬂ
z(r) = pt/tY)
Log-Weibull-Verteilung
Exponentialverteilung T
flz) = ~e® fle) = "
or) — 1 (1 — ») z(r) = —In(—Inr)
B

Paar von Gaul3-Zahlen

1 2 142 Anmerkung:
flz,y) = —exp [_ t Ty ] r kann auch durch
2 2 1-r ersetzt werden

x(ri,m) = +/2In(r; — 1) cos(2mry)
y(ri,ro) = /2In(r; — 1) sin(27ry)

z.B. Bohm/Zech Abschnitt 4.2
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Acceptance-rejection method

The distribution of the scattering angle € in the

However, as we just said, it is often too difficult to reaction ¢ e™ — y "y~ with x = cos @
' 3
solve for x(r) analytically, so... Fx) = g(l i) —l<x<l

http://www.pp.rhul.ac.uk/~cowan/sda/

1) Generate a random number x, uniformly
distributed between x, . and x, .

A = Xpin T r 1 ('xmax _ xmin)

(r is uniformly distributed between 0 and 1)

2) Generate a second independent
random number u uniformly distributed
between 0 and f,

max-

U= r2fmax

3) If u < f(x), then accept x. If not, reject
X and repeat

A normalized histogram constructed from the accepted points
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How accurate is MC integration?

Ratio of and < NaN N =N, +N.,
rejected+ a T Ny
values proportionalto | f(x)dx naive error propagation

assuming Gaussian (\/ V) errors

= MC Integration L\ Y —. N e [

(NQ+NT)4 a (Na‘i‘NT’) N +N

dropping all higher order terms and use Na+ Nr= Na for large N

3.22

3.2

3.18

3.16

3.14

3.12

3.1

3.08

3.06

|l|I|IlIIllllIIIIIlllllllllllllllllllll

3'04 1 IIIIII]| 1 | I I .| 1 III|I|II 1 | A N ) A |
102 10° 10* 10°

0.0 0.2 0.4 0.6 0.8 1.0 Converges as ~ 1/\/N for |arge N
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Other methods to increase performance

o [f integration is the goal:

Subtract known analytical function f(x) that approximates g(x)

® (Can use analytical expression for part of the integral

b b b
g)dx = | fdx+ [ [gx)—fx)|dx

va vda va

Stratified sampling

® |ncrease sampling rate in regions of interest to increase precision there
(e.g. in tails of distributions if such are relevant for what you are doing)
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Examples of MC in HEP






Application examples:

e (Calculation of a collision cross section

Need to calculate matrix elements, flow factors and phase space

Dy, Iy P3, My

Matrixelement >©<
pn+2 m

(27.(.)4|M|2 Py, M, > 2
4\/(p1p2)2 — m%m% Flussfaktor

Xd®, (p1 + p2;p3...Dn+2)

Phasenraum

do =

Multidimensional integral, often no analytical calculation possible

In case of hadron collisions (e.g. LHC): need to integrate over parton
density functions that describe the momentum distribution of quarks
inside a proton (or anti-proton)

Z / dxldefi ($1, QQ)fj ($27 Q2)6(Q2)
]

Modern Methods of Data Analysis I 64



Application examples

® Finite resolution of a detector can be described via a folding integral:

Instead of true value x, one measures a smeared out value x’

e The resolution can be described via a function #(x, x) and a given distribution
f(x) is measured as

o0
J&) =1 1xx)f(x)dx
— OO0
In practice measured distributions are smeared out by a large number of
iIndividual processes

® |Intrinsic resolution of the detector, electronic noise, digitization fragments, and
other systematic shifts. The integral is not one-dimensional but a multi-
dimensional entity

¢ (Can simulate such effects one-by-one in MC simulations and the calculation
of this integral becomes to the task of adding up random variables.
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For next time

* Required reading
Cowan textbook: chapters 2 & 3

Lista textbook: chapter 4
Reading material / LO3 / WhyTheNormalDistribution?

e Extra reading for fun: /Reading material / LO3 /

InfoTheoryAndMaxEntropy
IntroQuasiRandomNumbers
TheBeginningOfTheMCMethod
TheEvolutionOfTheNormalDistribution
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Next time

* Introduction to parameter estimation
General concept of parameter estimation

Introduction into the method of Maximum Likelihood

18000 T | T T T T | T T T T T | T T T T

T T T T | T T T
¢+ Data ATLAS
------ Background {s =13 TeV, 36.1 fb"

—— Signal + Background m,, = 125.09 GeV
—— Signal

16000

Events / GeV

14000

Diphoton fiducial

12000

10000

8000

6000

4000

2000

400
300
200
100

Events - fitted bkg

Modern Methods of Data Analysis I 67



Quiz Time: 3 Round



MC method

How would you write an algorithm to integrate a muilti-

dimensional function (of dimensionality /V) using the

‘acceptance-rejection’ method?

Address In particular: what ingredients you need and
sketch out the algorithm explicitly.
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KCETA Colloquium

Exploring new horizons with flavour at the
LHCDb experiment

Thursday, May 11, 2023
Kleiner Horsaal A (CS) 15:45 -17:00

Vitalii Lisovskyi
(Ecole Polytechnique Fédérale de Lausanne (EPFL))

The recent decade has seen rapid developments
in heavy-flavour physics. Among others, the LHCb
experiment has delivered a number of important
results. Precision studies of beauty and charm
hadrons, their properties and decays, have not
only improved our understanding of the flavour
structure of the Standard Model, but also revealed
a number of intriguing anomalies. This talk will
present highlights from the LHCb experiment,
highlighting the status of the recent anomalies in
heavy-flavour decays.

Please note:
The colloquium will also be live-streamed to B401 SR 410 (CN).

KIT Center Elementary Particle and Astroparticle Physics (KCETA) *‘(I I
[ Q)

www.kceta.kit.edu My .
Karlsruher Institut fir Technologie
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