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Modern Methods of Data Analysis

• Recap of lecture 4


• Answers to quiz 4


• Extended maximum 
Likelihood


• Binned Likelihood
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Program today

5’ break

•  method


• Goodness of fit


• Quiz 5

χ2



Modern Methods of Data Analysis

• Estimators:

• Use observations to construct functions that estimate properties of PDFs

• E.g. mean, variance, covariance 


• Introduced concept of bias and consistency 
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Brief recap of last lecture

‘hatted’ sample parameter 
(e.g. sample mean) 

 = parameter we determine  
using observations

population parameter 
(e.g. population mean) 

= true parameter in PDF

Review

s2 =
1

n − 1

n

∑
i=1

(xi − x̄)2

sample mean sample mean 

x̄ =
1
n

n

∑
i=1

xi

b = E[ ̂θ] − θ lim
n→∞

̂θ = θ

S2 =
1
n

n

∑
i=1

(xi − μ)2

population mean 
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Brief recap of last lecture Review

population parameter 
(e.g. population mean) 

= true parameter in PDF

Example last time of 

consistent but biased estimator: 

Decay constant (see L04 slide 35)

Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 
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Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 
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for small n



Modern Methods of Data Analysis

• Method of maximum likelihood

• Can find estimator for arbitrary parameters of interest of a PDF via maximizing the 

function 


• Given we have observations  distributed according to 


• Showed explicitly (= analytically) that this produces unbiased estimators for the mean 
decay time, if  is an exponential function.


• Discussed three methods to obtain variance of estimated values:

x = (x1, . . . , xn) f(x; θ)

f(x; τ)

5

Brief recap of last lecture Review

ℒ(θ) =
n

∏
i=1

f(xi; θ)

parameter(s) we wish to estimate

PDF of x

1.) Analytical calculation 


2.) MC method 


3.) Graphical method / RCF

Interpret:  is a pure 
function of the parameters  
with the data  “baked in”

ℒ
θ

x



Modern Methods of Data Analysis

• Key ingredient: Taylor expand log likelihood function around 
maximum:


• For a single parameter of interest we identify


• Likelihood evaluated at  ̂θ ± ̂σ ̂θ

6

Brief recap of graphical / RCF 

Variance of ML estimators: graphical method 79 

By definition of B we know that log L (B) = log Lmax and that the second term 
in the expansion is zero. Using equation (6.22) and ignoring higher order terms 
gIves 

(8 - 0)2 
log L(8) = log Lmax - __ , 

20-2 e 
(6.24) 

or 

A 1 
log L(8 ± O"e) = log Lmax - "2. (6.25) 

That is, a change in the parameter 8 of one standard deviation from its ML 
estimate leads to a decrease in the log-likelihood of 1/2 from its maximum value. 

It can be shown that the log-likelihood function becomes a parabola (i.e. 
the likelihood function becomes a Gaussian curve) in the large sample limit. 
Even if log L is not parabolic, one can nevertheless adopt equation (6.25) as the 
definition of the statistical error. The interpretation of such errors is discussed 
further in Chapter 9. 

As an example of the graphical method for determining the variance of an es-
timator, consider again the examples of Sections 6.2 and 6.5 with the exponential 
distribution. Figure 6.4 shows the log-likelihood function log L( r) as a function 
of the parameter r for a Monte Carlo experiment consisting of 50 measurements. 
The standard deviation of f is estimated by changing r until log L( r) decreases 
by 1/2, giving Llf_ = 0.137, Llf+ = 0.165. In this case logL(r) is reasonably 
close to a parabola and one can approximate 0" f Ll f _ Ll f + 0.15. This 
leads to approximately the same answer as from the exact standard deviation 
r /...;n evaluated with r = f. In Chapter 9 the interval [f - Ll f _ , f + Ll f +] will 
be reinterpreted as an approximation for the 68.3% central confidence interval 
(cf. Section 9.6). 

-53 

-53.5 

-54 
0.8 1.2 1.4 1.6 

Fig. 6.4 The log-likelihood function 
logL(T). In the large sample limit, the 
widths of the intervals [i-Lli-,il and 
[i,f + Llf+l correspond to one stan-
dard deviation at. 

Example from 
last lecture for  
variance of 
mean lifetime

Review

I.e., with known maximum, can

determine estimator of variance

by solving what value of  gives a 
likelihood value of 

σθ
logℒmax − 1/2

logℒ( ̂θ ± ̂σ ̂θ) = logℒmax −
1
2

logℒ(θ) = logℒ( ̂θ) + [ ∂logℒ
∂θ ]

θ= ̂θ
(θ − ̂θ) +

1
2! [ ∂2logℒ

∂θ2 ]
θ= ̂θ

(θ − ̂θ)2 + . . .

= 0 

at maximum

======
log ℒmax

by definition 
of ̂θ RCF

̂σ2
̂θ = (−1/ ∂2 log ℒ

∂θ2 ) θ= ̂θ

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Answer Time:  Quiz 4



Modern Methods of Data Analysis 88

Do your own Likelihood fit 2

Maximum Likelihood fit

2. Let us assume you have a simple PDF of the form

f(x;�) = 1 + � (x� 0.5) , (2)

with a sample space S spanning the interval [0, 1] such that
R
S f(x;�)dx =

R 1

0 f(x;�)dx = 1.

a) First sketch the PDF for � = 1, 0,�1.

b) Five measurements were done giving x = (0.89, 0.03, 0.50, 0.31, 0.49). Calculate the
log-likelihood function for three di↵erent values of � = 1,�0.5,�1 by hand.

c) The log-likelihood function is in good approximation a parabolic function, i.e. can be
described by a polynomial of second order as a function of the tested value �. Calculate
the coe�cients a, b, c of logL(�) = a�2+b�+c. For what value of � is logL(�) maximal?

d) Sketch the log-likelihood function. Using the graphical method, i.e.

logL(�̂± �̂�̂) = logLmax �
1

2
, (3)

determine the uncertainty �̂�̂ of the estimated parameter �̂ (with �̂ denoting the value

where logL(�̂) = logLmax and Lmax is the maximal likelihood value).

a)

b)

0.07

-0.47

0.03

c) Solving the three equations you can construct with the three      values you 
should find (using the rounded values from above)

a= -0.22, b = -0.25, c = 0.0
-1.0 -0.5 0.0 0.5 1.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

max = -0.57

max  - 1/2

c) / d)

�̂± �̂�̂ = �0.57± 1.51
<latexit sha1_base64="o158ARQ7g1U5ukI0PbL3JFqBS24=">AAACJXicbVDLSgMxFM3UV62vqks3wSK4cZgRS10oFN24rGAf0BnKnTRtQ5OZIckIZejPuPFX3LiwiODKXzGddlFbDwQO55zLzT1BzJnSjvNt5dbWNza38tuFnd29/YPi4VFDRYkktE4iHslWAIpyFtK6ZprTViwpiIDTZjC8n/rNZyoVi8InPYqpL6Afsh4joI3UKd54A9DY42aiC9iLBZ4JivUFdNJFd4xv8YVjlytZzLXLbqdYcmwnA14l7pyU0By1TnHidSOSCBpqwkGptuvE2k9BakY4HRe8RNEYyBD6tG1oCIIqP82uHOMzo3RxL5LmhRpn6uJECkKpkQhMUoAeqGVvKv7ntRPdu/ZTFsaJpiGZLeolHOsITyvDXSYp0XxkCBDJzF8xGYAEok2xBVOCu3zyKmlc2q5ju49XperdvI48OkGn6By5qIKq6AHVUB0R9ILe0AeaWK/Wu/Vpfc2iOWs+c4z+wPr5BVoEopc=</latexit><latexit sha1_base64="o158ARQ7g1U5ukI0PbL3JFqBS24=">AAACJXicbVDLSgMxFM3UV62vqks3wSK4cZgRS10oFN24rGAf0BnKnTRtQ5OZIckIZejPuPFX3LiwiODKXzGddlFbDwQO55zLzT1BzJnSjvNt5dbWNza38tuFnd29/YPi4VFDRYkktE4iHslWAIpyFtK6ZprTViwpiIDTZjC8n/rNZyoVi8InPYqpL6Afsh4joI3UKd54A9DY42aiC9iLBZ4JivUFdNJFd4xv8YVjlytZzLXLbqdYcmwnA14l7pyU0By1TnHidSOSCBpqwkGptuvE2k9BakY4HRe8RNEYyBD6tG1oCIIqP82uHOMzo3RxL5LmhRpn6uJECkKpkQhMUoAeqGVvKv7ntRPdu/ZTFsaJpiGZLeolHOsITyvDXSYp0XxkCBDJzF8xGYAEok2xBVOCu3zyKmlc2q5ju49XperdvI48OkGn6By5qIKq6AHVUB0R9ILe0AeaWK/Wu/Vpfc2iOWs+c4z+wPr5BVoEopc=</latexit><latexit sha1_base64="o158ARQ7g1U5ukI0PbL3JFqBS24=">AAACJXicbVDLSgMxFM3UV62vqks3wSK4cZgRS10oFN24rGAf0BnKnTRtQ5OZIckIZejPuPFX3LiwiODKXzGddlFbDwQO55zLzT1BzJnSjvNt5dbWNza38tuFnd29/YPi4VFDRYkktE4iHslWAIpyFtK6ZprTViwpiIDTZjC8n/rNZyoVi8InPYqpL6Afsh4joI3UKd54A9DY42aiC9iLBZ4JivUFdNJFd4xv8YVjlytZzLXLbqdYcmwnA14l7pyU0By1TnHidSOSCBpqwkGptuvE2k9BakY4HRe8RNEYyBD6tG1oCIIqP82uHOMzo3RxL5LmhRpn6uJECkKpkQhMUoAeqGVvKv7ntRPdu/ZTFsaJpiGZLeolHOsITyvDXSYp0XxkCBDJzF8xGYAEok2xBVOCu3zyKmlc2q5ju49XperdvI48OkGn6By5qIKq6AHVUB0R9ILe0AeaWK/Wu/Vpfc2iOWs+c4z+wPr5BVoEopc=</latexit><latexit sha1_base64="o158ARQ7g1U5ukI0PbL3JFqBS24=">AAACJXicbVDLSgMxFM3UV62vqks3wSK4cZgRS10oFN24rGAf0BnKnTRtQ5OZIckIZejPuPFX3LiwiODKXzGddlFbDwQO55zLzT1BzJnSjvNt5dbWNza38tuFnd29/YPi4VFDRYkktE4iHslWAIpyFtK6ZprTViwpiIDTZjC8n/rNZyoVi8InPYqpL6Afsh4joI3UKd54A9DY42aiC9iLBZ4JivUFdNJFd4xv8YVjlytZzLXLbqdYcmwnA14l7pyU0By1TnHidSOSCBpqwkGptuvE2k9BakY4HRe8RNEYyBD6tG1oCIIqP82uHOMzo3RxL5LmhRpn6uJECkKpkQhMUoAeqGVvKv7ntRPdu/ZTFsaJpiGZLeolHOsITyvDXSYp0XxkCBDJzF8xGYAEok2xBVOCu3zyKmlc2q5ju49XperdvI48OkGn6By5qIKq6AHVUB0R9ILe0AeaWK/Wu/Vpfc2iOWs+c4z+wPr5BVoEopc=</latexit>
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Extended ML

