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Brief recap of last lecture Review

o Estimators:

Use observations to construct functions that estimate properties of PDFs

e E.g. mean, variance, covariance

Z n_IZ(x—x)z §* = i(xi—//t)z
i 1

!

sample mean population mean

® [ntroduced concept of bias and consistency

population parameter

b = E[é] — 0 hm é — 9 & (e.g. population mean)

11— 00 T = true parameter in PDF

‘hatted’ sample parameter
(e.g. sample mean)

= parameter we determine
using observations
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Brief recap of last lecture Review

o Estimators:

Use observations to construct functions that estimate properties of PDFs

e E.g. mean, variance, covariance

1 < 1 ¢ 1 &
X — — E : 2 — E = ¥)? 2 — E — y)?

sample mean population mean

® [ntroduced concept of bias and consistency
Example last time of

consistent but biased estimator:

h = E[é] —0 llm é — 9 Decay constant (sce L04 slide 35)

_) ~
" OOT A=1/f=n/3 t
‘hatted’ sample parameter ‘
(e.g. sample mean)

= parameter we determine
using observations

E[A]l =)

n—1 ...biased
for small n
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Brief recap of last lecture Review

® Method of maximum likelihood

Can find estimator for arbitrary parameters of interest of a PDF via maximizing the
function

e Given we have observations x = (x;, ..., x,) distributed according to f(x; @)

n
Zz (9) — Hf (xi ) 9) «— PDF of x Interpret: < is a pure
=1

T function of the parameters 0
with the data x “baked in”

parameter(s) we wish to estimate

Showed explicitly (= analytically) that this produces unbiased estimators for the mean
decay time, if f(x; 7) is an exponential function.

e Discussed three methods to obtain variance of estimated values:
1.) Analytical calculation

2.) MC method
3.) Graphical method / RCF
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Brief recap of graphical / RCF

| 0°log L _

e Key ingredient: Taylor expand log likelihood function around

Review

©O—-0>+ ...

maximum:
log(0) = logZ(®) + | 22L | (9= )+
O = 10 —
: - 0 |, o | o |
) _ e ; 1 o=0
log gmax =0 o 1 Plog &
by definition at maximum 6=\ " / e )|,
" f RCF
For a single parameter of interest we identity g -2
g 1—_A“t "i 't-_l-m:+
83 et log L
Example from ?
N

last lecture for

variance of
mean lifetime

o Likelihood evaluated at 6 + &

logg(@ + 65) = log?

l.e., with known maximum, can
determine estimator of variance

by solving what value of oy gives a
likelihood value of log< .. — 1/2
Modern Methods of Data Analysis
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Answer Time: Quiz 4



Do your own Likelihood fit

2. Let us assume you have a simple PDF of the form

a) 1 y-¢ Ash i ~A.
A=, )
f@ N =14 (@~ 05), 2) S e N _
| i %%
with a sample space S spanning the interval [0, 1] such that [, f(z; A\)dz = fol f(z; N)dx = 1. 0S 1.0 ' s
4
a) First sketch the PDF for A = 1,0, —1. '“//l :
b) Five measurements were done giving x = (0.89,0.03,0.50,0.31,0.49). Calculate the i . |
log-likelihood function for three different values of A = 1, —0.5, —1 by hand. A= 44

¢) The log-likelihood function is in good approximation a parabolic function, i.e. can be
described by a polynomial of second order as a function of the tested value A. Calculate
the coefficients a, b, c of log L(\) = aA\*+bA+c. For what value of \ is log L()\) maximal?

d) Sketch the log-likelihood function. Using the graphical method, i.e.

