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* What goes into such fits?

First part of lecture: general
concepts of parameter
estimation

Second part: the method of
maximal likelihood
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Review

1.1.d. random variables

» Consider n variables X, X5, ..., X

n
X, X5, ..., X areindependent and identically distributed (i.i.d.) if
o X{,X,5,...,X areindependent, and
e all have the same PMF (if discrete) or PDF (if continuous)
o E[X]=pufori=1,...,n

o Var[X]=o’fori=1,...,n

Quick check: Are X, X,,..., X i.i.d. with the following distributions?

1. X; ~ Exp(7), X; independent /

2. X: ~ Exp(z;), X; independent x (unless 7; equal)

3.X; ~Exp(r), X, =X, =--- =X, x dependent! (x; =x, =...=x)
4. X; ~ Bin(n, p), X; independent x (unless n; equal)
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Working with the CLT Review

Let X{, X5, ..., X, bei.id., where £|X.| = yu and Var[X;] = 2.

AsSn — o0:
Sum of i.i.d. RVs

Z X ~ N (ny, no?)
i=1

Average of I.i.d. RVs
(sample mean)

| o2
- Z Xi -~ t/’/.(//t 2 _) Interpret: As we increase n
L L

(the size of our sample):

- The variance of our sample
mean ¢ /n decreases

« The probability that our
sample mean X is close to
the true mean p increases

Modern Methods of Data Analysis I 4



Review

CLT: Key take home message

No matter what the distribution of the population is, the distribution of mean
samples from the population will always be Normally distributed

pA pA Gaussian
samples
of size n
X .
X
—
>
population sampling distribution
distribution of the mean

l.e., No matter what the distribution of the sample is, iIf you sample batches of data
from that distribution and take the mean of each batch, the mean values from
those batches will be Normally distributed
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The CLT and real life review

e Central Limit Theorem:

Sample mean X ~ N (u, 6*/n)

If we know yu and 02, we can compute probabilities on the sample mean X of a given
sample size n

¢ |n real life:
Yes, the CLT still holds...

But we often don’t know u or o of our original distribution

However, we can collect data (a sample of size n)

Question: How can we estimate the values y or o from our sample?

® Answer: Parameter estimation!
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Parameter estimation: General concepts (i)

Take RV X described by PDF f(x) S = the set of all possible values of Xj
n independent observations of X S = set of all possible values for the
= sample of size n n-D vector X = (X, X, ..., X))

!

Can be understood as a single random
experiment with » measurements

The joint PDF of such a sample

fsample(xl, s X)) T Jx ) ... f(x)

Since it is assumed that the observations are all independent
and that each X are described by the same PDF f(x)

What if we don’t know f(x)’? Central problem of statistics:

use x to learn properties of f(x)
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Parameter estimation: General concepts i)

The RVs we have been discussing are parametric models:

Distribution = model + parameter 0

For each of the distributions below, what are the parameters 6 ?

1. Ber(p) 0=p
2. Poi(4) =41 In the real world, we
don’t know the true
3. Uni(a, p) 0 = (a, p) parameters, but we do
t to observe data
4. N (u,c%) 0=(uoc")
5 Y=mX+b 0 = (m,b)

(In general: consider a random variable X distributed according to a PDF f(x; 9)\

- The functional form of f(x; ) is

- The value of at least one parameter @ (or parameters @ = (0,, ..., 0,)) is not known

K Goal: construct a function of observed x to estimate @ J
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Key definitions: Statistic & Estimator

def statistic = A function of the observed measurements which
contains no unknown parameters.

def estimator = A statistic used to estimate some property
of a PDF (e.g., i, o, or other parameter).

(Cowan notation

) 2 _
. X 1 & S 1 n X
Use observations to )
construct functions that ﬁ — — E X; 72 — E (xi — ﬂ)
i n—11 1
= =

estimate properties of PDFs

A m limit converges,

‘hatted’ sample parameter = hm 9 — 9 estimator is consistent
Parameter we determine using observations

n—oo

Population parameter =
true parameter in PDF

(May forever remain unknown)
Modern Methods of Data Analysis I 9



Parameter fitting

Estimating 0 from given data x: parameter fitting

Since é IS a function of RVs = it is itself a RV

i.e. if the entire experiment x = (x;, . . .X,) is repeated, 0 would

change and be described according to PDF g(é; 0)