But first recall our old friend the Poisson RV



Modern Methods of Data Analysis 10

Poisson RV  # of successes in an interval of time at a fixed rate→

Consider an experiment that lasts a fixed interval of time

def: A Poisson random variable  is the # of successes over the experiment 
duration, assuming the time each success occurs is independent and 
the average # of successes over time is constant

n

f(n; ν) =
νn

n!
e−ν

Poisson distribution 29 

2.2 Poisson distribution 
Consider the binomial distribution of Section 2.1 in the limit that N becomes 
very large, p becomes very small, but the product N p (i.e. the expectation value 
of the number of successes) remains equal to some finite value v. It can be shown 
that equation (2.2) leads in this limit to (see Section 10.2) 

vn 
f(n; v) = - e- v (2.9) n! 

which is called the Poisson distribution for the integer random variable n, where 
n = 0,1, ... ,00. The p.d.f. has one parameter, v. Figure 2.3 shows the Poisson 
distribution for v = 2,5,10. 

;:- 0.4 

1 
i£ v=2 

<;:::: 
0.2 

0 
0 5 10 15 20 

n 

;:- 0.4 
,i£ v=5 

1 
0.2 

0 
0 5 10 15 20-

n 

_ v=10 
0.4 f j 
0.2 Fig. 2.3 The Poisson probability dis-

tribution for various values of the pa-
rameter v. o 5 10 15 20 

n 

The expectation value of the Poisson random variable n is 

E[n] = f n e- v = v, 
n=O 

and the variance is given by 

00 n 
V[n] = L (n - v)2 ; e- V = v. 

n. 
n=O 

(2.10) 

(2.11) 

Although a Poisson variable is discrete, it can be treated as a continuous 
variable x as long as this is integrated over a range which is large compared 
to unity. We will show in Chapter 10 that for large mean value v, a Poisson 
variable can be treated as a continuous variable following a Gaussian distribution, 
cf. Section 2.5. 

E[n] =
∞

∑
n=0

n
νn

n!
e−ν = ν

V[n] =
∞

∑
n=0

(n − ν)2 νn

n!
e−ν = ν

Review

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

• Consider a random variable  distributed according to a PDF  
with unknown parameters 


• Further suppose we have data 


• So far we assumed that the number of observations  in the data sample 
always stays the same


• But it is often the case that  itself is a Poisson random variable with some 
mean value 


• The likelihood function is then the product of the Poisson distribution 
probability to find  and the usual likelihood

X f(x; θ)
θ = (θ1, θ1, . . . , θm)

x1, . . . , xn

n

n
ν

n

11

Extended maximum likelihood

Interpret: the result of the experiment can be defined as the number 
of observations  in the sample and the  values  n n x1, . . . , xn

ℒ(ν, θ) =
νn

n!
e−ν

n

∏
i=1

f(xi; θ) =
e−ν

n!

n

∏
i=1

ν f(xi; θ)



Modern Methods of Data Analysis

• 2 situations of interest: 

• The Poisson parameter  is given as a function of 


• The Poisson parameter  is treated as an independent parameter

ν θ

ν

12

Extended maximum likelihood



Modern Methods of Data Analysis

• 2 situations of interest: 

• The Poisson parameter  is given as a function of ν θ

13

Extended maximum likelihood:   Case 1

log ℒ(θ) = n log ν(θ) − ν(θ) +
n

∑
i=1

log f(xi; θ) Additive terms not 
depending on  have 

been dropped 
θ

= − ν(θ) +
n

∑
i=1

log (ν(θ) f(xi; θ))

By including the Poisson term, the resulting 
estimators  exploit the information from  as 
well as from the variable . 

̂θ n
x

 This leads to smaller variances for  than in 
the case where only the  values are used

̂θ
x

ℒ(θ) =
e−ν(θ)

n!

n

∏
i=1

ν(θ) f(xi; θ)



Modern Methods of Data Analysis 14

Recall the particle scattering reaction

• Example:

• number of decays of radioactive material in a fixed time period in the limit that the total 

number of decays is large


• number of events of a certain type observed in a particle scattering experiment with a 
given integrated luminosity . The expectation value of the number of events is L

⌫ = �L✏
<latexit sha1_base64="K3lFSPb0fWxMEJgHu0xW7cUUUO0=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbBaDYBXuRNBGCNpYWEQwJpA7wt5mL1myu3fs7gnhSONfsbFQxNafYee/cS+5QhMfDDzem2FmXphwpo3rfjulpeWV1bXyemVjc2t7p7q796DjVBHaIjGPVSfEmnImacsww2knURSLkNN2OLrO/fYjVZrF8t6MExoIPJAsYgQbK/WqB75M0SXyNRsIjG6RTxPNeO7U3Lo7BVokXkFqUKDZq375/ZikgkpDONa667mJCTKsDCOcTip+qmmCyQgPaNdSiQXVQTZ9YIKOrdJHUaxsSYOm6u+JDAutxyK0nQKboZ73cvE/r5ua6CLImExSQyWZLYpSjkyM8jRQnylKDB9bgoli9lZEhlhhYmxmFRuCN//yInk4rXtu3bs7qzWuijjKcAhHcAIenEMDbqAJLSAwgWd4hTfnyXlx3p2PWWvJKWb24Q+czx9b7ZWc</latexit><latexit sha1_base64="K3lFSPb0fWxMEJgHu0xW7cUUUO0=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbBaDYBXuRNBGCNpYWEQwJpA7wt5mL1myu3fs7gnhSONfsbFQxNafYee/cS+5QhMfDDzem2FmXphwpo3rfjulpeWV1bXyemVjc2t7p7q796DjVBHaIjGPVSfEmnImacsww2knURSLkNN2OLrO/fYjVZrF8t6MExoIPJAsYgQbK/WqB75M0SXyNRsIjG6RTxPNeO7U3Lo7BVokXkFqUKDZq375/ZikgkpDONa667mJCTKsDCOcTip+qmmCyQgPaNdSiQXVQTZ9YIKOrdJHUaxsSYOm6u+JDAutxyK0nQKboZ73cvE/r5ua6CLImExSQyWZLYpSjkyM8jRQnylKDB9bgoli9lZEhlhhYmxmFRuCN//yInk4rXtu3bs7qzWuijjKcAhHcAIenEMDbqAJLSAwgWd4hTfnyXlx3p2PWWvJKWb24Q+czx9b7ZWc</latexit><latexit sha1_base64="K3lFSPb0fWxMEJgHu0xW7cUUUO0=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbBaDYBXuRNBGCNpYWEQwJpA7wt5mL1myu3fs7gnhSONfsbFQxNafYee/cS+5QhMfDDzem2FmXphwpo3rfjulpeWV1bXyemVjc2t7p7q796DjVBHaIjGPVSfEmnImacsww2knURSLkNN2OLrO/fYjVZrF8t6MExoIPJAsYgQbK/WqB75M0SXyNRsIjG6RTxPNeO7U3Lo7BVokXkFqUKDZq375/ZikgkpDONa667mJCTKsDCOcTip+qmmCyQgPaNdSiQXVQTZ9YIKOrdJHUaxsSYOm6u+JDAutxyK0nQKboZ73cvE/r5ua6CLImExSQyWZLYpSjkyM8jRQnylKDB9bgoli9lZEhlhhYmxmFRuCN//yInk4rXtu3bs7qzWuijjKcAhHcAIenEMDbqAJLSAwgWd4hTfnyXlx3p2PWWvJKWb24Q+czx9b7ZWc</latexit><latexit sha1_base64="K3lFSPb0fWxMEJgHu0xW7cUUUO0=">AAACAHicbVA9SwNBEJ2LXzF+RS0sbBaDYBXuRNBGCNpYWEQwJpA7wt5mL1myu3fs7gnhSONfsbFQxNafYee/cS+5QhMfDDzem2FmXphwpo3rfjulpeWV1bXyemVjc2t7p7q796DjVBHaIjGPVSfEmnImacsww2knURSLkNN2OLrO/fYjVZrF8t6MExoIPJAsYgQbK/WqB75M0SXyNRsIjG6RTxPNeO7U3Lo7BVokXkFqUKDZq375/ZikgkpDONa667mJCTKsDCOcTip+qmmCyQgPaNdSiQXVQTZ9YIKOrdJHUaxsSYOm6u+JDAutxyK0nQKboZ73cvE/r5ua6CLImExSQyWZLYpSjkyM8jRQnylKDB9bgoli9lZEhlhhYmxmFRuCN//yInk4rXtu3bs7qzWuijjKcAhHcAIenEMDbqAJLSAwgWd4hTfnyXlx3p2PWWvJKWb24Q+czx9b7ZWc</latexit>

