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Modern Methods of Data Analysis

• What goes into such fits?
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Figure 22: Diphoton invariant mass m�� spectrum observed in the 2015 and 2016 data at
p

s = 13 TeV for events
in the diphoton fiducial region. The solid red curve shows the fitted signal-plus-background model when the
Higgs boson mass is constrained to be 125.09 ± 0.24 GeV. The background component of the fit is shown with
the dotted blue curve. The signal component of the fit is shown with the solid black curve. The bottom plot
shows the residuals between the data and the background component of the fitted model.

The cross section for pp ! H ! �� measured in the diphoton fiducial region is

�fid = 55 ± 9 (stat.) ± 4 (exp.) ± 0.1 (theo.) fb ,

which is to be compared with the Standard Model prediction of 64 ± 2 fb. The gluon–gluon fusion
contribution to the Standard Model prediction and its uncertainty are taken to be the N3LO QCD
and NLO EW prediction of Refs. [7, 24, 31–34] corrected for the H ! �� branching ratio and the
fiducial acceptance. The fiducial acceptance is defined using the P����� NNLOPS prediction for
gluon–gluon fusion [23]. The contributions to the Standard Model prediction from the VBF, VH,
bb̄H and tt̄H production mechanisms are determined using the particle-level predictions normalized
with theoretical calculations as discussed in Section 4, and are collectively referred to as XH. The
measured cross section is compatible with the Standard Model prediction and the observed ggH
coupling strength measured in Section 8, as the diphoton fiducial region is dominated by gluon–gluon
fusion production.
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• First part of lecture: general 
concepts of parameter 
estimation


• Second part: the method of 
maximal likelihood
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• Consider  variables 


•  are independent and identically distributed (i.i.d.) if 


•  are independent, and


• all have the same PMF (if discrete) or PDF (if continuous)


•  for 


•  for 

n X1, X2, . . . , Xn

X1, X2, . . . , Xn

X1, X2, . . . , Xn

E[Xi] = μ i = 1, . . . , n

Var[Xi] = σ2 i = 1, . . . , n

3

i.i.d. random variables

Quick check:  Are  i.i.d. with the following distributions?


1.  independent


2.  independent


3. 


4.  independent 

X1, X2, . . . , Xn

Xi ∼ Exp(τ), Xi

Xi ∼ Exp(τi), Xi

Xi ∼ Exp(τ), X1 = X2 = ⋅ ⋅ ⋅ = Xn

Xi ∼ Bin(ni, p), Xi

dependent!  ( )x1 = x2 = . . . = xn

(unless  equal) τi

(unless  equal) ni

Review
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Working with the CLT

Let  be i.i.d., where  and .
X1, X2, . . . , Xn E[Xi] = μ Var[Xi] = σ2

1
n

n

∑
i=1

Xi ∼ 𝒩(μ,
σ2

n
)

n

∑
i=1

Xi ∼ 𝒩(nμ, nσ2)
Sum of i.i.d. RVs

Average of i.i.d. RVs 
(sample mean)

Interpret: As we increase  
(the size of our sample):

• The variance of our sample 

mean  decreases

• The probability that our 

sample mean  is close to 
the true mean  increases

n

σ2 /n

X̄
μ

Review

As :n → ∞
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CLT: Key take home message

No matter what the distribution of the population is, the distribution of mean 
samples from the population will always be Normally distributed

i.e., No matter what the distribution of the sample is, if you sample batches of data 
from that distribution and take the mean of each batch, the mean values from 
those batches will be Normally distributed

Review

https://en.wikipedia.org/wiki/Central_limit_theorem#/media/File:IllustrationCentralTheorem.png
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• Central Limit Theorem: 

• Sample mean 


• If we know  and , we can compute probabilities on the sample mean  of a given 
sample size 


• In real life: 
• Yes, the CLT still holds…


• But we often don’t know  or  of our original distribution


• However, we can collect data (a sample of size )


• Question: How can we estimate the values  or  from our sample? 

• Answer: Parameter estimation! 

X̄ ∼ 𝒩(μ, σ2/n)
μ σ2 X̄
n

μ σ2

n

μ σ2

6

The CLT and real life Review
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Parameter estimation:  General concepts (i)

Take RV  described by PDF X f(x) the set of all possible values of S = X

 independent observations of  
= sample of size 

n X
n

set of all possible values for the 
-D vector  

S =
n X = (X1, X2, . . . , Xn)

Can be understood as a single random 
experiment with  measurementsn

Since it is assumed that the observations are all independent 
and that each  are described by the same PDF  Xi f(x)

The joint PDF of such a sample

fsample(x1, . . . , xn) = f(x1)f(x2) . . . f(xn)

What if we don’t know ?f(x) Central problem of statistics: 
use  to learn properties of x f(x)
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The RVs we have been discussing are parametric models: 

Distribution = model + parameter θ

For each of the distributions below, what are the parameters  ?θ
1. Ber 

2. Poi 

3. Uni 

4. 

5. 

(p)
(λ)
(α, β)

𝒩(μ, σ2)
Y = mX + b

 
 

 
 

 

θ = p
θ = λ
θ = (α, β)
θ = (μ, σ2)
θ = (m, b)

In the real world, we 
don’t know the true 
parameters, but we do 
get to observe data

Parameter estimation:  General concepts (ii)

Goal: construct a function of observed  to estimate x θ

In general: consider a random variable  distributed according to a PDF 


• The functional form of  is known


• The value of at least one parameter  (or parameters ) is not known

X f(x; θ)
f(x; θ)

θ θ = (θ1, . . . , θm)
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def statistic 
≡

9

Key definitions: Statistic & Estimator

A function of the observed measurements which 
contains no unknown parameters.

A statistic used to estimate some property 
of a PDF (e.g., , , or other parameter).μ σ

def estimator ≡

̂μ =
1
n

n

∑
i=1

xîμ ̂μ ̂μ

‘hatted’ sample parameter =  
Parameter we determine using observations

=
1

n − 1

n

∑
i=1

(xi − ̂μ)2̂σ2 ̂μ

Population parameter = 
true parameter in PDF 
(May forever remain unknown)

lim
n→∞

̂θ = θ̂θ

Use observations to 
construct functions that 
estimate properties of PDFs

x̄ s2 x̄
(Cowan notation)

If limit converges, 
estimator is consistent
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Parameter fitting

Estimating  from given data :  parameter fittinĝθ x

i.e. if the entire experiment  is repeated,  would 

change and be described according to PDF 

x = (x1, . . . xn) ̂θ
g( ̂θ; θ)

Since  is a function of RVs  it is itself a RV̂θ ⇒

Depends on true value

Sampling distribution 
(The PDF of a statistic)
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Expectation value of Estimator ̂θ

General:   is a function of RVs distributed according to a(x) f(x)

Eqn. 1.44, CowanE[a(x)] = ∫
∞

−∞
ag(a)da != ∫

∞

−∞
a(x)f(x)dx

Interpret: This is the expected mean of  from an infinite # of 
similar experiments, each with a sample of size 

̂θ
n

multiply 
by a

ag(a)da = a∫dS
f(x)dx

Integrate 
over dS

∫
∞

−∞
ag(a)da = ∫

∞

−∞
af(x)dx g(a)da = ∫dS

f(x)dx

Since

 E[ ̂θ(x)] = ∫ ̂θg( ̂θ; θ)d ̂θ = ∫ ⋅ ⋅ ⋅ ∫ ̂θ(x)f(x1; θ) ⋅ ⋅ ⋅ f(xn; θ)dx1 ⋅ ⋅ ⋅ dxn

Thus (replacing  with )a ̂θ
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Bias & mean squared error (MSE)

— does NOT depend on the measured values of the sample

— does depend on the sample size ( ), functional form of , and properties of n ̂θ f(x)

Note:  can be biased, 
even if it’s consistent

̂θ

b = E[ ̂θ] − θ
Bias of an estimator

Measures of the 
quality of an estimator 

                             = V[ ̂θ] + b2 i.e., sum of 
variance and bias2

Interpret: sum of squares of statistical and systematic uncertainties

MSE = E [( ̂θ − θ)
2] = E [( ̂θ − E[ ̂θ])

2] + (E[ ̂θ − θ])
2

If  independent of , and b n b = 0
If     dependent of , andb n lim

n→∞
b = 0

 unbiased⇒ ̂θ
 asymptotically unbiased⇒ ̂θ
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Estimator for mean

Need:  a function of the  to be an estimator for the expectation 
value (population mean) of , .