T Depends on true value

Sampling distribution
(The PDF of a statistic)
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Expectation value of Estimator 0

General: a(x) is a function of RVs distributed according to f(x)

Ela(x)] = J ag(a)da = [ a(x)f(x)dx Eqn. 1.44, Cowan
fSince \
g(a)da = J f(x)dx —m=— ag(a)da = aJ f(x)dx =—w— J ag(a)da = J af(x)dx
dS multiply ds Integrate — 0 — 00
k by a overdS J
Ghus (replacing a with 9) \
E[0(x)] = [ég@; 0)do = [ X Jéoc)f(xl; 0) - - - fx,; O)dx, - - - dx,

\_ _J

Interpret: This is the expected mean of é from an infinite # of

similar experiments, each with a sample of size n

Modern Methods of Data Analysis
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Bias & mean squared error (MSE)

(b= E[0] — 0

TBias of an estimator

— does NOT depend on the measured values of the sample

= 0 unbiased
If b dependentofn,and lim b =0 = 0 asymptotically unbiased

n—oo

If b independent of n,and b = 0

— does depend on the sample size (n), functional form of é and properties of f(x)

Note: é can be biased,
even if it’s consistent

_

_
-

~

R 2
MSE = E (9—9)

<§—E[é]>2 + (16— e]>2

b2

i.e., sum of

Vo]

_|_

variance and bias

Interpret: sum of squares of statistical and systematic uncertainties

2

J

Modern Methods of Data Analysis
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Estimator for

Suppose: sample of size n of RV X with values x, x,, ..., X,

Assume: X is distributed according to some PDF f(x)

f unknown
(even as a parameterization)

Need: a function of the x; to be an estimator for the expectation

1 n
f n i=1 Important property given by the weak law of large #’s:
sample mean If the variance of x exists, then X is a consistent _
: ) _ X converges to u
(not population mean) estimator for the population mean

value (population mean) of x, u.

i.e.,, forn — o0,

xpectation value _ _1 L — 1 L 1 L
oo EEI=E =) x|l ==) Elxl=—=) n=y

L
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Estimator§ for

If the mean y is unknown, the statistic s is an unbiased estimator of the variance o*
Tpopulation mean Tsample variance population varianceT
1 n
2 _ )2 2 2
§T = (X,- — X) Included so that E|[s“]| = ¢
n=1:3 !

I.e., so that the sample variance is an unbiased
sample mean estimator for the population variance

If the mean p is known, the statistic S 2 js an unbiased estimator of the variance 6>

Tbig S

L

Szz— X, — 2
n21< m
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Proof of unbiased estimators for

1. Show that the sample variance s? and the statistic S? are unbiased estimators of the popu-
lation variance o? with

§% = ! Z (z; — 7)° and  S%=— Z (z; — p)* . (1)

n—14% :
1=1 1=1

with Z denoting the sample mean and p being the population mean. I.e. if one does not
know the population mean and needs to estimate it from the sample via Z, one has to use
s? to obtain an unbiased estimator for the population variance.

Proofs: (we omitted all indices in the sums for brevity)
a) Elaf] —2uEx,] + p* = Elzf] — p* = 0* — Efzf] = 0* + p* O
b) Viz] = (25 @) (L5505 ) )42 = & 0y Blwiay] 12 = & (0 = n) g + n (1 + 0%))—

2 =L ((n*—=n2+n—n)p?+no?) = Vi) =2 O Now you’ve proved to
¢) B, (v — )°) = B[Y,2? — 225, 2, + n7] = E[Y, 2] — nE[#?). yourself when to use
n and

With the results from a) and b) we now get nE[z?] = n (‘;—2 + u2) = 0% + nu* and

21 21 2 2
B xi] = 20 Blai] = n(0® +p7). n if population mean is
— B[, (w2 — 2)") = n (0% + p?) — 0® —np? = (n — 1) 0. Thus known

E 2 = F P — 72 — 2 ] 0 .
57 [n -1 z; (ri—2)] =0 if population
mean is unknown and
d) Using all results we find E[S" (z; — p)°] = 3. E[22] — np? = n (02 + p?) — np® = no?. has to be estimated
Thus
R — T—

n

B[S = B 3 (i~ ) =0 O

i=1

Review proofs at home: ILIAS: /Reading material /
L04 / UnbiasedEstimators
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Estimator for

e Similarly one can show that this expression is an unbiased
estimator for the covariance of two random variables x and y:

n

Vay = : Z(fcz —Z)(yi —Y) =

1=1

—— (ZJ ~ TY)