Cross section Luminosity

Efficiency to observe an event

(L02, slide 54)

The statistical errors of the estimated parameters (e.g., cross section) depend on 
parameters such as particle masses and coupling constants

Will in general be smaller by including the 
information from the cross section 

Poisson parameter
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• 2 situations of interest: 

• The Poisson parameter  is given as a function of 


• The Poisson parameter  is treated as an independent parameter

ν θ

ν

15

ℒ(ν, θ) =
e−ν

n!

n

∏
i=1

ν f(xi; θ)
∂ log ℒ(ν, θ)

∂ν
= 0∂ log ℒ(ν, θ)

∂θi
= 0Here, setting one obtains the same 

estimators  as in the 
usual ML case 

̂θi

So why bother, since all you seem to have done is introduce an 
additional source of statistical fluctuation by regarding  as a RV?n

Extended maximum likelihood:   Case 2
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f(x; θ) =
m

∑
i=1

θi fi(x)

∂ log ℒ(ν, θ)
∂ν

= 0

Extended maximum likelihood:   Case 2
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Figure 22: Diphoton invariant mass m�� spectrum observed in the 2015 and 2016 data at
p

s = 13 TeV for events
in the diphoton fiducial region. The solid red curve shows the fitted signal-plus-background model when the
Higgs boson mass is constrained to be 125.09 ± 0.24 GeV. The background component of the fit is shown with
the dotted blue curve. The signal component of the fit is shown with the solid black curve. The bottom plot
shows the residuals between the data and the background component of the fitted model.

The cross section for pp ! H ! �� measured in the diphoton fiducial region is

�fid = 55 ± 9 (stat.) ± 4 (exp.) ± 0.1 (theo.) fb ,

which is to be compared with the Standard Model prediction of 64 ± 2 fb. The gluon–gluon fusion
contribution to the Standard Model prediction and its uncertainty are taken to be the N3LO QCD
and NLO EW prediction of Refs. [7, 24, 31–34] corrected for the H ! �� branching ratio and the
fiducial acceptance. The fiducial acceptance is defined using the P����� NNLOPS prediction for
gluon–gluon fusion [23]. The contributions to the Standard Model prediction from the VBF, VH,
bb̄H and tt̄H production mechanisms are determined using the particle-level predictions normalized
with theoretical calculations as discussed in Section 4, and are collectively referred to as XH. The
measured cross section is compatible with the Standard Model prediction and the observed ggH
coupling strength measured in Section 8, as the diphoton fiducial region is dominated by gluon–gluon
fusion production.

58

How many components?

Given: The PDF of some variable  (here ) is the 
superposition of several components

x mγγ

Gaussian (signal)

Polynomial (bkgd)

θ1 =
θ2 =

Task: Estimate the relative contribution of each 
component θi

log ℒ(ν, θ) = − ν +
n

∑
i=1

log
m

∑
j=1

νθi fj(xi)

log ℒ(μ) = −
m

∑
i=1

μj +
n

∑
i=1

log
m

∑
j=1

μj fj(xi)

Define:  μi = θiν
(the expected # of events of type )i Interpret: The total number of events  is 

viewed as a sum of independent Poisson 
variables with means . Here the  are 
more closely related to the production 
cross section for events of type .

n

μi μi

i



Binned ML
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• Consider again the sample with 50 measured particle decay times 
discussed in L04 (slide 34)

18

Binned Likelihood fit

88 The method of maximum likelihood 

N 

logL(8) = I: ni log vi(8), (6.42) 
i=I 

where additive terms not depending on the parameters have been dropped. The 
estimators {j are found by maximizing log L by whatever means available, e.g. 
numerically. In the limit that the bin size is very small (i.e. N very large) the 
likelihood function becomes the same as that of the ML method without bin-
ning (equation (6.2)). Thus the binned ML technique does not encounter any 
difficulties if some of the bins have few or no entries. This is in contrast to an 
alternative technique using the method of least squares discussed in Section 7.5. 

As an example consider again the sample of 50 measured particle decay times 
that we examined in Section 6.2, for which the ML result without binning is 
shown in Fig. 6.2. Figure 6.10 shows the same sample displayed as a histogram 
with a bin width of i}..t = 0.5. Also shown is the fit result obtained from maximiz-
ing the log-likelihood function based on equation (6.42). The result is T = 1.067, 
in good agreement with the unbinned result of T = 1.062. Estimating the stan-
dard deviation from the curvature of the log-likelihood at its maximum (equation 
(6.22)) results in U'f = 0.171, slightly larger than that obtained without binning. 
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Fig. 6.10 Histogram of the data 
sample of 50 particle decay times from 
Section 6.2 with the ML fit result. 

As discussed in Section 6.9, in many problems one may want to regard the 
total number of entries ntot as a random variable from a Poisson distribution 
with mean Vtot. That is, the measurement is defined to consist of first deter-
mining ntot from a Poisson distribution and then distributing ntot observations 
of x in a histogram with N bins, giving n = (nI, ... , nN). The joint p.d.f. for 
ntot and nI, ... , nN is the product of a Poisson distribution and a multinomial 
distribution, 

Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 

0.75 
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0.25 

o 
o 2 3 4 5 

Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

f(t; τ) =
1
τ

e−t/τ

Same sample displayed as a histogram
Δt = 0.5

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Binned Likelihood fit

Why do it?

For very large data sample,  is very expensive to computelog 𝓛

Must sum  for each log f(xi; θ) xi

Histogram:  number of entries  in  binsn = (n1, . . . , nN) N

88 The method of maximum likelihood 

N 

logL(8) = I: ni log vi(8), (6.42) 
i=I 

where additive terms not depending on the parameters have been dropped. The 
estimators {j are found by maximizing log L by whatever means available, e.g. 
numerically. In the limit that the bin size is very small (i.e. N very large) the 
likelihood function becomes the same as that of the ML method without bin-
ning (equation (6.2)). Thus the binned ML technique does not encounter any 
difficulties if some of the bins have few or no entries. This is in contrast to an 
alternative technique using the method of least squares discussed in Section 7.5. 

As an example consider again the sample of 50 measured particle decay times 
that we examined in Section 6.2, for which the ML result without binning is 
shown in Fig. 6.2. Figure 6.10 shows the same sample displayed as a histogram 
with a bin width of i}..t = 0.5. Also shown is the fit result obtained from maximiz-
ing the log-likelihood function based on equation (6.42). The result is T = 1.067, 
in good agreement with the unbinned result of T = 1.062. Estimating the stan-
dard deviation from the curvature of the log-likelihood at its maximum (equation 
(6.22)) results in U'f = 0.171, slightly larger than that obtained without binning. 
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Fig. 6.10 Histogram of the data 
sample of 50 particle decay times from 
Section 6.2 with the ML fit result. 

As discussed in Section 6.9, in many problems one may want to regard the 
total number of entries ntot as a random variable from a Poisson distribution 
with mean Vtot. That is, the measurement is defined to consist of first deter-
mining ntot from a Poisson distribution and then distributing ntot observations 
of x in a histogram with N bins, giving n = (nI, ... , nN). The joint p.d.f. for 
ntot and nI, ... , nN is the product of a Poisson distribution and a multinomial 
distribution, 

n1

n2

…
νi(θ) = ntot ∫

xmax
i

xmin
i

f(x; θ)dx

Expectation values  
of the number of entries 

ν = (ν1, . . . , νN)
Bin limits

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Binned Likelihood fit

fjoint(n; ν) =
ntot!

n1! . . . nN! ( ν1

ntot )
n1

⋅ ⋅ ⋅ ( νN

ntot )
nN

as a single measurement of an -dimensional random vector for 
which the joint PDF is given by a multinomial distribution

NHistogram

Prob to be in bin  is the expectation value  
divided by the total number of entries 

i (νi)
(ntot)

log ℒ(θ) =
N

∑
i=1

ni log νi(θ) (Additive terms not depending on  have been dropped)θ

In the limit of small bin size  nearly identical with unbinned ML. 
No problem if bins are empty or have few entries.