. 1
log LA £ 65) = log Lyax — 5 (3)
determine the uncertainty o5 of the estimated parameter A (with A denoting the value
where log L(A\) = 10g Lyay, and Ly, is the maximal likelihood value). rn £ C) / d)
0.0; 4

_0'1§ x max — '0-57

—02k

B) Az +406  Jm& =z Im A3 + B 053 4 Im 4.0 + S 056 +5.091= -0.47
Az =05  Smd = Im 081 & % 420 + S 4.0 * 0 4.67 ¢ Imdotz 0.07
Az =40 Imd s Wo0bd + W 49 ¢ e 40 + I 449 & Btor: 0.03

03[

04 Rl\a £max -1/2

C) Solving the three equations you can construct with the three ) values you ~0sf \
should find (using the rounded values from above) '

a=-0.22, b = -0.25, ¢ = 0.0 A
At =—0.57+1.51
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But first recall our old friend the Poisson RV



Review

Poisson RV — in an interval of time at a fixed rate

Consider an experiment that lasts a fixed interval of time

ef: A Poisson random variable 7 is the # of successes over the experiment
duration, assuming the time each success occurs is independent and
the average # of successes over time is constant

http://www.pp.rhul.ac.uk/~cowan/sda/

:Z“ v=2
v il
_y !
i —_— — , , 3”an
f(n9y) n'e 0o 5 10 15 20
) > 04
é v=5
ooz f
SO 1
- o UV — n-l[ ””“I .
Eln] Znn!e v 0 0 ] 5 10 15 20 -
n=0 n
- Un ’g o4 v=10
Vin] = Z(n—y)z—e_”zy = o2 |
n!
n=0 . con 1D I 000,
0 5 10 15 20
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Extended maximum likelihood

e Consider a random variable X distributed according to a PDF f(x; )
with unknown parameters @ = (6,,6,, ..., 0,)

Further suppose we have data x;, ..., X,

So far we assumed that the number of observations 7 in the data sample
always stays the same

But it is often the case that 7 itself is a Poisson random variable with some
mean value v

e The likelihood function is then the product of the Poisson distribution
probabillity to find n and the usual likelihood

e Y v+
ZL(,0) = J(x;;0) = — v f(x;;0)
n!
=1
Interpret: the result of the experiment can be defined as the number
of observations n in the sample and the n values x,, ..., X,
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Extended maximum likelihood

o 2 situations of interest:

e The Poisson parameter v is given as a function of ¢/

e [he Poisson parameter v is treated as an independent parameter
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Extended maximum likelihood:

r e—y(ﬂ) n 1
» 2 situations of interest: 20) =— [ [+© sx;:6)
_ - J

e The Poisson parameter v is given as a function of ¢/

log Z(0) = nlogu(®) — v(0) + Y 108 f(5:0)  “— cpining on ) nove

e been dropped
— — (0 + Z log (1(0) f(x;9))
i=1

By including the Poisson term, the resulting

estimators é exploit the information from n as *

well as from the variable x.

This leads to smaller variances for é than in
the case where only the x values are used
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Recall the particle scattering reaction

* Example:

number of decays of radioactive material in a fixed time period in the limit that the total
number of decays is large

number of events of a certain type observed in a particle scattering experiment with a
given integrated luminosity L. The expectation value of the number of events is

N —

v = ole

o

Cross section

Luminosity

The statistical errors of the estimated parameters (e.g., cross section) depend on
parameters such as particle masses and coupling constants

. Will in general be smaller by including the
information from the cross section
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Extended maximum likelihood:

o 2 situations of interest:

e [he Poisson parameter v is treated as an independent parameter

HV J(x;;0) Here, setting dlog £(v,0) . one obtains the same

estimators @, as in the
i=1 00, usual ML case

LW.0) =

n!

So why bother, since all you seem to have done is introduce an
additional source of statistical fluctuation by regarding n as a RV?
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Extended maximum likelihood:

@en: The PDF of some variable x (here mw) S th}
superposition of several components

f:0) =) 0,£(x)
i=1

Task: Estimate the relative contribution of each

@mponent 0, J

log Zw,0) = — v+ Z log Z V0, fi(x)
i=1 \j=l J

Define: y; = Ov

(the expected # of events of type i)

% 18000_—' T I T T T T T T T T T T T T I T T T T __

S -+ Data ATLAS .