This can be normalized by the square-root of the estimators of the
sample variance s, and s

Y
T Lin(i B =F)
o (Z?m(xj — %)% D= (o — 37)2)
Ty~ 77

Modern Methods of Data Analysis I 16
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_—
of estimators Now were talking about the variance

\_/ of the estimators we just defined

® Variance of sam p|e mean X- This was step b) in the proof on slide 15

1 Y
Vgl = EF)-(ER=E||= o)=Yz || -4
[=] [x ] ( [a:]) (n = x) (n : *3 ) a This expresses the well-

known result that the

1 & , standard deviation of the
= 2 Z Elr;z;] — p mean of n measurements of
h=1 X is equal to the standard
1 0 R 0 0 , 02 deviation of f(x) itself

= —|[(n°—n 4+ n + o — = —
Ny [( Ju” + n(p )] —n n’ divided by \/n.

where ¢ is the variance of f(x) and we have used E[xl-xj] = ,uz for i # j and
E[x?] = pu* + o*

¢ In a similar way one can show that the variance of s? is

o0 Central moments
= - 228), e =

n n—1 - 00

http://www.pp.rhul.ac.uk/~cowan/sda/

Modern Methods of Data Analysis I 17


http://www.pp.rhul.ac.uk/~cowan/sda/

Expectation value and variance of correlation

* The expectation value and variance of the correlation coefficient r
depend on higher moments of the joint PDF f(x, y)

Modern Methods of Data Analysis I 18
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Monte Carlo method recap

How would you write an algorithm to integrate a multi-dimensional function (of

dimensionality V) using the ‘acceptance-rejection’ method? Address in

particular: what ingredients you need and sketch out the algorithm explicitly.

: e i i
1) Generate [V uniform random numbers in intervals of [x_. , x|

Denote these as u = (uy, U, . . ., Uy)

2) Evaluate the function we wish to integrate: f(u, u,, . . . , uy)

3) Generate another random number v between O and f ..

Reject the event if v > f(u, u,, . . ., uy); otherwise accept
4) Repeat 1- 3

The integral is then given by total number of accepted events divided by the total

number of tried events

Modern Methods of Data Analysis I 20









PDF — Likelihood (Interpretation)

Suppose a measurement of the mass m of an elementary particle yields the value

my, and it is known that the measuring apparatus yields values normally

distributed about the unknown true mass mi,, with a known rms deviation o,

The probability density
for obtaining the value m
given the true mass m,

By writing £ instead of P
we draw attention to the
fact that we are
considering its behavior

for different values of m,
given the particular

measured datum m = m,,

—i(m — mt)2

P(m|m,) =
I=true 271'62

\4

2o = N(m,o0,)

—i(mO — mt)2

g(m() ‘ mz) —

I=theory 271'62

ILIAS /Reading material /L04 /WhylsntEveryPhysicistABayesian_RCousins.pdf
https://www.astro.princeton.edu/~strauss/AST303/bayesian paper.pdf

Modern Methods of Data Analysis
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Interpret:

Z is the probability, under the
assumption of the theory (m,),
to observe the data which
were actually observed (m,)

| 23
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Review

Recall Bayes’ Theorem terminology

Where’s &£?
e P(E|F Ppri}’
pi ) < PEIR) P



Likelihood function

Under the assumption of the hypothesis f(x; #), including the value of

n
The probability that x; in [x;, x; + dx;] for all i = [ | f(x; 0)dx,
i=1

O\

\_
4

Since the dx; do not depend on the parameter 6

Z(6) = H F(x30) «— POF of x
=1

|

parameter(s) we wish to estimate

This is the joint PDF for the X;, although it is treated as
a function of the parameter 0 (i.e., it’s really £ (x;; 0)).

The X;, on the other hand, are treated as fixed (i.e., the

\ experiment is over). J
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Maximum likelihood estimation (MLE)

Maximum likelihood estimation 1s just a
systematic way of searching for the parameter
values of our chosen distribution that maximize
the probability of observing the data that we

observe

i.e., we have the data but want to learn about the
model, specifically the model’s parameters.

Modern Methods of Data Analysis I 26



Maximum likelihood estimators

those which

def maximum likelihood estimators for the parameters = maximize the
likelihood function

00. o Often not so easy...