→
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• Now compare the results of binned vs. unbinned fits:

21

Binned Likelihood fit

88 The method of maximum likelihood 

N 

logL(8) = I: ni log vi(8), (6.42) 
i=I 

where additive terms not depending on the parameters have been dropped. The 
estimators {j are found by maximizing log L by whatever means available, e.g. 
numerically. In the limit that the bin size is very small (i.e. N very large) the 
likelihood function becomes the same as that of the ML method without bin-
ning (equation (6.2)). Thus the binned ML technique does not encounter any 
difficulties if some of the bins have few or no entries. This is in contrast to an 
alternative technique using the method of least squares discussed in Section 7.5. 

As an example consider again the sample of 50 measured particle decay times 
that we examined in Section 6.2, for which the ML result without binning is 
shown in Fig. 6.2. Figure 6.10 shows the same sample displayed as a histogram 
with a bin width of i}..t = 0.5. Also shown is the fit result obtained from maximiz-
ing the log-likelihood function based on equation (6.42). The result is T = 1.067, 
in good agreement with the unbinned result of T = 1.062. Estimating the stan-
dard deviation from the curvature of the log-likelihood at its maximum (equation 
(6.22)) results in U'f = 0.171, slightly larger than that obtained without binning. 
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Fig. 6.10 Histogram of the data 
sample of 50 particle decay times from 
Section 6.2 with the ML fit result. 

As discussed in Section 6.9, in many problems one may want to regard the 
total number of entries ntot as a random variable from a Poisson distribution 
with mean Vtot. That is, the measurement is defined to consist of first deter-
mining ntot from a Poisson distribution and then distributing ntot observations 
of x in a histogram with N bins, giving n = (nI, ... , nN). The joint p.d.f. for 
ntot and nI, ... , nN is the product of a Poisson distribution and a multinomial 
distribution, 

Read up on extended log-likelihood for binned data (Cowan pages 88-89)  

log ℒ(θ) =
N

∑
i=1

ni log νi(θ)

binned^

Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 
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Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

unbinned ML fit results 

⌧̂ = 1.062
<latexit sha1_base64="+i3RAXPlWFLEI40ZjnYEDW5M5Mg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwFJIi6kUoevFYwX5AE8pmu2mXbjZhd6KU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhangGlz321pZXVvf2Cxtlbd3dvf27cpBSyeZoqxJE5GoTkg0E1yyJnAQrJMqRuJQsHY4upn67QemNE/kPYxTFsRkIHnEKQEj9eyKPySAfSAZvsKe457XenbVddwZ8DLxClJFBRo9+8vvJzSLmQQqiNZdz00hyIkCTgWblP1Ms5TQERmwrqGSxEwH+ez0CT4xSh9HiTIlAc/U3xM5ibUex6HpjAkM9aI3Ff/zuhlEl0HOZZoBk3S+KMoEhgRPc8B9rhgFMTaEUMXNrZgOiSIUTFplE4K3+PIyadUcz3W8u7Nq/bqIo4SO0DE6RR66QHV0ixqoiSh6RM/oFb1ZT9aL9W59zFtXrGLmEP2B9fkDdMeSKA==</latexit><latexit sha1_base64="+i3RAXPlWFLEI40ZjnYEDW5M5Mg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwFJIi6kUoevFYwX5AE8pmu2mXbjZhd6KU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhangGlz321pZXVvf2Cxtlbd3dvf27cpBSyeZoqxJE5GoTkg0E1yyJnAQrJMqRuJQsHY4upn67QemNE/kPYxTFsRkIHnEKQEj9eyKPySAfSAZvsKe457XenbVddwZ8DLxClJFBRo9+8vvJzSLmQQqiNZdz00hyIkCTgWblP1Ms5TQERmwrqGSxEwH+ez0CT4xSh9HiTIlAc/U3xM5ibUex6HpjAkM9aI3Ff/zuhlEl0HOZZoBk3S+KMoEhgRPc8B9rhgFMTaEUMXNrZgOiSIUTFplE4K3+PIyadUcz3W8u7Nq/bqIo4SO0DE6RR66QHV0ixqoiSh6RM/oFb1ZT9aL9W59zFtXrGLmEP2B9fkDdMeSKA==</latexit><latexit sha1_base64="+i3RAXPlWFLEI40ZjnYEDW5M5Mg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwFJIi6kUoevFYwX5AE8pmu2mXbjZhd6KU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhangGlz321pZXVvf2Cxtlbd3dvf27cpBSyeZoqxJE5GoTkg0E1yyJnAQrJMqRuJQsHY4upn67QemNE/kPYxTFsRkIHnEKQEj9eyKPySAfSAZvsKe457XenbVddwZ8DLxClJFBRo9+8vvJzSLmQQqiNZdz00hyIkCTgWblP1Ms5TQERmwrqGSxEwH+ez0CT4xSh9HiTIlAc/U3xM5ibUex6HpjAkM9aI3Ff/zuhlEl0HOZZoBk3S+KMoEhgRPc8B9rhgFMTaEUMXNrZgOiSIUTFplE4K3+PIyadUcz3W8u7Nq/bqIo4SO0DE6RR66QHV0ixqoiSh6RM/oFb1ZT9aL9W59zFtXrGLmEP2B9fkDdMeSKA==</latexit><latexit sha1_base64="+i3RAXPlWFLEI40ZjnYEDW5M5Mg=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwFJIi6kUoevFYwX5AE8pmu2mXbjZhd6KU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhangGlz321pZXVvf2Cxtlbd3dvf27cpBSyeZoqxJE5GoTkg0E1yyJnAQrJMqRuJQsHY4upn67QemNE/kPYxTFsRkIHnEKQEj9eyKPySAfSAZvsKe457XenbVddwZ8DLxClJFBRo9+8vvJzSLmQQqiNZdz00hyIkCTgWblP1Ms5TQERmwrqGSxEwH+ez0CT4xSh9HiTIlAc/U3xM5ibUex6HpjAkM9aI3Ff/zuhlEl0HOZZoBk3S+KMoEhgRPc8B9rhgFMTaEUMXNrZgOiSIUTFplE4K3+PIyadUcz3W8u7Nq/bqIo4SO0DE6RR66QHV0ixqoiSh6RM/oFb1ZT9aL9W59zFtXrGLmEP2B9fkDdMeSKA==</latexit>

�̂⌧̂ = 0.151
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Both results consistent, but standard deviation larger for binned fit 
In large sample limit this difference disappears

⌧̂ = 1.067
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http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Modern Methods of Data Analysis

• Experiment:

• Assume you have a fair coin (i.e., equal probability of heads or tails).


• Toss the coin  times.


• Expect  heads.


• Result:


• Observe  heads.


• Question:

• If this experiment is repeated many times, what is the probability of obtaining a 

result with the same level of discrepancy with the hypothesis (=fair coin) or higher?


• Answer:


• -value.

N = 20
nh = 10

nh = 17

P

24

A simple example to warm up with



Modern Methods of Data Analysis

• Start with the binomial distribution for an experiment with  trials, characterized by  
successes (RV) with probability 


• Define the number of heads as success ( ), and include your hypothesis that the coin is 
fair  


• Question: What is the probability of obtaining our result of  or an even larger 
discrepancy from the hypothesis of a fair coin?


• Answer: Sum of the probabilities of .


• Using our equation, we get -value . 


• If this experiment (  coin tosses) were repeated many times under similar circumstances, there is 
probability of obtaining a result as compatible or less with our hypothesis (fair coin) than the one 

actually observed (  heads).


Interpret: The low value implies that there is a low level of agreement between the observed measurements 
and the assumption (prediction) we made.

N n
p

nh
p = 0.5

nh = 17

nh = 0,1,2,3,17,18,19,20
P = 0.0026

N = 20
0.26 %

nh = 17

25

A simple example to warm up with

f(n; N, p) =
N!

n!(N − n)!
pn(1 − p)N−n

f(nh; N ) =
N!

nh!(N − nh)! ( 1
2 )

nh

( 1
2 )

N−n



Is this a good fit?
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Most famous answer: Pearson’s χ2

On the criterion that a given system of 

deviations from the probable in the case of 

correlated system of variables is such that it 

can be reasonably supposed to have arisen 

from random sampling 

Sir Karl Pearson (1900),  
Phil. Mag (5) 50, 157-175



Recall the  distributionχ2
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• The  (chi-square) distribution of the continuous variable  
 is defined by


• The parameter  is called number of degrees of freedom and the gamma 
function:


• Expectation value and variance:

χ2 z
(0 < z < ∞)

n

29

Chi-square distribution  (i) Review

f(z; n) =
1

2n/2 Γ(n/2)
zn/2−1e−z/2, n = 1, 2, . . . ,

Γ(x) = ∫
∞

0
e−t tx−1 dt To calculate , need to know:

 for integer , 
 and  


χ2

Γ(n) = (n − 1)! n
Γ(x + 1) = xΓ(x) Γ(1/2) = π

E[z] = ∫
∞

0
z

1
2n/2 Γ(n /2)

zn/2−1e−z/2 dz = n

V[z] = ∫
∞

0
(z − n)2 1

2n/2 Γ(n /2)
zn/2−1e−z/2 dz = 2n

Note that the expectation value is equal 
to the number of degrees of freedom
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Chi-square distribution  (ii)

is distributed like a   distribution 
with  degrees of freedom.