xi
x μ

x̄ =
1
n

n

∑
i=1

xi

sample mean 
(not population mean)

Important property given by the weak law of large #’s:  
If the variance of  exists, then  is a consistent 

estimator for the population mean 
x x̄

μ

i.e., for , 
 converges to 

n → ∞
x̄ μ

Suppose:  sample of size  of RV  with values n X x1, x2, . . . , xn

Assume:   is distributed according to some PDF X f(x)
unknown 
(even as a parameterization)

E[x̄] = E [ 1
n

n

∑
i=1

xi] =
1
n

n

∑
i=1

E[xi] =
1
n

n

∑
i=1

μ = μExpectation value 
of estimator x̄

= nμ
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Estimators for variance

If the mean  is unknown, the statistic  is an unbiased estimator of the variance μ s2 σ2

population mean sample variance population variance

Included so that E[s2] = σ2

i.e., so that the sample variance is an unbiased 
estimator for the population variance 

s2 =
1

n − 1

n

∑
i=1

(xi − x̄)2

sample mean 

If the mean  is known, the statistic  is an unbiased estimator of the variance μ S2 σ2

big S

S2 =
1
n

n

∑
i=1

(xi − μ)2
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Proof of unbiased estimators for variance
Quiz questions

Unbiased estimators

1. Show that the sample variance s2 and the statistic S2 are unbiased estimators of the popu-
lation variance �2 with

s2 =
1

n� 1

nX

i=1

(xi � x̄)2 and S2 =
1

n

nX

i=1

(xi � µ)2 . (1)

with x̄ denoting the sample mean and µ being the population mean. I.e. if one does not
know the population mean and needs to estimate it from the sample via x̄, one has to use
s2 to obtain an unbiased estimator for the population variance.

Hint: Solve the following partial problems first

a) First show that E[x2
i ] = �2 + µ2 using E[xi] = µ and Var[xi] = E[(xi � E[xi])

2] = �2.
Remember that E[c · xi] = c · E[xi].

b) Second show that V [x̄] = E[x̄2]� (E[x̄])2 = E[
�
1
n

Pn
i=1 xi

� ⇣
1
n

Pn
j=1 xj

⌘
]� µ2 = �2

n

c) Now we are ready to evaluate E[
Pn

i=1 (xi � x̄)2]:

Keep in mind that E[
Pn

i=1 x̄] =
Pn

i=1 E[x̄] = nx̄ and that
Pn

i=1 xi = nx̄.

d) The analogous calculation for S2 should now be simple.

Proofs: (we omitted all indices in the sums for brevity)

a) E[x2
i ]� 2µE[xi] + µ2 = E[x2

i ]� µ2 = �2 ! E[x2
i ] = �2 + µ2 ⇤

b) V [x̄] = E[
�
1
n

P
i xi

� ⇣
1
n

P
j xj

⌘
]�µ2 = 1

n2

P
ij E[xixj]�µ2 = 1

n2 ((n2 � n)µ2 + n (µ2 + �2))�
µ2 = 1

n2 ((n2 � n2 + n� n)µ2 + n�2) ! V [x̄] = �2

n ⇤
c) E[

P
i (xi � x̄)2] = E[

P
i x

2
i � 2x̄

P
i xi + nx̄] = E[

P
i x

2
i ]� nE[x̄2].

With the results from a) and b) we now get nE[x̄2] = n
⇣

�2

n + µ2
⌘

= �2 + nµ2 and

E[
P

i x
2
i ] =

P
i E[x2

i ] = n (�2 + µ2).

! E[
P

i (xi � x̄)2] = n (�2 + µ2)� �2 � nµ2 = (n� 1) �2. Thus

E[s2] = E[
1

n� 1

X

i

(xi � x̄)2] = �2 ⇤

d) Using all results we find E[
P

(xi � µ)2] =
P

E[x2
i ] � nµ2 = n (�2 + µ2) � nµ2 = n�2.

Thus

E[S2] = E[
1

n

nX

i=1

(xi � µ)2] = �2 ⇤

Quiz questions

Unbiased estimators

1. Show that the sample variance s2 and the statistic S2 are unbiased estimators of the popu-
lation variance �2 with

s2 =
1

n� 1

nX

i=1

(xi � x̄)2 and S2 =
1

n

nX

i=1

(xi � µ)2 . (1)

with x̄ denoting the sample mean and µ being the population mean. I.e. if one does not
know the population mean and needs to estimate it from the sample via x̄, one has to use
s2 to obtain an unbiased estimator for the population variance.

Hint: Solve the following partial problems first

a) First show that E[x2
i ] = �2 + µ2 using E[xi] = µ and Var[xi] = E[(xi � E[xi])

2] = �2.
Remember that E[c · xi] = c · E[xi].

b) Second show that V [x̄] = E[x̄2]� (E[x̄])2 = E[
�
1
n

Pn
i=1 xi

� ⇣
1
n

Pn
j=1 xj

⌘
]� µ2 = �2

n

c) Now we are ready to evaluate E[
Pn

i=1 (xi � x̄)2]:

Keep in mind that E[
Pn

i=1 x̄] =
Pn

i=1 E[x̄] = nx̄ and that
Pn

i=1 xi = nx̄.

d) The analogous calculation for S2 should now be simple.

Proofs: (we omitted all indices in the sums for brevity)

a) E[x2
i ]� 2µE[xi] + µ2 = E[x2

i ]� µ2 = �2 ! E[x2
i ] = �2 + µ2 ⇤

b) V [x̄] = E[
�
1
n

P
i xi

� ⇣
1
n

P
j xj

⌘
]�µ2 = 1

n2

P
ij E[xixj]�µ2 = 1

n2 ((n2 � n)µ2 + n (µ2 + �2))�
µ2 = 1

n2 ((n2 � n2 + n� n)µ2 + n�2) ! V [x̄] = �2

n ⇤
c) E[

P
i (xi � x̄)2] = E[

P
i x

2
i � 2x̄

P
i xi + nx̄] = E[

P
i x

2
i ]� nE[x̄2].

With the results from a) and b) we now get nE[x̄2] = n
⇣

�2

n + µ2
⌘

= �2 + nµ2 and

E[
P

i x
2
i ] =

P
i E[x2

i ] = n (�2 + µ2).

! E[
P

i (xi � x̄)2] = n (�2 + µ2)� �2 � nµ2 = (n� 1) �2. Thus

E[s2] = E[
1

n� 1

X

i

(xi � x̄)2] = �2 ⇤

d) Using all results we find E[
P

(xi � µ)2] =
P

E[x2
i ] � nµ2 = n (�2 + µ2) � nµ2 = n�2.

Thus

E[S2] = E[
1

n

nX

i=1

(xi � µ)2] = �2 ⇤

Now you’ve proved to 
yourself when to use 

 and : 

 if population mean is 
known


 if population 

mean is unknown and 
has to be estimated

n n − 1

n

n − 1

Review proofs at home:  ILIAS: /Reading material / 
L04 / UnbiasedEstimators
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• Similarly one can show that this expression is an unbiased 
estimator for the covariance of two random variables  and :


• This can be normalized by the square-root of the estimators of the 
sample variance  and 

x y

sx sy

16

Estimator for covariance

Estimators for mean, variance, covariance 67 

in the sense of probability, cf. equation (5.2). A proof can be found in [Bra92]. 
The condition on the existence of the variance implies, for example, that the law 
does not hold if x follows the Cauchy distribution (2.40). In that case, in fact, 
one can show that x has the same p.d.f. as x for any sample size. In practice, 
however, the variances of random variables representing physical quantities are 
always finite (cf. Section 2.9) and the weak law of large numbers therefore holds. 

The expectation value of the sample mean E[x] is given by (see equation 
(5.3) ) 

[
1 n lIn 1 n 

E[x] = E Xi = -;; E[Xi] = -;; J.l = J.l, (5.7) 

sInce 

(5.8) 

for all i. One sees from equation (5.7) that the sample mean x is an unbiased 
estimator for the population mean J.l. 