Solution: Take the logarithm

— Monotonically INcri easing (param. val. which maximizes &, maximizes log &)
— exponentials in f are converted into simple factors

~T=3
log Z(0) =log | [ [/x:0) ) = ) logfix;:0)
=1 =1
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Good vs. bad ML estimates

A sample of 50 observations (shown as tick marks) of a Gaussian random variable.

* Left: mean and width parameters that maximize the ML (solid shows estimated, dashed
shows true PDF)

* Right: The PDF evaluated with parameters far from the true values, giving lower likelihoods

’;‘:\ 6 T T T T T ";:‘ 6 T t T T T
< — log L=41.2 (ML fit) (a) S — log L=13.9 (b)
- - - log L=41.0 (true parameters) --- logL=18.9
4 -
2 r
0

http://www.pp.rhul.ac.uk/~cowan/sda/
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Maximum likelihood estimator ,
...an example

Given: The proper decay times of unstable particles of a certain type have

been measured for n decays, yielding values 7., .. . 7,

Choose: The exponential PDF with mean 7 as a hypothesis for the

1 —t/
flt;7) = —e™"
distribution of ¢ T

Task: Estimate the value of the parameter 7

n n 1 .
log L(r) = Z log f(t;7) = 2 <log e %)
i=1

i=1

Maximize 0 log 3(7) —0

log £ wrt. 7 e |
El#(t.ty, .. )] =— ) 1=7
n-
Gives the ML 1 ¢ =
Ives the A
estimator 7 t= ; . L J 7 is an unbiased estimator for ¢

Read up on Gaussian example
at home (pg74, Cowan)
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Variance of ML estimators

So far: Method to determine 6 via ML and get 6 \/

Now: What is the variance of é’ ?

I.e., if we repeat our experiment a
large number of times, how widely

spread out would 0 be?

3 methods:

1. Analytical calculation of V[é’]

2. MC method
3. RCF bound / graphical technique

Modern Methods of Data Analysis I 30



Variance of ML estimators: analytic method

For a very limited number of cases, one can compute the variances of the
ML estimators analytically

- Elx] = d .39, Cowan
VIF] = E[”L\'z] - ( E[%])2 Recall [x] J_wxf(x) s (1.39, Cowan)

2
1 « 1 1
= J . J — Y ) = —e Tty b,
n - T T
i=1
. 2
1 1 1
— J =D 6 ) =t =,
J n - T T
=1
T2
= — No surprise here: Recall we derived this on slide 17
n
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How would we report this?

>

P+ 6
| |

Estimate from one Estimated standard deviation

experiment one expects 7 to vary by if
experiment is repeated many
times with the same number
of measurements per
experiment

Modern Methods of Data Analysis I 32



Variance of ML estimators: mc method (i)

Often too difficult to compute the variances analytically
Use the MC method to investigate the distribution of the ML estimates

1. Simulate a large # of experiments =  “irue” parameter =
the estimated value

from the real

) _ experiment
2. Compute the ML estimates each time

3. Look at how the resulting values are distributed

Unbiased estimator for

the variance of a PDE Compute s for the ML estimates obtained

. » from the MC experiments and give this as

> 1 2 the statistical f th t
2 = Z (x, — X) e statistical error of the parameter
n—1 P estimated from the real measurement
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Variance of ML estimators: Mc method (i)

http://www.pp.rhul.ac.uk/~cowan/sda/

f®

For arguments sake, pretend these 50
observations (tick marks) are from a real 075

experiment In reality, these are 50 MC generated observations

of an exponential variable t with mean t = 1.0
0.5

The curve shows the exponential PDF | 0.25
evaluated with the ML estimate 7 = 1.062

Use this as the “true” parameter t going forward

Now simulate 1000 experiments with 50

measurements each using 7 = 1.062 = 10 ¢ | | "
+ Sample mean of the estimates 7 = 1.059 o | E _
- Sample std. dev. of the 1000 experiments is s = 0.151
& Analytical std. dev. (3 slides back) is 50 1
6, = #\/n = 1.062/4/50 = 0.150 /
Note that the distribution is approximatively Gaussian in shape. This is a general // 0 05 | 15 2

property of ML estimators for the large sample limit: asymptotic normality

= L
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Variance of ML estimators: mMc method jii)

But what if we want
the decay constant
instead of the mean
lifetime?