χ2

N

Also holds if  are not independent but are 
-dimensionally Gaussian distributed

xi
N

Recall we said that variables following a 𝝌2 
distribution will play an important role in tests of 
goodness-of-fits

Review

z =
N

∑
i=1

(xi − μi)2

σ2
i

z = (x − μ)TV−1(x − μ)

Chi-square distribution 35 

then it will be distributed according to a Gaussian p.d.f. From this it follows 
that if a variable x is given by the product of many factors then it will follow 
a log-normal distribution. It can thus be used to model random errors which 
change a result by a multiplicative factor. 

2.7 Chi-square distribution 
The X 2 (chi-square) distribution of the continuous variable z (0 :::; z < 00) IS 

defined by 

f() 1 n/2-1 -z/2 - 1 2 z; n = 2n / 2 f ( n /2) z e , n - , , ... , (2.34) 

where the parameter n is called the number of degrees of freedom, and the 
gamma function f(x) is defined by 

f(x) = 1000 

e- t t x - 1 dt. (2.35) 

For the purposes of computing the X2 distribution, one only needs to know that 
f(n) = (n - 1)! for integer n, f(x + 1) = xf(x), and r(1/2) = ft. The mean 
and variance of z are found to be 

E[z] = z zn/2-1 e- z / 2 dz = n, 100 1 

D 2n / 2 f(n/2) (2.36) 

100 f 
V[z] = (z - n)2 zn/2-1 e- z / 2 dz = 2n. 

D 2n / 2 f(n/2) 
(2.37) 

The X2 distribution is shown in Fig. 2'.7 for several values of the parameter n. 

0.5 
N 

0.4 

0.3 

0.2 

0.1 

0 
0 5 10 

z 

n=1 
n=2 
n=5 
n = 10 

15 20 

Fig. 2.7 The X2 probability density 
for various values of the parameter n. 

The X2 distribution derives its importance from its relation to the sum of 
squares of Gaussian distributed variables. Given N independent Gaussian ran-
dom variables Xi with known mean /li and variance a}, the variable 

The  probability 
density for various 
values of the 
parameter 

χ 2

n

Proof in Cowan Sec. 10.2

http://www.pp.rhul.ac.uk/~cowan/sda/

• The  distribution is important due to 
its relation to the sum of squares of 
Gaussian distributed random 
variables. Given  independent 

Gaussian random variables  with 

known means  and variances , the 

variable 

χ2

N
xi

μi σ2
i

http://www.pp.rhul.ac.uk/~cowan/sda/
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Pearson’s  testχ2

A goodness-of-fit test that can be applied 
to the distribution of a variable x

χ2 =
N

∑
i=1

(ni − νi)2

νi

Obtain  for 

 degrees of freedom

χ2 = 29.8
N = 20

 binsN
 = # of entries in bin ni i

 = # of expected 
entries in bin 

νi
i

Construct a statistic which reflects 
the level of agreement between 
observed and expected histograms

http://www.pp.rhul.ac.uk/~cowan/sda/

• Data  are Poisson distributed with mean 
values .


• Since the  of a Poisson RV with mean  is 
, this statistic gives the sum of squares 

of the deviations between observed and 
expected values, measured in units of .

n
ν

σ νi
νi

σ

http://www.pp.rhul.ac.uk/~cowan/sda/
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z = χ2

Find probability corresponding to  by inspecting 
distribution of  for  degrees of freedom

χ2 = 29.8
f(χ2) 20

χ2 = 29.8

Pearson’s  testχ2

Chi-square distribution 35 

then it will be distributed according to a Gaussian p.d.f. From this it follows 
that if a variable x is given by the product of many factors then it will follow 
a log-normal distribution. It can thus be used to model random errors which 
change a result by a multiplicative factor. 

2.7 Chi-square distribution 
The X 2 (chi-square) distribution of the continuous variable z (0 :::; z < 00) IS 

defined by 

f() 1 n/2-1 -z/2 - 1 2 z; n = 2n / 2 f ( n /2) z e , n - , , ... , (2.34) 

where the parameter n is called the number of degrees of freedom, and the 
gamma function f(x) is defined by 

f(x) = 1000 

e- t t x - 1 dt. (2.35) 

For the purposes of computing the X2 distribution, one only needs to know that 
f(n) = (n - 1)! for integer n, f(x + 1) = xf(x), and r(1/2) = ft. The mean 
and variance of z are found to be 

E[z] = z zn/2-1 e- z / 2 dz = n, 100 1 

D 2n / 2 f(n/2) (2.36) 

100 f 
V[z] = (z - n)2 zn/2-1 e- z / 2 dz = 2n. 

D 2n / 2 f(n/2) 
(2.37) 

The X2 distribution is shown in Fig. 2'.7 for several values of the parameter n. 

0.5 
N 

0.4 

0.3 

0.2 

0.1 

0 
0 5 10 

z 

n=1 
n=2 
n=5 
n = 10 

15 20 

Fig. 2.7 The X2 probability density 
for various values of the parameter n. 

The X2 distribution derives its importance from its relation to the sum of 
squares of Gaussian distributed variables. Given N independent Gaussian ran-
dom variables Xi with known mean /li and variance a}, the variable 

The  probability 
density for various 
values of the 
parameter 

χ 2

n

. . . . n = 20
Not shown

…

(Careful the difference in notation)

http://www.pp.rhul.ac.uk/~cowan/sda/
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Then calculate the -value  the probability, under 
the hypothesis in question , of obtaining a result 
as compatible or less with  than the one actually 
observed

P ≡
H0
H0

P = ∫
∞

χ2

f(z; nd) dz

33

z = χ2χ2 = 29.8

Find probability corresponding to  by inspecting 
distribution of  for  degrees of freedom

χ2 = 29.8
f(χ2) 20

i.e.  for f ( χ 2) nd = 20

= 0.073

Pearson’s  testχ2

Careful: Is this reliable?
No! Too few entries / bin in 

our original histogram
http://www.pp.rhul.ac.uk/~cowan/sda/

= 0.11 Obtained from MC program

Done by generating Poisson values  for 
each bin based on the mean value , and 

then computing and recording the  value

ni
νi

χ2

http://www.pp.rhul.ac.uk/~cowan/sda/
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• In many situations, measured values can be regarded as Gaussian 
random variables

• Consequence of the Central Limit Theorem (CLT) 

• Total error often sum of a large number of small contributions

35

Method of least squares

• Consider now a set of  independent Gaussian random variables  
each related to another variable , which is assumed to be known without error

N yi, i = 1, . . . , N
xi

Sum of dice rolls example we 
looked at in L03

1

∑
i=1

Xi

2

∑
i=1

Xi

4

∑
i=1

Xi

3

∑
i=1

Xi

Sum of 1 die roll

Sum of 3 dice rolls

Sum of 2 dice rolls

Sum of 4 dice rolls

Roll  independent dice 


Let  be the outcome of roll 


 are i.i.d.

n

Xi i

Xi
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• Further


• Each value  has a different unknown mean   


• And each value  has known variance 


• As before we can understand this set of measurements (e.g. from a 
single experiment) to be a random vector itself that changes if we 
repeat the experiment


• The joint PDF describing this vector is the product of  Gaussians:


• Further assume that   

yi λi

yi σ2
i

N

λi = λ(xi; θ)

36

Method of least squares

i.e. function of some parameters 
of interest we want to determine

g(y1, . . . , yN; λ1, . . . , λN, σ2
1 , . . . , σ2

N) =
N

∏
i=1

1

2πσ2
i

exp ( −(yi − λi)2

2σ2
i )
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Method of least squares

g(y1, . . . , yN; λ1, . . . , λN, σ2
1 , . . . , σ2

N) =
N

∏
i=1

1

2πσ2
i

exp ( −(yi − λi)2

2σ2
i )

log ℒ(θ) = −
1
2

N

∑
i=1

(yi − λ(xi; θ))2

σ2
i

Take the log (and drop additive terms that 
do not depend on the parameters)

χ2(θ) =
N

∑
i=1

(yi − λ(xi; θ))2

σ2
i

Maximize by finding the values of the 
parameters  that minimize θ χ 2(θ)

 …the quadratic sum of the differences 
between the measured  and 

hypothesized  values, weighted by 
the inverse of the variances

(yi)
(λi)
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96 The method of least squares 

y 
2 

1.5 

0.5 

o 
o 2 3 4 

x 

5 6 

Fig. 7.1 Ingredients of the least 
squares problem: N values Yl,···, YN 
are measured with errors 0"1,···,0" N 
at the values of x given without er-
ror by Xl, ... ,X N. The true value Ai 
of Y. is assumed to be given by a func-
tion Ai = A(Xii6). The value of 6 is 
adjusted to minimize the value of X2 

given by equation (7.3). 

namely the quadratic sum of the differences between measured and hypothe-
sized values, weighted by the inverse of the variances. This is the basis of the 
method of least squares (LS), and is used to define the procedure even in cases 
where the individual measurements Yi are not Gaussian, but as long as they are 
independent. 