The sample variance 8 2 is defined by 

2 1 L:n 
-2 n - 2 

8 = -- (Xi-X) = --(x2 -x). 
n-l - n-l 

i=l 
(5.9) 

The expectation value of 8 2 can be computed just as was done for the sample 
mean x. The factor 1/( n - 1) is included in the definition of 8 2 so that its 
expectation value comes out equal to (T2, i.e. so that 8 2 is an unbiased estimator 
for the population variance. If the mean J.l is known, then the statistic 52 defined 
by 

(5.10) 

is an unbiased estimator of the variance (T2. In a similar way one can show that 
the quantity 

'" 1 Ln 
n Vxy = -- (Xi - X)(Yi - II) = -- (xy - xy) 

n-l n-l 
i=l 

(5.11) 

is an unbiased estimator for the covariance VIy of two random variables X and y 
of unknown mean. This can be normalized by the square root of the estimators 
for the sample variance to form an estimator r for the correlation coefficient p 
(see equation (1.48); in the following we will often drop the subscripts xy; i.e. 
here r = r xy ) : 

68 General concepts of parameter estimation 

Vxy r=-- = 
SxSy 

xy-xy 
(5.12) 

Given an estimator B one can compute its variance V[8] = E[82] - (E[8])2. 
Recall that V[8] (or equivalently its square root 0"8) is a measure of the variation 
of 8 about its mean in a large number of similar experiments each with sample 
size n, and as such is often quoted as the statistical error of B. For example, the 
variance of the sample mean x is 

(5.13) 

where 0"2 is the variance of f(x), and we have used the fact that E[XiXj] = /12 

for i =I j and E[xrJ = /1 2 + 0"2. This expresses the well-known result that the 
standard deviation of the mean of n measurements of x is equal to the standard 
deviation of f(x) itself divided by ...;n. 

In a similar way, the variance of the estimator s2 (5.9) can be computed to 
be 

2 1 ( n - 3 2) V[s ] = - /14 - --J.l2 , n n-1 
(5.14) 

where /1k is the kth central moment (1.42), e.g. /12 = 0"2. Using a simple gener-
alization of (5.9), the /1k can be estimated by 

(5.15) 

The expectation value and variance of the estimator of the correlation coef-
ficient r depend on higher moments of the joint p.d.f. f(x, y). For the case of 
the two-dimensional Gaussian p.d.f. (2.30) they are found to be (see [Mui82] and 
references therein) 

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Variance of sample mean 


• where  is the variance of  and we have used  for  and 



• In a similar way one can show that the variance of  is

x̄

σ2 f(x) E[xixj] = μ2 i ≠ j
E[x2

i ] = μ2 + σ2

s2

17

Variance of estimators

68 General concepts of parameter estimation 

Vxy r=-- = 
SxSy 

xy-xy 
(5.12) 

Given an estimator B one can compute its variance V[8] = E[82] - (E[8])2. 
Recall that V[8] (or equivalently its square root 0"8) is a measure of the variation 
of 8 about its mean in a large number of similar experiments each with sample 
size n, and as such is often quoted as the statistical error of B. For example, the 
variance of the sample mean x is 

(5.13) 

where 0"2 is the variance of f(x), and we have used the fact that E[XiXj] = /12 

for i =I j and E[xrJ = /1 2 + 0"2. This expresses the well-known result that the 
standard deviation of the mean of n measurements of x is equal to the standard 
deviation of f(x) itself divided by ...;n. 

In a similar way, the variance of the estimator s2 (5.9) can be computed to 
be 

2 1 ( n - 3 2) V[s ] = - /14 - --J.l2 , n n-1 
(5.14) 

where /1k is the kth central moment (1.42), e.g. /12 = 0"2. Using a simple gener-
alization of (5.9), the /1k can be estimated by 

(5.15) 

The expectation value and variance of the estimator of the correlation coef-
ficient r depend on higher moments of the joint p.d.f. f(x, y). For the case of 
the two-dimensional Gaussian p.d.f. (2.30) they are found to be (see [Mui82] and 
references therein) 

68 General concepts of parameter estimation 

Vxy r=-- = 
SxSy 

xy-xy 
(5.12) 

Given an estimator B one can compute its variance V[8] = E[82] - (E[8])2. 
Recall that V[8] (or equivalently its square root 0"8) is a measure of the variation 
of 8 about its mean in a large number of similar experiments each with sample 
size n, and as such is often quoted as the statistical error of B. For example, the 
variance of the sample mean x is 

(5.13) 

where 0"2 is the variance of f(x), and we have used the fact that E[XiXj] = /12 

for i =I j and E[xrJ = /1 2 + 0"2. This expresses the well-known result that the 
standard deviation of the mean of n measurements of x is equal to the standard 
deviation of f(x) itself divided by ...;n. 

In a similar way, the variance of the estimator s2 (5.9) can be computed to 
be 

2 1 ( n - 3 2) V[s ] = - /14 - --J.l2 , n n-1 
(5.14) 

where /1k is the kth central moment (1.42), e.g. /12 = 0"2. Using a simple gener-
alization of (5.9), the /1k can be estimated by 

(5.15) 

The expectation value and variance of the estimator of the correlation coef-
ficient r depend on higher moments of the joint p.d.f. f(x, y). For the case of 
the two-dimensional Gaussian p.d.f. (2.30) they are found to be (see [Mui82] and 
references therein) 

Expectation values 17 

The expectation value of x (also called the population mean or simply the mean 
of x) is often denoted by J1.. Note that E[ x] is not a function of x, but depends 
rather on the form of the p.d.f. f(x). If the p.d.f. f(x) is concentrated mostly in 
one region, then E[x] represents a measure of where values of x are likely to be 
observed. It can be, however, that f(x) consists of two widely separated peaks, 
such that E[x] is in the middle where x is seldom (or never) observed. 

For a function a(x), the expectation value is 

E[a] = 1: ag(a)da = 1: a(x)f(x)dx, (lAO) 

where g(a) is the p.d.f. of a and f(x) is the p.d.f. of x. The second integral is 
equivalent; this can be seen by mUltiplying both sides of equation (1.30) by a 
and integrating over the entire space. 

Some more expectation values of interest are: 

(1.41) 

called the nth algebraic moment of x, for which J1. = is a special case, and 

(1.42) 

called the nth central moment of x. In particular, the second central moment, 

(1.43) 

is called the population variance (or simply the variance) of x, written u 2 or 
V[x]. Note that E[(x - E[x])2] = E[x2] - J1.2. The variance is a measure of how 
widely x is spread about its mean value. The square root of the variance u is 
called the standard deviation of x, which is often useful because it has the same 
units as x. 

For the case of a function a of more than one random variable x = (Xl, ... , xn ), 

the expectation value is 

E[a(x)] 1: ag(a)da 1: .. ·1: a(x)f(x)dxI ... dxn = J1.a, (1.44) 

where g(a) is the p.d.f. for a and f(x) is thejoint p.d.f. for the Xi. In the following, 
the notation J1.a = E[a] will often be used. As in the single-variable case, the two 
integrals in (1.44) are equivalent, as can be seen by multiplying both sides of 
equation (1.33) by a and integrating over the entire space. The variance of a is 

Central moments

This expresses the well-
known result that the 

standard deviation of the 
mean of  measurements of 

 is equal to the standard 
deviation of  itself 

divided by . 

n
x

f(x)
n

Now were talking about the variance 
of the estimators we just defined

This was step b) in the proof on slide 15

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• The expectation value and variance of the correlation coefficient r 
depend on higher moments of the joint PDF f(x, y)

18

Expectation value and variance of correlation

Estimators for mean, variance, covariance 69 

(5.16) 

(5.17) 

Although the estimator r given by equation (5.12) is only asymptotically unbi-
ased, it is nevertheless widely used because of its simplicity. Note that although 
VXy , and s; are unbiased estimators of Vxy , 0-; and 0-;, the nonlinear function 
VXy/(sxSy) is not an unbiased estimator of Vxy/(o-xo-y) (cf. Section 6.2). One 
should be careful when applying equation (5.17) to evaluate the significance of 
an observed correlation (see Section 9.5). 

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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1) Generate  uniform random numbers in intervals of 


• Denote these as 


2) Evaluate the function we wish to integrate: 


3) Generate another random number  between 0 and 


• Reject the event if ; otherwise accept


4) Repeat 1- 3


The integral is then given by total number of accepted events divided by the total 

number of tried events

N [xi
min, xi

max]

u = (u1, u2, . . . , uN)

f(u1, u2, . . . , uN)

ν fmax

ν > f(u1, u2, . . . , uN)

Monte Carlo method recap

20

How would you write an algorithm to integrate a multi-dimensional function (of 
dimensionality ) using the ‘acceptance-rejection’ method? Address in 
particular: what ingredients you need and sketch out the algorithm explicitly. 