1
A=—

T

In general: transformational invariance

O0L/06 = 0 implies 0L /da = 0 at a = a(6)
unless da /00 = 0.

OL _ 9L da _
860  Oa 06

0.

Modern Methods of Data Analysis

But with
A= 1/7=n/ Z:?:l t;.

n

E[A] =)

n—1

...biased
for small n

|35
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Variance of ML estimators: RCF bound (i)

Often too difficult to compute the variances analytically

and a MC StUdy involves a Significant effort Proof: ILIAS /Reading material /
L04 /RCF_proof.pdf

1 ob 2
Use the Rao-Cremer-Frechet (RCF) ~ + %
iInequality (aka information inequality) V[(g] >
to compute the lower bound on an o 0*log &
estimator’s variance E 902
For the exponential 0’loeZ n | 2%
distribution with mean 7 a2 2\ I Vi3] > = /
n

Recall we chose this distribution since it
can be solved analytically a b / a T = 0 b — 0 (slide 29)
= 0, -

In the case of equality (minimum variance), the estimator is said to be efficient

...but what if you can’t

Key points:
1) If efficient estimators exist for a given problem, the ML method will find Compute the RCF
them bound analytically?

2) ML estimators are always efficient in the large sample limit (exept when
the extent of the sample space depends on the estimated parameter)
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Variance of ML estimators: RCF bound (ii)

One can estimate V~! by evaluating the
second derivative with the measured

data and the ML estimates & 6«9,-69]. 0=0
5 0°log &
For a single parameter @ this reduces to: O°pg=|\| — / 5
o0 =0

The routines MIGRAD and HESSE in MINUIT determine numerically the matrix of second derivatives of
log Z using finite differences, evaluate it at the ML estimates, and invert to find the covariance matrix.
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Intuition

Why is this how we calculate the standard errors?

The easy way to think about this is to recognize that the curvature of the
likelihood function tells us how certain we are about our estimate of our
parameters. The more curved the likelihood function, the more certainty we

have that we have estimated the right parameter. The second derivative of the

likelihood function is a measure of the likelihood function’s curvature - this is why

it provides our estimate of the uncertainty with which we have estimated our

parameters.

If the curvature is small, then the likelihood surface is flat around its maximum
value (the MLE). If the curvature is large and thus the variance is small, the

likelihood is strongly curved at the maximum.

https://www.math.arizona.edu/~jwatkins/n-mle.pdf
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Variance of ML estimators: graphical technique (i)

Key ingredient: Taylor expand log likelihood function around maximum:

. [dlogZ” .1 |dHogz .
log Z(6) = logZ(0) + | —= O—0)+— | 225 O-072+ ...
- 20 |, s 2! 06?2 .
= ' " U= : 1 9=0
log Z'yax > . 0 log &
by definition at maximum S <_1/ 59% > 6=0
of RCF
(0 — 0)? . 1
logZ(0) =logZ .« — - or logZ(0 6y =logL 0 — =
204

With known maximum, can
determine estimator of variance

by solving what value of ¢, gives a
likelihood value of log< .. — 1/2
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Variance of ML estimators: graphical technique (i)

Return to our previous example using the exponential distribution

http://www.pp.rhul.ac.uk/~cowan/sda/

'52.5 | I |

Reading off from the curve
e A7 =0.137 | t-AL Tt t+Af

-~ A%+ — 0165 R . .............. ................. .. ...... longax -

log L(7)

Both reasonably close and we
find

-53.5 e .. ................... ...... log Lmax-1/2 ~
e 6; 7 AT_~ A7, = 0.15 * : :

We will later make a
reinterpretation of the interval -54

0.8 1 1.2 1.4 1.6
|z —0,7+ 0] asan

approximation of the 68.3%

. . This leads to approximately the same result as from the
central confidence interval P /

exact standard deviation t/A/n evaluated with Tt = 7
(slides 31 & 34)
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Take a second




Another ML example: 2 parameters (i)

e Consider a particle reaction where each scattering event is characterized
by a certain scattering angle ® (or equivalently x = cos ®)

Suppose now a theory predicts that this follows an angular distribution

given by
2 eg.a =0, f=1isthe
f(:{; o [)’) — L T at + ’63} LO QED expectation for
- 2 + 26/3 ete —)ﬂ"'ﬂ_

®* To make this slightly more complicated, let’s assume we have a finite
detector acceptance, such thatx, . <x <X, .:

1+ azr + Bz?