If the measurements are not independent but described by an N-dimensional 
Gaussian p.d.f. with known covariance matrix V but unknown mean values, the 
corresponding log-likelihood function is obtained from the logarithm of the joint 
p.d.f. given by equation (2.28), 

1 N 
log L(8) = -"2 L (Yi - -\(Xi; 8))(V- 1 )ij(Yj - -\(Xj; 8)), (7.4) 

i,j=l 

where additive terms not depending on the parameters have been dropped. This 
is maximized by minimizing the quantity 

N 

X2 (8) = L (Yi - -\(Xi; 8))(V- 1 )ij(Yj - -\(Xj; 8)), (7.5) 
i,j=l 

which reduces to equation (7.3) if the covariance matrix (and hence its inverse) 
are diagonal. 

The parameters that minimize the X2 are called the LS estimators, e1 , ... , em. 
As will be discussed in Section 7.5, the resulting minimum X2 follows under 
certain circumstances the X2 distribution, as defined in Section 2.7. Because of 
this the quantity defined by equations (7.3) or (7.5) is often called X2, even in 
more general circumstances where its minimum value is not distributed according 
to the X2 p.d.f. 

• Ingredients to a least square problem: 


•  values  are measured with errors 


• The true value  depends on parameter(s) of interest 

N y1, . . . , yN σ1, . . . , σN

λi = λ(xi; θ) θ

38

In other words…

The value of  is 
adjusted to minimize 

θ

χ2(θ) =
N

∑
i=1

(yi − λ(xi; θ))2

σ2
i

The parameters that minimize the  
are called the LS (‘least square’) 

estimators 

χ2

̂θ1, . . . , ̂θm

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• What if the measurements are not independent but described by 
an -dimensional Gaussian PDF with known covariance matrix  
but unknown mean values? 

N V

39

One more thing…

Start with the -dimensional generalization of the Gaussian distribution (eqn 2.28)N

log ℒ(θ) = . . .

Take the log (and drop additive terms that 
do not depend on the parameters)

χ2(θ) = . . .

Maximize by finding the values of the 
parameters  that minimizeθ

Reduces to 1D case (previous slide) 
if the covariance matrix is diagonal

See Cowan page 96 



LS fit of a polynomial



Modern Methods of Data Analysis

• As an example let us consider the following data:

•

41

Example: least square fit of a polynomial  (i)

Least squares fit of a polynomial 99 

Tn 

>. ( x; 00 , ... , 0111 ) == L x j e j . 
j=O 

(7.15) 

This is a special case of the linear least-squares fit described in Section 7.2 with 
the coefficient functions aj(x) equal to powers of x. Figure 7.2 shows the LS fit 
result for polynomials of order 0, 1 and 4. The zero-order polynomial is simply 
the average of the measured values, with each point weighted inversely by the 
square of its error. This hypothesis gives eo = 2.66 ± 0.13 and X2 == 45.5 for four 
degrees of freedom (five points minus one free parameter). The data are better 
described by a straight-line fit (first-order polynomial) giving 00 = 0.93 ± 0.30, 
01 = 0.68 ± 0.10 and X2 = 3.99 for three degrees of freedom. Since there are only 
five data points, the fourth-order polynomial (with five free parameters) goes 
exactly through every point yielding a X2 of zero. The use of the X2 value to 
evaluate the goodness-of-fit will be discussed in Section 7 .. 5. 

y 
6 

4 

2 

oth order, X2 = 45.5 

1st order, X2 = 3.99 

4th order, l = 0.0 

o 
o 2 3 4 5 6 

x 

Fig. 7.2 Least squares fits of polyno-
mials of order 0, 1 and 4 to five mea-
sured values. 

As in the case of the maximum likelihood method, the statistical errors and 
covariances of the estimators can be estimated in several ways. All are related to 
the change in the X2 as the parameters are moved away from the values for which 
X2 is a minimum. Figure 7 .3( a) shows the X2 as a function of 00 for the case of 
the zero-order polynomial. The X2 curve is a parabola, since the hypothesized 
fit function is linear in the parameter 00 (see equation (7.13)). The variance of 
the LS estimator 00 can be eval uated by any of the methods discussed in Section 
7.2: from the change in the parameter necessary to increase the minimum X2 by 
one, from the curvature (second derivative) of the parabola at its minimum, or 
directly from equation (7.11). 

Figure 7.3(b) shows a contour of X2 == + 1 for the first-order polynomial 
(two-parameter) fit. From the inclination and width of the ellipse one can see 
that the estimators 00 and 01 are negatively correlated. Equation 7.11 gives 

• Five measured values of a 
quantity  with errors 


• Let’s assume the measured 
values  each come from a 
Gaussian distribution 
centered around (unknown) 

 with a standard deviation 
of 


• As hypotheses for , 
we try fitting polynomials of 
order : 

y Δy

yi

λi
σi = Δyi

λ(x; θ)

m

unknown parameters

λ(x; θ0, . . . , θm) =
m

∑
j=0

xjθj
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• As an example let us consider the following data:

•
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Least squares fit of a polynomial 99 

Tn 

>. ( x; 00 , ... , 0111 ) == L x j e j . 
j=O 

(7.15) 

This is a special case of the linear least-squares fit described in Section 7.2 with 
the coefficient functions aj(x) equal to powers of x. Figure 7.2 shows the LS fit 
result for polynomials of order 0, 1 and 4. The zero-order polynomial is simply 
the average of the measured values, with each point weighted inversely by the 
square of its error. This hypothesis gives eo = 2.66 ± 0.13 and X2 == 45.5 for four 
degrees of freedom (five points minus one free parameter). The data are better 
described by a straight-line fit (first-order polynomial) giving 00 = 0.93 ± 0.30, 
01 = 0.68 ± 0.10 and X2 = 3.99 for three degrees of freedom. Since there are only 
five data points, the fourth-order polynomial (with five free parameters) goes 
exactly through every point yielding a X2 of zero. The use of the X2 value to 
evaluate the goodness-of-fit will be discussed in Section 7 .. 5. 
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covariances of the estimators can be estimated in several ways. All are related to 
the change in the X2 as the parameters are moved away from the values for which 
X2 is a minimum. Figure 7 .3( a) shows the X2 as a function of 00 for the case of 
the zero-order polynomial. The X2 curve is a parabola, since the hypothesized 
fit function is linear in the parameter 00 (see equation (7.13)). The variance of 
the LS estimator 00 can be eval uated by any of the methods discussed in Section 
7.2: from the change in the parameter necessary to increase the minimum X2 by 
one, from the curvature (second derivative) of the parabola at its minimum, or 
directly from equation (7.11). 

Figure 7.3(b) shows a contour of X2 == + 1 for the first-order polynomial 
(two-parameter) fit. From the inclination and width of the ellipse one can see 
that the estimators 00 and 01 are negatively correlated. Equation 7.11 gives 

• With a  order 
polynomial, we have a large 

 value


•  order polynomial:


•  order polynomial fit:    
 of zero and goes exactly 

through all data points 

0th

χ2

1st

4th

χ2

Example: least square fit of a polynomial  (ii)

χ2 = 45.5 ̂θ0 = 2.66 ± 0.13

χ2 = 3.99 ̂θ0 = 0.93 ± 0.30

̂θ1 = 0.68 ± 0.10
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• As for the ML method, the statistical errors and covariances can 
be estimated using several methods

• 1) Analytically 2) MC method 3) graphical method
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Fig. 7.3 (a) The X2 as a function of eo for the zero-order polynomial fit shown in Fig. 7.2. 
The horizontal lines indicate X;'in and X;'in + 1. The corresponding eo values (vertical lines) are 
the LS estimate 00 and 00 ± 0-eo' (b) The LS estimates Bo and [h for the first-order polynomial 

fit in Fig. 7.2. The tangents to the contour X2 (Bo, B1 ) = X;'in + 1 correspond to 00 ± 0-eo and 

Ol±0-81' 

(;-9
0 

yr;: = 0.30 

(;-9
1 

;0:; = 0.10 

cov[eo, e1 ] = U0 1 = -0.028, 

corresponding to a correlation coefficient of r = -0.90. As in the case of maxi-
mum likelihood, the standard deviations correspond to the tangents of the ellipse, 
and the correlation coefficient to its width and angle of inclination (see equations 
{6.31} and (6.32)). 

Since the two estimators eo and e1 have a strong negative correlation, it is 
important to include the covariance, or equivalently the correlation coefficient, 
when reporting the results of the fit. Recall from Section 1.7 that one can always 
define two new quantities, i}o and i}1, from the original eo and e1 by means of 
an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 
generally easier to deal with uncorrelated quantities, the transformed parameters 
may not have as direct an interpretation as the original ones. 

7.4 Least squares with binned data 
In the previous examples, the function relating the 'true' values). to the variable 
x was not necessarily a p.d.f. for x, but an arbitrary function. It can, however, 
be a p.d.f., or it can be proportional to one. Suppose, for example, one has n 

 order polynomial fit0th  order polynomial fit1st

Example: least square fit of a polynomial  (iii)
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• As for the ML method, the statistical errors and covariances can 
be estimated using several methods

• 1) Analytically 2) MC method 3) graphical method
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corresponding to a correlation coefficient of r = -0.90. As in the case of maxi-
mum likelihood, the standard deviations correspond to the tangents of the ellipse, 
and the correlation coefficient to its width and angle of inclination (see equations 
{6.31} and (6.32)). 