N



Take 5



Likelihood (function)
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PDF  Likelihood  (Interpretation)→

P(m |mt) =
1

2πσ2
m

e
−i(m − mt)2

2σ2m

measured 
value

true value

rms deviation  


The probability density 
for obtaining the value  
given the true mass  

m
mt

Suppose a measurement of the mass  of an elementary particle yields the value 
, and it is known that the measuring apparatus yields values normally 

distributed about the unknown true mass , with a known rms deviation 

m
m0

mt σm

https://www.astro.princeton.edu/~strauss/AST303/bayesian_paper.pdf

ℒ(m0 |mt) =
1

2πσ2
m

e
−i(m0 − mt)2

2σ2m

By writing  instead of  
we draw attention to the 
fact that we are 
considering its behavior 
for different values of  
given the particular 
measured datum 

ℒ P

mt

m = m0

= N(mt, σm)

ILIAS /Reading material /L04 /WhyIsntEveryPhysicistABayesian_RCousins.pdf

Interpret: 
 is the probability, under the 

assumption of the theory ( ), 
to observe the data which 
were actually observed ( ) 

𝓛
mt

m0

=truet

=theoryt

https://www.astro.princeton.edu/~strauss/AST303/bayesian_paper.pdf
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Recall Bayes’ Theorem terminology

P(F |E) =
P(E |F) P(F)

P(E)

priorlikelihood

posterior

normalization constant

Review

Where’s ? 𝓛



Modern Methods of Data Analysis 25

Likelihood function

The probability that  in  for all xi [xi, xi + dxi] i =
n

∏
i=1

f(xi; θ)dxi

Under the assumption of the hypothesis , including the value of f(x; θ) θ

ℒ(θ) =
n

∏
i=1

f(xi; θ)

parameter(s) we wish to estimate

PDF of x

Since the  do not depend on the parameter dxi θ

This is the joint PDF for the , although it is treated as 
a function of the parameter  (i.e., it’s really ). 

The , on the other hand, are treated as fixed (i.e., the 
experiment is over). 

xi

θ ℒ(xi; θ)
xi
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Maximum likelihood estimation (MLE)

Maximum likelihood estimation is just a 
systematic way of searching for the parameter 
values of our chosen distribution that maximize 
the probability of observing the data that we 
observe

i.e., we have the data but want to learn about the 
model, specifically the model’s parameters. 
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Maximum likelihood estimators

def maximum likelihood estimators for the parameters ≡
those which 
maximize the 
likelihood function

∂ℒ
∂θi

= 0, i = 1,...,m
Often not so easy…

log ℒ(θ) = log (
n

∏
i=1

f(xi; θ)) =
n

∑
i=1

log f(xi; θ)

Solution: Take the logarithm 

 Monotonically increasing (param. val. which maximizes , maximizes )  
 exponentials in  are converted into simple factors 
 

→ 𝓛 log 𝓛

→ f
→ ∏ ⇒ ∑
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• A sample of 50 observations (shown as tick marks) of a Gaussian random variable.  

• Left: mean and width parameters that maximize the ML (solid shows estimated, dashed 
shows true PDF)


• Right: The PDF evaluated with parameters far from the true values, giving lower likelihoods

28

Good vs. bad ML estimates

log L=41.2 (ML fit) (a) 
log L=41.0 (true parameters) 

4 

2 

o 
-0.2 o 0.2 0.4 0.6 

x 

4 

2 

o 
-0.2 

log L=13.9 
log L=18.9 

o 

ML estimators 71 

(b) 

0.2 0.4 0.6 

x 

Fig. 6.1 A sample of 50 observations of a Gaussian random variable with mean J1. = 0.2 and 
standard deviation cr = 0.1. (a) The p.d.f. evaluated with the parameters that maximize the 
likelihood function and with the true parameters. (b) The p.d.f. evaluated with parameters far 
from the true values, giving a lower likelihood. 

With this motivation one defines the maximum likelihood (ML) estimators 
for the parameters to be those which maximize the likelihood function. As long as 
the likelihood function is a differentiable function of the parameters (}1, ... , (}m, 
and the maximum is not at the boundary of the parameter range, the estimators 
are given by the solutions to the equations, -. 

oL 
O(}i =_ 0, i = 1, ... , m. (6.3) 

If more than one local maximum exists, the highest one is taken. As with other 
types of estimators, they are usually written with hats, 8 = ({h, ... , 8m ), to dis-
tinguish them from the true parameters (}i whose exact values remain unknown. 

The general idea of maximum likelihood is illustrated in Fig. 6.1. A sample 
of 50 measurements (shown as tick marks on the horizontal axis) was generated 
according to a Gaussian p.d.f. with parameters J.l = 0.2, (J' = 0.1. The solid 
curve in Fig. 6.1(a) was computed using the parameter values for which the 
likelihood function (and hence also its logarithm) are a maximum: fl = 0.204 and 
U = 0.106. Also shown as a dashed curve is the p.d.f. using the true parameter 
values. Because of random fluctuations, the estimates fl and u are not exactly 
equal to the true values J.l and (J'. The estimators fl and u and their variances, 
which reflect the size of the statistical errors, are derived below in Section 6.3. 
Figure 6.1(b) shows the p.d.f. for parameters far away from the true values, 
leading to lower values of the likelihood function. 

The motivation for the ML principle presented above does not necessarily 
guararitee any optimal properties for the resulting estimators. The ML method 
turns out to have many advantages, among them ease of use and the fact that 
no binning is necessary. In the following the desirability of ML estimators will 

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Maximum likelihood estimator

Read up on Gaussian example 
at home (pg74, Cowan)

log ℒ(τ) =
n

∑
i=1

log f(ti; τ) =
n

∑
i=1

(log
1
τ

−
ti
τ )

Given:  The proper decay times of unstable particles of a certain type have 
been measured for  decays, yielding values 


Choose:  The exponential PDF with mean  as a hypothesis for the 
distribution of  


Task:  Estimate the value of the parameter 

n ti, . . . tn

τ
t

τ

∂ log ℒ(τ)
∂τ

= 0Maximize 
 w.r.t.  log 𝓛 τ

f(t; τ) =
1
τ

e−t/τ

 Exponential 
distribution…an example

̂τ =
1
n

n

∑
i=1

ti
Gives the ML 
estimator  ̂τ

E[ ̂τ(t1, t2, . . . , tn)] =
1
n

n

∑
i=1

τ = τ

 is an unbiased estimator for ̂τ τ
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Variance of ML estimators

So far: Method to determine  via ML and get θ ̂θ

Now:   What is the variance of  ?̂θ
i.e., if we repeat our experiment a 
large number of times, how widely 
spread out would  be?̂θ

3 methods:

1. Analytical calculation of 

2. MC method

3. RCF bound / graphical technique

V[ ̂θ]

f(t; τ) =
1
τ

e−t/τ

Continue using the exponential 
function as an example since 

applicable to all 3 methods  
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Variance of ML estimators:  analytic method

For a very limited number of cases, one can compute the variances of the 
ML estimators analytically

=
τ2

n

V[ ̂τ] = E[ ̂τ2] − (E[ ̂τ])2

= ∫ . . . ∫ ( 1
n

n

∑
i=1

ti)
2

1
τ

e−t1/τ . . .
1
τ

e−tn/τ dt1 . . . dtn

−(∫ . . . ∫ ( 1
n

n

∑
i=1

ti) 1
τ

e−t1/τ . . .
1
τ

e−tn/τ dt1 . . . dtn)
2

No surprise here: Recall we derived this on slide 17

E[x] = ∫
∞

−∞
xf(x)dsRecall:                                             (1.39, Cowan)
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How would we report this?