(xma.x - xmin) + %(mrznax _" xl?nin) + %(x?nax — x?nin)

T

Ensures proper normalization and makes f a PDF over [x,,;,,

flz;a,08) =

xma,x]
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Another ML example: 2 parameters (ii)

o MC experiment with 2000 events o | et
aCCOI‘ding to = —— Monte Carlo data
08 L - ML fit result /]
a=0.5, =05 J,lr'
X = — 0.95, Xy = 0.95 06 ’ .
04 |
® Numerically maximizing the log- |
likelihood function we find 02 [ n
1 0.5 0 0.5 1
X
a = 0.508+0.052,
— 9% log L
3 0.474+0.11 V=i = - 06;00; |, é‘.
f = 0.4740.1], ¥~ from second -
T _ derivatives X
from ML maximum EBV[&,/@] — 0.0026 r = 0.46.
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Another ML example: 2 parameters (iii)

http://www.pp.rhul.ac.uk/~cowan/sda/

o Can validate this result by , T ° N
using MC techniques 075 a1 T *
o 2 > T ]
Let’s produce 500 similar T e 1T L1 ;
experiments, all with 2000 025 | \ L .
events with the true values o "
fOr o = O 5, 'B — 05 ° 0 025 05 0.75 1\0 0.25 0.5 075 1
& B
A
Sarr_\plle means, s.tandard 10 —_— each point
deviations, covariance and e L © | jis one ML fit
correlation s L ]
In good agreement with 4t _
/ true values$ , L | € approximatively
| |
& = 0.499 B = 0.498 0 et Gaussian:
— . - : 0 0.25 0.5 0.75 1
sa = 0.051 S5 = 0.111 5
covla, 8] = 0.0024 r = 0.42.

Sample variance, covariance, correlation: Good agreement with RCF bound
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Another ML example:

2 parameters (iv)

e (Can also draw likelihood contour in 2D

Contour of logZ = logZ

0.
0.6

0.5

0.4

0.3

7

max

1

http://www.pp.rhul.ac.uk/~cowan/sda/

e Large sample limit
contour given by

1 a—i\2 (B-B\ a—a\ (B0
() e

94

a-axis
20040 ;
! tan 2¢ = ——2 .
0.6 0.7 g4 — g%
* B

Modern Methods of Data Analysis

)

s le. ellipse with center at (&, )
and angle ¢ with respect to the
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For next time

* Required reading
Cowan textbook: chapters 5 & 6.1-6.8
Reading material / LO4 /
e \arianceOfMLEstimators

o UnbiasedEstimators
o RCF_proof

e Extra reading for fun: /Reading material / LO4 /

WhylsntEveryPhysicistABayesian_RCousins  «— Listedas ‘fun’but you
should really read it!
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e Extended maximum likelihood
e Maximum likelihood with binned data

® Testing goodness-of-fit

o )(2 method
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Quiz Time: 4t Round



2. Let us assume you have a simple PDF of the form
f;\) =14+ A(z—0.5), (2)

with a sample space S spanning the interval [0, 1] such that [, f(z; A\)dz = fol flz; \)dz = 1.

a) First sketch the PDF for A =1,0, —1.

b) Five measurements were done giving x = (0.89,0.03,0.50,0.31,0.49). Calculate the
log-likelihood function for three different values of A = 1, —0.5, —1 by hand.

¢) The log-likelihood function is in good approximation a parabolic function, i.e. can be
described by a polynomial of second order as a function of the tested value A. Calculate
the coefficients a, b, ¢ of log L(\) = aA*+bA+c. For what value of ) is log L(\) maximal?

d) Sketch the log-likelihood function. Using the graphical method, i.e.

. 1
log L(A £ 65) = 1log Lyjax — 5 (3)

determine the uncertainty o5 of the estimated parameter A (with A denoting the value

A

where log L(\) = log Liax and L.y is the maximal likelihood value).
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sources. See the active links (when available) for a complete reference

Probability for CS (Stanford): slides 3-4

Statistical Data Analysis textbook by G. Cowan (U. London): all figures with white background

Modern Methods of Data Analysis I 50


https://web.stanford.edu/class/cs109/handouts/syllabus.html
http://www.pp.rhul.ac.uk/~cowan/stat_course.html