Since the two estimators eo and e1 have a strong negative correlation, it is 
important to include the covariance, or equivalently the correlation coefficient, 
when reporting the results of the fit. Recall from Section 1.7 that one can always 
define two new quantities, i}o and i}1, from the original eo and e1 by means of 
an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 
generally easier to deal with uncorrelated quantities, the transformed parameters 
may not have as direct an interpretation as the original ones. 
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In the previous examples, the function relating the 'true' values). to the variable 
x was not necessarily a p.d.f. for x, but an arbitrary function. It can, however, 
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100 The method of least squares 

(a) 
x2 = X2

mln + 1 
46.5 

0.8 1-----1--
············································ .. T· .. ······ ......................................... . 

46 

0.6 

45.5 ........•.......... : ......................... . LS estimate 

0.4 L-_---L"--_...l..-_--'-__ -L.l._---' 
2.5 2.6 2.7 2.8 2.9 0.4 0.6 0.8 1.2 1.4 

Fig. 7.3 (a) The X2 as a function of eo for the zero-order polynomial fit shown in Fig. 7.2. 
The horizontal lines indicate X;'in and X;'in + 1. The corresponding eo values (vertical lines) are 
the LS estimate 00 and 00 ± 0-eo' (b) The LS estimates Bo and [h for the first-order polynomial 

fit in Fig. 7.2. The tangents to the contour X2 (Bo, B1 ) = X;'in + 1 correspond to 00 ± 0-eo and 

Ol±0-81' 

(;-9
0 

yr;: = 0.30 

(;-9
1 

;0:; = 0.10 

cov[eo, e1 ] = U0 1 = -0.028, 

corresponding to a correlation coefficient of r = -0.90. As in the case of maxi-
mum likelihood, the standard deviations correspond to the tangents of the ellipse, 
and the correlation coefficient to its width and angle of inclination (see equations 
{6.31} and (6.32)). 

Since the two estimators eo and e1 have a strong negative correlation, it is 
important to include the covariance, or equivalently the correlation coefficient, 
when reporting the results of the fit. Recall from Section 1.7 that one can always 
define two new quantities, i}o and i}1, from the original eo and e1 by means of 
an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 
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Since the two estimators eo and e1 have a strong negative correlation, it is 
important to include the covariance, or equivalently the correlation coefficient, 
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define two new quantities, i}o and i}1, from the original eo and e1 by means of 
an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 
generally easier to deal with uncorrelated quantities, the transformed parameters 
may not have as direct an interpretation as the original ones. 

7.4 Least squares with binned data 
In the previous examples, the function relating the 'true' values). to the variable 
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be a p.d.f., or it can be proportional to one. Suppose, for example, one has n 

Strongly anti-correlated 
parameters: Very important to 
include the correlation coefficient 
when reporting such a fit.

Example: least square fit of a polynomial  (iv)

 order polynomial fit1st
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• As for the ML method, the statistical errors and covariances can 
be estimated using several methods

• 1) Analytically 2) MC method 3) graphical method
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mum likelihood, the standard deviations correspond to the tangents of the ellipse, 
and the correlation coefficient to its width and angle of inclination (see equations 
{6.31} and (6.32)). 

Since the two estimators eo and e1 have a strong negative correlation, it is 
important to include the covariance, or equivalently the correlation coefficient, 
when reporting the results of the fit. Recall from Section 1.7 that one can always 
define two new quantities, i}o and i}1, from the original eo and e1 by means of 
an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 
generally easier to deal with uncorrelated quantities, the transformed parameters 
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Example: least square fit of a polynomial  (v)

 order polynomial fit1st

Contours in parameter space whose 
tangents are at , corresponding to a 
one standard deviation departure from the 
LS estimates:

̂θi ± ̂σi

χ2(θ) = χ2( ̂θ) + 1 = χ2
min + 1

Careful! Only holds 

for the case of lin
ear 

LS fits  [Cowan, page 97]

82 The method of maximum likelihood 

The sample means, standard deviations, covariance and correlation coefficient 
(see Section 5.2) from the Monte Carlo experiments are: 

0.499 
0.051 
0.0024 

(3 

r 

0.498 
0.111 
0.42. 

(6.29) 

Note that & and /3 are in good agreement with the 'true' values put into the 
Monte Carlo (0' = 0.5 and (3 = 0.5) and the sample (co)variances are close to 
the values estimated numerically from the ReF bound. 

The fact that a and /3 are correlated is seen from the fact that the band of 
points in the scatter plot is tilted. That is, if one required a > 0', this would lead 
to an enhanced probability to also find /3 > (3. In other words, the conditional 
p.d.f. for a given /3 > (3 is centered at a higher mean value and has a smaller 
variance than the marginal p.d.f. for a. 

Figure 6.7 shows the positions of the ML estimates in the parameter space 
along with a contour corresponding to log L = log Lmax - 1/2. 

0.7 

0.6 
····t··································· ----·---------r----

0.5 true value 
Fig. 6.7 The contour of constant 
likelihood logL = logLmax - 1/2 
shown with the true values for the par-
ameters (a,.6) and the ML estimates 
(a,t1). In the large sample limit the 
tangents to the curve correspond to 
a ± u& and t1 ± uiJ. 

0.4 

i MLf", •• ," 

0.3 

·· .. ··········l· .. ·········· .. · .. ······ .. ··· .. · .. 

0.3 0.4 0.5 0.6 0.7 

<X 

In the large sample limit, the log-likelihood function takes on the form 

log L( 0', (3) = log Lmax 

[C';'&)' + -2P(";'&) ,(6.30) 

where p = cov[a,/3]/(O"&O"{§) is the correlation coefficient for a and /3. The contour 
of log L (0', (3) = log Lmax - 1/2 is thus given by 

You’ve seen this 
before for the case 
of ML estimates!

logℒ = logℒmax −
1
2
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Revisit



Modern Methods of Data Analysis

• If the measured values  are Gaussian, the resulting least-squared 
estimators coincide with the ML estimators. 


• Furthermore, the  values can be used to test how likely it is that if the 
hypothesis is true, you would measure the observed data


• Important but subtle point: you can only make statements that how likely it is to 
observe the data given that the hypothesis is true, BUT you cannot make a 
statement how probable it is that the hypothesis is true 

• The quantity   is a measure for the deviation between the 

 measurement  and the hypothesized  function 


• So  is a measure of the total agreement between the observed data and 
hypothesis

yi

χ2

(yi − λ(xi; θ))
σi

ith yi λ
χ2
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Goodness of fit  (i) Revisit



Modern Methods of Data Analysis

• It can be shown that, if


• then the minimum value of  is distributed according to the 
-distribution with  degrees of freedom ( )

χ2 χ2

n n = N − m

48

Expectation value is  
Thus often quote  and speaks 
of a good fit if 

n = N − m
χ 2 /n

χ 2 /n ∼ 1

Goodness of fit  (ii) Revisit

f(z; n) =
1

2n/2 Γ(n/2)
zn/2−1e−z/2, n = 1, 2, . . .

E[z] = ∫
∞

0
z

1
2n/2 Γ(n /2)

zn/2−1e−z/2 dz = n

V [z] = ∫
∞

0
(z − n)2 1

2n/2 Γ(n /2)
zn/2−1e−z/2 dz = 2n

1. the , are independent Gaussian RVs with known variances,  (or 
are distributed according to an -dimensional Gaussian with known covariance 
matrix );


2. the hypothesis  is linear in the parameters ; and


3. the functional form of the hypothesis is correct, 

yi, i = 1, . . . , N σ2
i

N
V

λ(x; θ1, . . . , θm) θi

# of free parameters in the fit# of points



Modern Methods of Data Analysis

• If , then there is some reason to doubt the hypothesis.


• If , fit is better than expected given the size of the 
measurement errors (but must check that the  have not been 
overestimated or are not correlated).  


• One can calculate the probability that the hypothesis would lead to a  equal 
or worse (i.e. greater) than the actually one obtained: 


• The -value at which one decides to reject a hypothesis is subjective, but 
note that underestimated errors can cause a correct hypothesis to give a bad 
(i.e. large) 

χ2/n ≫ 1
χ2/n ≪ 1

σi

χ2

P

χ2
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Goodness of fit  (iii)

P = ∫
∞

χ2

f(z; nd) dz

Revisit

-value also called observed significance level 
or confidence level of the test

P
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Testing goodness-of-fit with X2 105 

data point is generated from a Gaussian of width (J" given by the corresponding 
errors. Figure 7.5 shows a normalized histogram of the X2 values from 1000 
simulated experiments along with the predicted X2 distribution for three degrees 
of freedom. 

0.2 3\, 
01· j\ 

/ from Me experiments 

fC/;n d=3) 

o L-______ -L ________ .. .. = ... 

o 5 10 15 

Fig. 7.5 Normalized histogram of X2 

values from 1000 Monte Carlo experi-
ments along with the predicted X2 dis-
tribution for three degrees of freedom. 