̂τ ± ̂σ ̂τ
Estimate from one 
experiment

Estimated standard deviation 
one expects  to vary by if 
experiment is repeated many 
times with the same number 
of measurements per 
experiment

̂τ
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Variance of ML estimators:  MC method (i)

Often too difficult to compute the variances analytically 

Use the MC method to investigate the distribution of the ML estimates

1. Simulate a large # of experiments 

2. Compute the ML estimates each time 

3. Look at how the resulting values are distributed 

“true” parameter = 
the estimated value 

from the real 
experiment

s2 =
1

n − 1

n

∑
i=1

(xi − x̄)2

Unbiased estimator for 
the variance of a PDF Compute  for the ML estimates obtained 

from the MC experiments and give this as 
the statistical error of the parameter 

estimated from the real measurement

s
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50 MC generated 
observations of an 
exponential variable  
with mean  


The curve is the result of 
a ML fit giving 

t
τ = 1.0

̂τ = 1.062

34

Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 

0.75 

0.5 

0.25 

o 
o 2 3 4 5 

Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

Variance of ML estimators:  MC method (ii)

In reality, these are 50 MC generated observations 
of an exponential variable  with mean  t τ = 1.0

For arguments sake, pretend these 50 
observations (tick marks) are from a real 
experiment 

The curve shows the exponential PDF 
evaluated with the ML estimate ̂τ = 1.062

Use this as the “true” parameter  going forwardτ

,-.... 
• to' 

150 

100 

50 

o 
o 0.5 1.5 

Variance of ML estimators: the ReF bound 77 

2 

Fig. 6.3 A histogram of the ML es-
timate T from 1000 Monte Carlo ex-
periments with 50 observations per ex-
periment. For the Monte Carlo 'true' 
parameter T, the result of Fig. 6.2 was 
used. The sample standard deviation is 
s = 0.151. 

here holds are almost always met in practical situations (cf. [Ead71] Section 
7.4.5). In the case of equality (i.e. minimum variance) the estimator is said to be 
efficient. It can be shown that if efficient estimators exist for a given problem, 
the maximum likelihood method will find them. Furthermore it can be shown 
that ML estimators are always efficient in the large sample limit, except when 
the extent of the sample space depends on the estimated parameter. In practice, 
one often assumes efficiency and zero bias. In cases of doubt one should check 
the results with a Monte Carlo study. The -general conditions for efficiency are 
discussed in, for example, [Ead71] Section 7.4.5, [Stu91] Chapter 18. 

For the example of the exponential distribution with mean r one has from 
equation (6.5) 

o2logL =!!..- =!!..- (1- 2f) (6.17) 
or2 r2 r n r2 r 

i=1 

and objor = 0 since b = 0 (see equation (6.7)). Thus the RCF bound for the 
variance (also called the minimum variance bound, or MVB) of T is 

A 1 
V[r]:2: E[-;2(1- 2:)] 

1 
n 

(6.18) 

where we have used equation (6.7) for E[ f]. Since r2 j n is also the variance 
obtained from the exact calculation (equation (6.15)) we see that equality holds 
and f = 2::7=1 ti is an efficient estimator for the parameter T. 

For the case of more than one parameter, () = (()1, ... , Om), the correspond-
ing formula for the inverse of the covariance matrix of their estimators Vij = 
cov [Oi , OJ] is (assuming efficiency and zero bias) 

(6.19) 

Now simulate 1000 experiments with 50 
measurements each using 


• Sample mean of the estimates 


• Sample std. dev. of the 1000 experiments is 


Analytical std. dev. (3 slides back) is 

̂τ = 1.062
¯ ̂τ = 1.059

s = 0.151

̂σ ̂τ = ̂τ/ n = 1.062/ 50 = 0.150
Note that the distribution is approximatively Gaussian in shape. This is a general 

property of ML estimators for the large sample limit: asymptotic normality

≊

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 
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Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 
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of a maximum likelihood fit, giving 
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Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 
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Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 
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(6.9) 
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an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 
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Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 
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is not the case, one obtains the ML estimator of a function simply by evaluating 
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Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
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though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
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Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

…biased 
for small n

Variance of ML estimators:  MC method (iii)

50 MC generated 
observations of an 
exponential variable  
with mean  


The curve is the result of 
a ML fit giving 

t
τ = 1.0

̂τ = 1.062

Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 

0.75 

0.5 

0.25 

o 
o 2 3 4 5 

Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

For arguments sake, pretend these 50 
observations (tick marks) are from a real 
experiment 

The curve shows the exponential PDF 
evaluated with the ML estimate ̂τ = 1.062

Use this as the “true” parameter  going forwardτ

But what if we want 
the decay constant 
instead of the mean 
lifetime? 

λ =
1
τ

In general: transformational invariance
But with 

In reality, these are 50 MC generated observations 
of an exponential variable  with mean  t τ = 1.0

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Variance of ML estimators:  RCF bound (i)

Often too difficult to compute the variances analytically 
and a MC study involves a significant effort 

…but what if you can’t 
compute the RCF 

bound analytically?

V[ ̂θ] ≥
(1 + ∂b

∂θ )
2

E [− ∂2 log ℒ
∂θ2 ]

Use the Rao-Cremer-Frechet (RCF) 
inequality (aka information inequality)

to compute the lower bound on an 
estimator’s variance

Proof: ILIAS /Reading material /
L04 /RCF_proof.pdf

In the case of equality (minimum variance), the estimator is said to be efficient 

Key points:  
1) If efficient estimators exist for a given problem, the ML method will find 

them 
2) ML estimators are always efficient in the large sample limit (exept when 

the extent of the sample space depends on the estimated parameter)

For the exponential 
distribution with mean τ

∂2 log ℒ
∂τ2

=
n
τ2 (1 −

2 ̂τ
τ ) V[ ̂τ] ≥

τ
nRecall we chose this distribution since it 

can be solved analytically ∂b/∂τ = 0, b = 0 (slide 29)
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Variance of ML estimators:  RCF bound (ii)

One can estimate  by evaluating the 
second derivative with the measured 
data and the ML estimates :

V−1

̂θ ( ̂V−1)ij
=

∂2 log ℒ
∂θi∂θj θ= ̂θ

The routines MIGRAD and HESSE in MINUIT determine numerically the matrix of second derivatives of 
 using finite differences, evaluate it at the ML estimates, and invert to find the covariance matrix.  log ℒ

̂σ2
̂θ = (−1/ ∂2 log ℒ

∂θ2 ) θ= ̂θ
For a single parameter  this reduces to:θ
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Intuition

38

Why is this how we calculate the standard errors?  

The easy way to think about this is to recognize that the curvature of the 
likelihood function tells us how certain we are about our estimate of our 
parameters. The more curved the likelihood function, the more certainty we 
have that we have estimated the right parameter. The second derivative of the 
likelihood function is a measure of the likelihood function’s curvature - this is why 
it provides our estimate of the uncertainty with which we have estimated our 
parameters.   

If the curvature is small, then the likelihood surface is flat around its maximum 
value (the MLE). If the curvature is large and thus the variance is small, the 
likelihood is strongly curved at the maximum.  

https://www.math.arizona.edu/~jwatkins/n-mle.pdf

https://www.math.arizona.edu/~jwatkins/n-mle.pdf
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Variance of ML estimators:  graphical technique (i)

logℒ(θ) = logℒ( ̂θ) + [ ∂logℒ
∂θ ]

θ= ̂θ
(θ − ̂θ) +

1
2! [ ∂2logℒ

∂θ2 ]
θ= ̂θ

(θ − ̂θ)2 + . . .

Key ingredient: Taylor expand log likelihood function around maximum:

= 0 

at maximum

======
log ℒmax

by definition 
of ̂θ RCF

̂σ2
̂θ = (−1/ ∂2 log ℒ

∂θ2 ) θ= ̂θ

logℒ(θ) = logℒmax −
(θ − ̂θ)2

2 ̂σ2 ̂θ
or

With known maximum, can

determine estimator of variance

by solving what value of  gives a 
likelihood value of 

σθ
logℒmax − 1/2

logℒ( ̂θ ± ̂σ ̂θ) = logℒmax −
1
2
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Variance of ML estimators: graphical method 79 

By definition of B we know that log L (B) = log Lmax and that the second term 
in the expansion is zero. Using equation (6.22) and ignoring higher order terms 
gIves 

(8 - 0)2 
log L(8) = log Lmax - __ , 

20-2 e 
(6.24) 

or 

A 1 
log L(8 ± O"e) = log Lmax - "2. (6.25) 

That is, a change in the parameter 8 of one standard deviation from its ML 
estimate leads to a decrease in the log-likelihood of 1/2 from its maximum value. 

It can be shown that the log-likelihood function becomes a parabola (i.e. 
the likelihood function becomes a Gaussian curve) in the large sample limit. 
Even if log L is not parabolic, one can nevertheless adopt equation (6.25) as the 
definition of the statistical error. The interpretation of such errors is discussed 
further in Chapter 9. 

As an example of the graphical method for determining the variance of an es-
timator, consider again the examples of Sections 6.2 and 6.5 with the exponential 
distribution. Figure 6.4 shows the log-likelihood function log L( r) as a function 
of the parameter r for a Monte Carlo experiment consisting of 50 measurements. 
The standard deviation of f is estimated by changing r until log L( r) decreases 
by 1/2, giving Llf_ = 0.137, Llf+ = 0.165. In this case logL(r) is reasonably 
close to a parabola and one can approximate 0" f Ll f _ Ll f + 0.15. This 
leads to approximately the same answer as from the exact standard deviation 
r /...;n evaluated with r = f. In Chapter 9 the interval [f - Ll f _ , f + Ll f +] will 
be reinterpreted as an approximation for the 68.3% central confidence interval 
(cf. Section 9.6). 