@ 16000 *==-=* Background {s=13TeV,36.1fb"

S - —— Signal + Background m, = 125.09 GeV ]

i [ —— Signal : o _

H 14000 Diphoton fiducial -

12000E How many components?

10000{— , , ]

- 6, = Gaussian (signal)

8000— _ - —

: 6, = Polynomial (bkgd) -

6000 — h —]

4000 —

2000— >

;' | s . | | E

> 400E- =

S 300F- =

& 200E 3

< 100F =
2 0
& -100F
i -200F

~ 110 120 130 140 150 160
m,., [GeV]

m n m \
log Z(w) == ) i+ Y log | D i)

Interpret: The total number of events n is
viewed as a sum of independent Poisson

variables with means u,. Here the u; are
more closely related to the production

cross section for events of type 1i.
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Binned Likelihood fit

e Consider again the sample with 50 measured particle decay times

discussed in LO4 (slide 34)

Same sample displayed as a histogram

()

0.75

05

0.25 [

T T
0 1 2

¢

3

L At = 0.5
S 25 ] i ] )
= \ —— data
\
| 20 - -~ ML fit to histogram :
‘\
15 -
10 [~ ! -
5 ™ \\\ -
0 t 1 B il

4 5 0 1 2 3 4 5

Modern Methods of Data Analysis
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Binned Likelihood fit

Why do it?

For very large data sample, log Z is very expensive to compute

!

Must sum log f(x;; @) for each x;

http://www.pp.rhul.ac.uk/~cowan/sda/
T T

< 25 —
. . } . = ‘ — data
Histogram: number of entries n = (1, ..., ny) in N bins 20 -~ MLfitto histogram
15 \
X -
10 |
Vl(e) — ntOtJ f(.x; H)dx ny \\\\
. 5 N
e e Ny
/ \ 0 1 B ."—| “ [ —————
Expectation values v = (v, ..., Uy) N 0 1 2 3 4 5
of the number of entries Bin limits ¢
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Binned Likelihood fit

as a single measurement of an N-dimensional random vector for

Histogram
which the joint PDF is given by a multinomial distribution
| ny oy
oy Myt U Un
fjoint(n’y) _ ' ' o
nl e o o o nN. ntot ntot
T Prob to be in bin i is the expectation value (v;)
divided by the total number of entries (72;,,)
N
* log 3(0) — Z ni lOg Di(o) (Additive terms not depending on 0 have been dropped)
i=1

In the limit of small bin size — nearly identical with unbinned ML.

No problem if bins are empty or have few entries.
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Binned Likelihood fit

* Now compare the results of binned vs. unbinned fits:

Both results consistent, but standard deviation larger for binned fit

In large sample limit this difference disappears

= = 25 , : l :
= = '«\ —— data
075 F 1 20 - - - oML fit to histogram -
' Y binned N
\
unbinned ML fit results 15 + log (@) = ) n;logu6)
05 F 4 ‘\\ =l
\
7 = 1.062 L 7 = 1.007 -
025 1 0+ = 0.151 - . | N0 =0.171
e
Lm0 T s s N
0 1 2 3 4 5 0 1 2 3 4 5
t t

http://www.pp.rhul.ac.uk/~cowan/sda/

Read up on extended log-likelihood for binned data (Cowan pages 88-89)
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A simple example to warm up with

* Experiment:

Assume you have a fair coin (i.e., equal probability of heads or tails).

Toss the coin N = 20 times.

o Expect n, = 10 heads.

e Result:

Observe n, = 17 heads.

® Question:

If this experiment is repeated many times, what is the probability of obtaining a
result with the same level of discrepancy with the hypothesis (=fair coin) or higher?

e Answer:

P-value.