The fit to the horizontal line gave X2 = 45.5 for four degrees of freedom. The 
corresponding significance level is P = 3.1 X 10- 9 . If the horizontal-line hypoth-
esis were true, one would expect a X2 as high or higher than the one obtained in 
only three out of a billion experiments, so this hypothesis can safely be ruled out. 
In computing the P-value it was assumed that the standard deviations (J"i (or 
for correlated measurements the covariance matrix V) were known. One should 
keep in mind that underestimated measurement .errors (J"i or incorrect treatment 
of correlations can cause a correct hypothesis to result in a large X2. 

One should keep in mind the distinction between having small statistical 
errors and having a good (i.e. small) X2. The statistical errors are related to the 
change in X2 when the parameters are varied away from their fitted values, and 
not to the absolute value of X2 itself. From equation (7.11) one can see that the 
covariance matrix of the estimators U depends only on the coefficient functions 
aj(x) (i.e. on the composite hypothesis >.(x; 8)) and on the covariance matrix V 
of the original measurements, but is independent of the measured values Yi. 

The standard deviation (J" 0 of an estimator e is. a measure of how widely 
estimates would be distributed if the experiment were to be repeated many 
times. If the functional form of the hypothesis is incorrect, however, then the 
estimate e can still differ significantly from the true value (j, which would be 
defined in the true composite hypothesis. That is, if the form of the hypothesis 
is incorrect, then a small standard deviation (statistical error) is not sufficient 
to imply a small uncertainty in the estimate of the parameter. 

To demonstrate this point, consider the fit to the horizontal line done in 
Section 7.3, which yielded the estimate eo = 2.66 ± 0.13 and X2 = 45.5 for four 

•  order Polynomial fit:


• 


• This gives , i.e. 
in 26.3% of all cases we 
expect an observed  
value as large or greater

1st

χ2 = 3.99

P = 0.263

χ2
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Least squares fit of a polynomial 99 

Tn 

>. ( x; 00 , ... , 0111 ) == L x j e j . 
j=O 

(7.15) 

This is a special case of the linear least-squares fit described in Section 7.2 with 
the coefficient functions aj(x) equal to powers of x. Figure 7.2 shows the LS fit 
result for polynomials of order 0, 1 and 4. The zero-order polynomial is simply 
the average of the measured values, with each point weighted inversely by the 
square of its error. This hypothesis gives eo = 2.66 ± 0.13 and X2 == 45.5 for four 
degrees of freedom (five points minus one free parameter). The data are better 
described by a straight-line fit (first-order polynomial) giving 00 = 0.93 ± 0.30, 
01 = 0.68 ± 0.10 and X2 = 3.99 for three degrees of freedom. Since there are only 
five data points, the fourth-order polynomial (with five free parameters) goes 
exactly through every point yielding a X2 of zero. The use of the X2 value to 
evaluate the goodness-of-fit will be discussed in Section 7 .. 5. 

y 
6 

4 

2 

oth order, X2 = 45.5 

1st order, X2 = 3.99 

4th order, l = 0.0 

o 
o 2 3 4 5 6 

x 

Fig. 7.2 Least squares fits of polyno-
mials of order 0, 1 and 4 to five mea-
sured values. 

As in the case of the maximum likelihood method, the statistical errors and 
covariances of the estimators can be estimated in several ways. All are related to 
the change in the X2 as the parameters are moved away from the values for which 
X2 is a minimum. Figure 7 .3( a) shows the X2 as a function of 00 for the case of 
the zero-order polynomial. The X2 curve is a parabola, since the hypothesized 
fit function is linear in the parameter 00 (see equation (7.13)). The variance of 
the LS estimator 00 can be eval uated by any of the methods discussed in Section 
7.2: from the change in the parameter necessary to increase the minimum X2 by 
one, from the curvature (second derivative) of the parabola at its minimum, or 
directly from equation (7.11). 

Figure 7.3(b) shows a contour of X2 == + 1 for the first-order polynomial 
(two-parameter) fit. From the inclination and width of the ellipse one can see 
that the estimators 00 and 01 are negatively correlated. Equation 7.11 gives 

1000 simulatedNormalized histogram of 

Can be checked with MC: ‘true’ parameters  are 
taken from the real experiment, and a ‘measured’ value for 
each data point is generated from a Gaussian of width  

given by the corresponding errors

(θ0, θ1)

σ

RevisitGoodness of fit:  Polynomial fit example (i)

∫
∞

3.99
f ( χ2)dχ2

= 0.263
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•  order Polynomial fit:


•  = 45.5


• The corresponding significant 
level is , i.e. 
very small probability to 
observe such a data set if 
underlying hypothesis is true

0th

χ2

P = 3.1 ⋅ 10−9
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Goodness of fit:  Polynomial fit example (ii)

Least squares fit of a polynomial 99 

Tn 

>. ( x; 00 , ... , 0111 ) == L x j e j . 
j=O 

(7.15) 

This is a special case of the linear least-squares fit described in Section 7.2 with 
the coefficient functions aj(x) equal to powers of x. Figure 7.2 shows the LS fit 
result for polynomials of order 0, 1 and 4. The zero-order polynomial is simply 
the average of the measured values, with each point weighted inversely by the 
square of its error. This hypothesis gives eo = 2.66 ± 0.13 and X2 == 45.5 for four 
degrees of freedom (five points minus one free parameter). The data are better 
described by a straight-line fit (first-order polynomial) giving 00 = 0.93 ± 0.30, 
01 = 0.68 ± 0.10 and X2 = 3.99 for three degrees of freedom. Since there are only 
five data points, the fourth-order polynomial (with five free parameters) goes 
exactly through every point yielding a X2 of zero. The use of the X2 value to 
evaluate the goodness-of-fit will be discussed in Section 7 .. 5. 

y 
6 

4 

2 

oth order, X2 = 45.5 

1st order, X2 = 3.99 

4th order, l = 0.0 

o 
o 2 3 4 5 6 

x 

Fig. 7.2 Least squares fits of polyno-
mials of order 0, 1 and 4 to five mea-
sured values. 

As in the case of the maximum likelihood method, the statistical errors and 
covariances of the estimators can be estimated in several ways. All are related to 
the change in the X2 as the parameters are moved away from the values for which 
X2 is a minimum. Figure 7 .3( a) shows the X2 as a function of 00 for the case of 
the zero-order polynomial. The X2 curve is a parabola, since the hypothesized 
fit function is linear in the parameter 00 (see equation (7.13)). The variance of 
the LS estimator 00 can be eval uated by any of the methods discussed in Section 
7.2: from the change in the parameter necessary to increase the minimum X2 by 
one, from the curvature (second derivative) of the parabola at its minimum, or 
directly from equation (7.11). 

Figure 7.3(b) shows a contour of X2 == + 1 for the first-order polynomial 
(two-parameter) fit. From the inclination and width of the ellipse one can see 
that the estimators 00 and 01 are negatively correlated. Equation 7.11 gives 

Revisit

Interpret: If this horizontal-line hypothesis 
were true, one would expect a  as high 
or higher than the one obtained in only 3 

out of a billion experiments

χ2

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• As for the ML method, one can also carry out LS fits with binned 
data


• So far the function relating “true” values  to the variable  was not 
necessarily a PDF. This however can be remedied easily by making it 
proportional to one: 


• The parameters  are found by minimizing the quantity 

λ x

θ
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Least squares with binned data  (i)

PDFtotal number 
of events

probability to  
end up in  binith

χ2(θ) =
N

∑
i=1

(yi − λi(θ))2

σ2
i

λi(θ) = n∫
xmax

i

xmin
i

f(x; θ)dx = npi(θ)
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• If the mean number of entries in each bin is small compared to the total 
number of entries, the contents of each bin are approximatively Poisson 
distributed. 

• The variance thus becomes equal to the mean so that we recover


• An alternative method is to approximate the variance as the number of 
entries in bin  by the number of entries actually observed in . This is 
called the modified least-squares method:

i yi
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Easier to handle, but errors 
maybe poorly estimated if any 
of the bins contain few events. 

Bins with no events create 
a division by zero!

Least squares with binned data  (ii)

χ2(θ) =
N

∑
i=1

(yi − λi(θ))2

λi(θ)
=

N

∑
i=1

(yi − npi(θ))2

npi(θ)

This takes us back to 
the original Pearson  

we introduced at the 
beginning!

χ2

χ2(θ) =
N

∑
i=1

(yi − λi(θ))2

yi
=

N

∑
i=1

(yi − npi(θ))2

yi



Quiz Time:  5th Round
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Combining measurements with least squares
Based on Cowan Sec. 7.6



Modern Methods of Data Analysis 57

-values P



Modern Methods of Data Analysis

• Required reading

• Cowan textbook: chapters 4, 6.9-6.13, 7 


• Suggested reading: /Reading material/ L05 /

• Very nice Cambridge lecture series in 4 PDFs. 
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For next time
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Next time

• Hypothesis testing


• Neyman-Pearson Lemma



Modern Methods of Data Analysis

• Part of the material presented in this lecture is taken from the following 

sources. See the active links (when available) for a complete reference   


• Statistical Data Analysis textbook by G. Cowan (U. London): all figures & equations with white 

background
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