-53 

-53.5 

-54 
0.8 1.2 1.4 1.6 

Fig. 6.4 The log-likelihood function 
logL(T). In the large sample limit, the 
widths of the intervals [i-Lli-,il and 
[i,f + Llf+l correspond to one stan-
dard deviation at. 

• Reading off from the curve


• 


• 


• Both reasonably close and we 
find 


• 


• We will later make a 
reinterpretation of the interval  

 as an 
approximation of the 68.3% 
central confidence interval 

Δ ̂τ− = 0.137

Δ ̂τ+ = 0.165

̂σ ̂τ ≈ Δ ̂τ− ≈ Δ ̂τ+ ≈ 0.15

[τ − στ, τ + στ]

Variance of ML estimators:  graphical technique (ii)

This leads to approximately the same result as from the 
exact standard deviation  evaluated with τ/ n τ = ̂τ

(slides 31 & 34)

Return to our previous example using the exponential distribution 
http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Consider a particle reaction where each scattering event is characterized 
by a certain scattering angle  (or equivalently )


• Suppose now a theory predicts that this follows an angular distribution 
given by


• To make this slightly more complicated, let’s assume we have a finite 
detector acceptance, such that :

Θ x = cos Θ

xmin < x < xmax

42

80 The method of maximum likelihood 

6.8 Example of M L with two parameters 
As an example of the maximum likelihood method with two parameters, consider 
a particle reaction where each scattering event is characterized by a certain 
scattering angle () (or equivalently x = cos ()). Suppose a given theory predicts 
the angular distribution 

1 + ax + (3x 2 

f(x;a,{3) = 2+2{3/3 (6.26) 

(For example, a = 0 and (3 = 1 correspond to the reaction e+ e- -+ J.l+ p- in lowest 
order quantum electrodynamics [Per87].) Note that the denominator 2 + 2{3/3 is 
necessary for f(x; a, (3) to be normalized to one for -1 x 1. 

To make the problem slightly more complicated (and more realistic) assume 
that the measurement is only possible in a restricted range, say Xmin X X max · 

This requires a recalculation of the normalization constant, giving 

(6.27) 

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events 
were generated using a = 0.5, (3 = 0.5, Xmin = -0.95 and Xmax = 0.95. By 
numerically maximizing the log-likelihood function one obtains 

a 0.508 ± 0.052, 
(6.28) 

/3 0.47±0.11, 

where the statistical errors are the square roots of the variance. These have 
been estimated by computing (numerically) the matrix of second derivatives 
of the log-likelihood function with respect to the parameters, as described in 
Section 6.6, and then inverting to obtain the covariance matrix. From this one 
obtains as well an estimate of the covariance Co'V[a, /3] = 0.0026 or equivalently 
the correlation coefficient r = 0.46. One sees that the estimators a and /3 are 
positively correlated. Note that the histogram itself is not used in the procedure; 
the individual values of x are used to compute the likelihood function. 

To understand these results more intuitively, it is useful to look at a Monte 
Carlo study of 500 similar experiments, all with 2000 events with a = 0.5 and 
f3 = 0.5. A scatter plot of the ML estimates a and /3 are shown in Fig. 6.6(a). 
The density of points corresponds to the joint p.d.f. for a and /3. Also shown in 
Fig. 6.6 (b) and (c) are the normalized projected histograms for a and /3 sepa-
rately, corresponding to the marginal p.d.f.s, i.e. the distribution of 6- integrated 
over all values of jJ, and vice versa. One sees that the marginal p.d.f.s for 6- and 
/3 are both approximately Gaussian in shape. 
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6.8 Example of M L with two parameters 
As an example of the maximum likelihood method with two parameters, consider 
a particle reaction where each scattering event is characterized by a certain 
scattering angle () (or equivalently x = cos ()). Suppose a given theory predicts 
the angular distribution 

1 + ax + (3x 2 

f(x;a,{3) = 2+2{3/3 (6.26) 

(For example, a = 0 and (3 = 1 correspond to the reaction e+ e- -+ J.l+ p- in lowest 
order quantum electrodynamics [Per87].) Note that the denominator 2 + 2{3/3 is 
necessary for f(x; a, (3) to be normalized to one for -1 x 1. 

To make the problem slightly more complicated (and more realistic) assume 
that the measurement is only possible in a restricted range, say Xmin X X max · 

This requires a recalculation of the normalization constant, giving 

(6.27) 

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events 
were generated using a = 0.5, (3 = 0.5, Xmin = -0.95 and Xmax = 0.95. By 
numerically maximizing the log-likelihood function one obtains 

a 0.508 ± 0.052, 
(6.28) 

/3 0.47±0.11, 

where the statistical errors are the square roots of the variance. These have 
been estimated by computing (numerically) the matrix of second derivatives 
of the log-likelihood function with respect to the parameters, as described in 
Section 6.6, and then inverting to obtain the covariance matrix. From this one 
obtains as well an estimate of the covariance Co'V[a, /3] = 0.0026 or equivalently 
the correlation coefficient r = 0.46. One sees that the estimators a and /3 are 
positively correlated. Note that the histogram itself is not used in the procedure; 
the individual values of x are used to compute the likelihood function. 

To understand these results more intuitively, it is useful to look at a Monte 
Carlo study of 500 similar experiments, all with 2000 events with a = 0.5 and 
f3 = 0.5. A scatter plot of the ML estimates a and /3 are shown in Fig. 6.6(a). 
The density of points corresponds to the joint p.d.f. for a and /3. Also shown in 
Fig. 6.6 (b) and (c) are the normalized projected histograms for a and /3 sepa-
rately, corresponding to the marginal p.d.f.s, i.e. the distribution of 6- integrated 
over all values of jJ, and vice versa. One sees that the marginal p.d.f.s for 6- and 
/3 are both approximately Gaussian in shape. 

e.g.  is the 
LO QED expectation for

α = 0, β = 1

Ensures proper normalization and makes  a PDF over f [xmin, xmax]

Another ML example:  2 parameters (i)

e+e− → μ+μ−
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• MC experiment with 2000 events 
according to 


• 


• 


• Numerically maximizing the log-
likelihood function we find

α = 0.5, β = 0.5
xmin = − 0.95, xmax = 0.95
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Another ML example:  2 parameters (ii)
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"-. Monte Carlo data 
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Fig. 6.5 Histogram based on 2000 
Monte Carlo generated values dis-
tributed according to equation (6.27) 
with Cl' 0.5, (J 0.5. Also 
shown is the result of the ML fit, 
which gave a = 0.508 ± 0.052 and 
/3 = 0.466 ± 0.108. The errors were 
computed numerically using equation 
(6.21). 

o 0.25 0.5 0.75 

Fig. 6.6 Results of ML fits to 500 Monte Carlo generated data sets. (a) The fitted values of 
o and /3. (b) The marginal distribution of /3. (c) The marginal distribution of o. 
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6.8 Example of M L with two parameters 
As an example of the maximum likelihood method with two parameters, consider 
a particle reaction where each scattering event is characterized by a certain 
scattering angle () (or equivalently x = cos ()). Suppose a given theory predicts 
the angular distribution 

1 + ax + (3x 2 

f(x;a,{3) = 2+2{3/3 (6.26) 

(For example, a = 0 and (3 = 1 correspond to the reaction e+ e- -+ J.l+ p- in lowest 
order quantum electrodynamics [Per87].) Note that the denominator 2 + 2{3/3 is 
necessary for f(x; a, (3) to be normalized to one for -1 x 1. 

To make the problem slightly more complicated (and more realistic) assume 
that the measurement is only possible in a restricted range, say Xmin X X max · 

This requires a recalculation of the normalization constant, giving 

(6.27) 

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events 
were generated using a = 0.5, (3 = 0.5, Xmin = -0.95 and Xmax = 0.95. By 
numerically maximizing the log-likelihood function one obtains 

a 0.508 ± 0.052, 
(6.28) 

/3 0.47±0.11, 

where the statistical errors are the square roots of the variance. These have 
been estimated by computing (numerically) the matrix of second derivatives 
of the log-likelihood function with respect to the parameters, as described in 
Section 6.6, and then inverting to obtain the covariance matrix. From this one 
obtains as well an estimate of the covariance Co'V[a, /3] = 0.0026 or equivalently 
the correlation coefficient r = 0.46. One sees that the estimators a and /3 are 
positively correlated. Note that the histogram itself is not used in the procedure; 
the individual values of x are used to compute the likelihood function. 

To understand these results more intuitively, it is useful to look at a Monte 
Carlo study of 500 similar experiments, all with 2000 events with a = 0.5 and 
f3 = 0.5. A scatter plot of the ML estimates a and /3 are shown in Fig. 6.6(a). 
The density of points corresponds to the joint p.d.f. for a and /3. Also shown in 
Fig. 6.6 (b) and (c) are the normalized projected histograms for a and /3 sepa-
rately, corresponding to the marginal p.d.f.s, i.e. the distribution of 6- integrated 
over all values of jJ, and vice versa. One sees that the marginal p.d.f.s for 6- and 
/3 are both approximately Gaussian in shape. 

from ML maximum

from second  
derivatives

78 The method of maximum likelihood 

Equation (6.19) can also be written as 

(6.20) 

where f(x; 6) is the p.d.f. for the random variable x, for which one has n mea-
surements. That is, the inverse of the RCF bound for the covariance matrix 
(also called the Fisher information matrix, see [Ead71] Section 5.2 and [Bra92]) 
is proportional to the number of measurements in the sample, n. For V-I ex: n 
one has V ex: l/n, and thus equation (6.20) expresses the well-known result that 

errors (i.e. the standard deviations) decrease in proportion to 1/ Vii 
(at least for efficient estimators). 

It turns out to be impractical in many situations to compute the RCF bound 
a.nalytically, since this requires the expectation value of the second of 
the log-likelihood function (i.e. an integration over the variable x). In the case of 
a sufficiently large data sample, one can estimate V-I by evaluating the second 
:lerivative with the measured data and the ML estimates 6: 

(6.21) 

For a single parameter () this reduces to 

= (-1 1.= •. (6.22) 

fhis is the usual method for estimating the covariance matrix when the likelihood 
'"unction is maximized numerically. I 

5.7 Variance of ML estimators: graphical method 
\. simple extension of the previously discussed method using the RCF bound 
eads to a graphical technique for obtaining the variance of ML estimators. Con-
;ider the case of a single parameter (), and expand the log-likelihood function in 
t Taylor series about the ML estimate 0: 

log L(9) = log L(O) + [01;; L L. (9 - 0) + L L, (9 - 0)' + ... 
(6.23) 

1 For example, the routines IHGRAD and HESSE in the program MnUIT [Jam89, CER97] de-
ermine numerically the matrix of second derivatives of log L using finite differences, evaluate 
t at the ML estimates, and invert to find the covariance matrix. 
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6.8 Example of M L with two parameters 
As an example of the maximum likelihood method with two parameters, consider 
a particle reaction where each scattering event is characterized by a certain 
scattering angle () (or equivalently x = cos ()). Suppose a given theory predicts 
the angular distribution 

1 + ax + (3x 2 

f(x;a,{3) = 2+2{3/3 (6.26) 

(For example, a = 0 and (3 = 1 correspond to the reaction e+ e- -+ J.l+ p- in lowest 
order quantum electrodynamics [Per87].) Note that the denominator 2 + 2{3/3 is 
necessary for f(x; a, (3) to be normalized to one for -1 x 1. 

To make the problem slightly more complicated (and more realistic) assume 
that the measurement is only possible in a restricted range, say Xmin X X max · 

This requires a recalculation of the normalization constant, giving 

(6.27) 

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events 
were generated using a = 0.5, (3 = 0.5, Xmin = -0.95 and Xmax = 0.95. By 
numerically maximizing the log-likelihood function one obtains 

a 0.508 ± 0.052, 
(6.28) 

/3 0.47±0.11, 

where the statistical errors are the square roots of the variance. These have 
been estimated by computing (numerically) the matrix of second derivatives 
of the log-likelihood function with respect to the parameters, as described in 
Section 6.6, and then inverting to obtain the covariance matrix. From this one 
obtains as well an estimate of the covariance Co'V[a, /3] = 0.0026 or equivalently 
the correlation coefficient r = 0.46. One sees that the estimators a and /3 are 
positively correlated. Note that the histogram itself is not used in the procedure; 
the individual values of x are used to compute the likelihood function. 

To understand these results more intuitively, it is useful to look at a Monte 
Carlo study of 500 similar experiments, all with 2000 events with a = 0.5 and 
f3 = 0.5. A scatter plot of the ML estimates a and /3 are shown in Fig. 6.6(a). 
The density of points corresponds to the joint p.d.f. for a and /3. Also shown in 
Fig. 6.6 (b) and (c) are the normalized projected histograms for a and /3 sepa-
rately, corresponding to the marginal p.d.f.s, i.e. the distribution of 6- integrated 
over all values of jJ, and vice versa. One sees that the marginal p.d.f.s for 6- and 
/3 are both approximately Gaussian in shape. 
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6.8 Example of M L with two parameters 
As an example of the maximum likelihood method with two parameters, consider 
a particle reaction where each scattering event is characterized by a certain 
scattering angle () (or equivalently x = cos ()). Suppose a given theory predicts 
the angular distribution 

1 + ax + (3x 2 

f(x;a,{3) = 2+2{3/3 (6.26) 

(For example, a = 0 and (3 = 1 correspond to the reaction e+ e- -+ J.l+ p- in lowest 
order quantum electrodynamics [Per87].) Note that the denominator 2 + 2{3/3 is 
necessary for f(x; a, (3) to be normalized to one for -1 x 1. 

To make the problem slightly more complicated (and more realistic) assume 
that the measurement is only possible in a restricted range, say Xmin X X max · 

This requires a recalculation of the normalization constant, giving 

(6.27) 

Figure 6.5 shows a histogram of a Monte Carlo experiment where 2000 events 
were generated using a = 0.5, (3 = 0.5, Xmin = -0.95 and Xmax = 0.95. By 
numerically maximizing the log-likelihood function one obtains 

a 0.508 ± 0.052, 
(6.28) 

/3 0.47±0.11, 

where the statistical errors are the square roots of the variance. These have 
been estimated by computing (numerically) the matrix of second derivatives 
of the log-likelihood function with respect to the parameters, as described in 
Section 6.6, and then inverting to obtain the covariance matrix. From this one 
obtains as well an estimate of the covariance Co'V[a, /3] = 0.0026 or equivalently 
the correlation coefficient r = 0.46. One sees that the estimators a and /3 are 
positively correlated. Note that the histogram itself is not used in the procedure; 
the individual values of x are used to compute the likelihood function. 

To understand these results more intuitively, it is useful to look at a Monte 
Carlo study of 500 similar experiments, all with 2000 events with a = 0.5 and 
f3 = 0.5. A scatter plot of the ML estimates a and /3 are shown in Fig. 6.6(a). 
The density of points corresponds to the joint p.d.f. for a and /3. Also shown in 
Fig. 6.6 (b) and (c) are the normalized projected histograms for a and /3 sepa-
rately, corresponding to the marginal p.d.f.s, i.e. the distribution of 6- integrated 
over all values of jJ, and vice versa. One sees that the marginal p.d.f.s for 6- and 
/3 are both approximately Gaussian in shape. 

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

• Can validate this result by 
using MC techniques

• Let’s produce 500 similar 

experiments, all with 2000 
events with the true values 
for 


• Sample means, standard 
deviations, covariance and 
correlation 

α = 0.5, β = 0.5
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Another ML example:  2 parameters (iii)
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Fig. 6.5 Histogram based on 2000 
Monte Carlo generated values dis-
tributed according to equation (6.27) 
with Cl' 0.5, (J 0.5. Also 
shown is the result of the ML fit, 
which gave a = 0.508 ± 0.052 and 
/3 = 0.466 ± 0.108. The errors were 
computed numerically using equation 
(6.21). 

o 0.25 0.5 0.75 

Fig. 6.6 Results of ML fits to 500 Monte Carlo generated data sets. (a) The fitted values of 
o and /3. (b) The marginal distribution of /3. (c) The marginal distribution of o. 

approximatively 
Gaussian!
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The sample means, standard deviations, covariance and correlation coefficient 
(see Section 5.2) from the Monte Carlo experiments are: 

0.499 
0.051 
0.0024 

(3 

r 

0.498 
0.111 
0.42. 

(6.29) 

Note that & and /3 are in good agreement with the 'true' values put into the 
Monte Carlo (0' = 0.5 and (3 = 0.5) and the sample (co)variances are close to 
the values estimated numerically from the ReF bound. 

The fact that a and /3 are correlated is seen from the fact that the band of 
points in the scatter plot is tilted. That is, if one required a > 0', this would lead 
to an enhanced probability to also find /3 > (3. In other words, the conditional 
p.d.f. for a given /3 > (3 is centered at a higher mean value and has a smaller 
variance than the marginal p.d.f. for a. 

Figure 6.7 shows the positions of the ML estimates in the parameter space 
along with a contour corresponding to log L = log Lmax - 1/2. 

0.7 

0.6 
····t··································· ----·---------r----

0.5 true value 
Fig. 6.7 The contour of constant 
likelihood logL = logLmax - 1/2 
shown with the true values for the par-
ameters (a,.6) and the ML estimates 
(a,t1). In the large sample limit the 
tangents to the curve correspond to 
a ± u& and t1 ± uiJ. 
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In the large sample limit, the log-likelihood function takes on the form 

log L( 0', (3) = log Lmax 

[C';'&)' + -2P(";'&) ,(6.30) 

where p = cov[a,/3]/(O"&O"{§) is the correlation coefficient for a and /3. The contour 
of log L (0', (3) = log Lmax - 1/2 is thus given by 

In good agreement with  
true values

Sample variance, covariance, correlation: Good agreement with RCF bound 

each point 
is one ML fit
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• Can also draw likelihood contour in 2D


• Contour of        logℒ = logℒmax −
1
2
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82 The method of maximum likelihood 

The sample means, standard deviations, covariance and correlation coefficient 
(see Section 5.2) from the Monte Carlo experiments are: 

0.499 
0.051 
0.0024 

(3 

r 

0.498 
0.111 
0.42. 

(6.29) 

Note that & and /3 are in good agreement with the 'true' values put into the 
Monte Carlo (0' = 0.5 and (3 = 0.5) and the sample (co)variances are close to 
the values estimated numerically from the ReF bound. 

The fact that a and /3 are correlated is seen from the fact that the band of 
points in the scatter plot is tilted. That is, if one required a > 0', this would lead 
to an enhanced probability to also find /3 > (3. In other words, the conditional 
p.d.f. for a given /3 > (3 is centered at a higher mean value and has a smaller 
variance than the marginal p.d.f. for a. 

Figure 6.7 shows the positions of the ML estimates in the parameter space 
along with a contour corresponding to log L = log Lmax - 1/2. 
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Fig. 6.7 The contour of constant 
likelihood logL = logLmax - 1/2 
shown with the true values for the par-
ameters (a,.6) and the ML estimates 
(a,t1). In the large sample limit the 
tangents to the curve correspond to 
a ± u& and t1 ± uiJ. 
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In the large sample limit, the log-likelihood function takes on the form 

log L( 0', (3) = log Lmax 

[C';'&)' + -2P(";'&) ,(6.30) 

where p = cov[a,/3]/(O"&O"{§) is the correlation coefficient for a and /3. The contour 
of log L (0', (3) = log Lmax - 1/2 is thus given by 

Another ML example:  2 parameters (iv)

• Large sample limit 
contour given by

Extended maximum likelihood 83 

(6.31) 

This is an ellipse centered at the ML estimates (ex,13) and has an angle ¢ with 
respect to the 0' axis given by 

2P(J'6:CT 
tan 2¢ = _ . 

Q f3 
(6.32) 

Note in particular that the tangents to the ellipse are at 0' = ex ± (J' 6:, /3 = 13 ± (J' 

(see Fig. 6.7). If the estimators are correlated, then changing a parameter by one 
standard deviation corresponds in general to a decrease in the log-likelihood of 
more than 1/2. If one of the parameters, say /3, were known, then the standard 
deviation of ex would be somewhat smaller, since this would then be given by 
a decrease of 1/2 in log L(O'). Similarly, if additional parameters (1,8, ... ) are 
included in the fit, and if their estimators are correlated with ex, then this will 
resul t in an increase in the standard deviation of ex. 

6.9 Extended maximum likelihood 
Consider a random variable x distributed according to a p.d.f. f(x; 6), with 
unknown parameters () = (01 , -... , Om), and suppose we have a data sample 
Xl, ... , X n . It is often the case that the number of observations n in the sample 
is itself a Poisson random variable with a mean value v. The result of the experi-
ment can be defined as the number n and the n values Xl, ... , x n . The likelihood 
function is then the product of the Poisson probability to find n, equation (2.9)' 
and the usual likelihood function for the n values of x, 

(6.33) 

This is called the extended likelihood function. It is really the usual likelihood 
function, however, only now with the sample size n defined to be part of the 
result of the experiment. One can distinguish between two situations of interest, 
depending on whether the Poisson parameter v is given as a function of 6 or is 
treated as an independent parameter. 

First assume that v is given as a function of 6. The extended log-likelihood 
function is 

Extended maximum likelihood 83 

(6.31) 

This is an ellipse centered at the ML estimates (ex,13) and has an angle ¢ with 
respect to the 0' axis given by 

2P(J'6:CT 
tan 2¢ = _ . 

Q f3 
(6.32) 

Note in particular that the tangents to the ellipse are at 0' = ex ± (J' 6:, /3 = 13 ± (J' 

(see Fig. 6.7). If the estimators are correlated, then changing a parameter by one 
standard deviation corresponds in general to a decrease in the log-likelihood of 
more than 1/2. If one of the parameters, say /3, were known, then the standard 
deviation of ex would be somewhat smaller, since this would then be given by 
a decrease of 1/2 in log L(O'). Similarly, if additional parameters (1,8, ... ) are 
included in the fit, and if their estimators are correlated with ex, then this will 
resul t in an increase in the standard deviation of ex. 

6.9 Extended maximum likelihood 
Consider a random variable x distributed according to a p.d.f. f(x; 6), with 
unknown parameters () = (01 , -... , Om), and suppose we have a data sample 
Xl, ... , X n . It is often the case that the number of observations n in the sample 
is itself a Poisson random variable with a mean value v. The result of the experi-
ment can be defined as the number n and the n values Xl, ... , x n . The likelihood 
function is then the product of the Poisson probability to find n, equation (2.9)' 
and the usual likelihood function for the n values of x, 

(6.33) 

This is called the extended likelihood function. It is really the usual likelihood 
function, however, only now with the sample size n defined to be part of the 
result of the experiment. One can distinguish between two situations of interest, 
depending on whether the Poisson parameter v is given as a function of 6 or is 
treated as an independent parameter. 

First assume that v is given as a function of 6. The extended log-likelihood 
function is 

• I.e. ellipse with center at      
and angle  with respect to the 

-axis

(α̂, ̂β)
ϕ

α
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• Required reading

• Cowan textbook: chapters 5 & 6.1-6.8 


• Reading material / L04 / 


• VarianceOfMLEstimators


• UnbiasedEstimators


• RCF_proof


• Extra reading for fun: /Reading material / L04 /

• WhyIsntEveryPhysicistABayesian_RCousins
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For next time

Listed as ‘fun’ but you 
should really read it!
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Next time

• Extended maximum likelihood


• Maximum likelihood with binned data


• Testing goodness-of-fit


•   methodχ2



Quiz Time:  4th Round



2

Maximum Likelihood fit

2. Let us assume you have a simple PDF of the form

f(x;�) = 1 + � (x� 0.5) , (2)

with a sample space S spanning the interval [0, 1] such that
R
S f(x;�)dx =

R 1

0 f(x;�)dx = 1.

a) First sketch the PDF for � = 1, 0,�1.

b) Five measurements were done giving x = (0.89, 0.03, 0.50, 0.31, 0.49). Calculate the
log-likelihood function for three di↵erent values of � = 1,�0.5,�1 by hand.

c) The log-likelihood function is in good approximation a parabolic function, i.e. can be
described by a polynomial of second order as a function of the tested value �. Calculate
the coe�cients a, b, c of logL(�) = a�2+b�+c. For what value of � is logL(�) maximal?

d) Sketch the log-likelihood function. Using the graphical method, i.e.

logL(�̂± �̂�̂) = logLmax �
1

2
, (3)

determine the uncertainty �̂�̂ of the estimated parameter �̂ (with �̂ denoting the value

where logL(�̂) = logLmax and Lmax is the maximal likelihood value).
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• Part of the material presented in this lecture is adapted from the following 

sources. See the active links (when available) for a complete reference   


• Probability for CS (Stanford): slides 3-4 


• Statistical Data Analysis textbook by G. Cowan (U. London): all figures with white background
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