Modern Methods of Data Analysis I 24



A simple example to warm up with

o Start with the binomial distribution for an experiment with N trials, characterized by n
successes (RV) with probability p

N

. — ) n1 _ ~\N—n
ﬂmNJO—nKN_nﬂp(l_m

» Define the number of heads as success (7,), and include your hypothesis that the coin is

wim = () (3)
TNy = v \2) 2

* Question: What is the probability of obtaining our result of n, = 17 or an even larger
discrepancy from the hypothesis of a fair coin?

Answer: Sum of the probabilities of n, = 0,1,2,3,17,18,19,20.

fair p = 0.5

e Using our equation, we get P-value = 0.0026.

o If this experiment (N = 20 coin tosses) were repeated many times under similar circumstances, there is
0.26 % probability of obtaining a result as compatible or less with our hypothesis (fair coin) than the one
actually observed (n,, = 17 heads).

Interpret: The low value implies that there is a low level of agreement between the observed measurements
and the assumption (prediction) we made.
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Most famous answer:

On the criterion that a given system of
deviations from the probable in the case of
correlated system of variables is such that it
can be reasonably supposed to have arisen

from random sampling

Sir Karl Pearson (1900),
Phil. Mag (5) 50, 157-175
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Review

Chi-square distribution j

® The)(2 (chi-square) distribution of the continuous variable Z
(0 < 7z < o) is defined by

mele=il2 n=1,2,...,

G = )

The parameter 7 is called number of degrees of freedom and the gamma

function:
0

['(x) = J e~ 1 dt
0

To calculate )(2, need to know:

I'(n) = (n — 1)! for integer n,

[(x+ 1) = xI'(x) and [(1/2) =/
Expectation value and variance:

> 1 /-1 ) Note that the expectation value is equal
E[Z] = Z 7" e™¥“ dz = n <€— to the number of degrees of freedom
o 272 T(n/2)

1

n2—1,-z/2 3. _
Z e dz = 2n
212 T'(n/2)

Viz] = J (z — n)?
0
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Review

Chi-square distribution i)

http://www.pp.rhul.ac.uk/~cowan/sda/

D 0.5 1 = T
e The )(2 distribution is important dueto & h‘ The x” probability
| density for various
. . 0.4 ph -
its relation to the sum of squares of values of the " h=c
] . . ' parameter n . n=9
Gaussian distributed random 0.3 10
variables. Given [NV independent 02 |
Gaussian random variables Xx; with o |
known means g; and variances 0'i2, the e
0 —
. 15 20
variable
<
(x; — ﬂi)z
— z : ~ ™
= 2 Also holds if x; are not independent but are
i—1 Gi N-dimensionally Gaussian distributed
- Ty/—1
=@ -V (x—p
\_ i K W,

is distributed like a ¥ distribution
with NV degrees of freedom.

Recall we said that variables following a x2

distribution will play an important role in tests of

goodness-of-fits
Proof in Cowan Sec. 10.2
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Pearson’s y* test

http://www.pp.rhul.ac.uk/~cowan/sda/

A goodness-of-fit test that can be applied x 10 , l 1
to the distribution of a variable x = — data
/ \ 8 | --- expected background -
6 F — -
2 ;
|
) "_”) NNl |
0 1 ). A j ’J7 ] s 1L
0 15 20

=1 0 5 1
K _/ x T

N bins
« Data n are Poisson distributed with mean n; = # of entries in bin i
values v.
- Since the o of a Poisson RV with mean v; is
\/Fi, this statistic gives the sum of squares Obtain for
of the deviations between observed and N =20 degrees of freedom

values, measured in units of o.

—

Modern Methods of Data Analysis I 31


http://www.pp.rhul.ac.uk/~cowan/sda/

Pearson’s y* test

Find probability corresponding to > = 29.8 by inspecting
distribution of f( %) for 20 degrees of freedom

t\T;: 0.1 | 1 1 v T fs 05 ‘ 1 L T
freg ——e xz distribution for n = 20 S\_i '\ The )(2 probability n=1
| . . | density for various - .
0.08 distribution from MC experiments 04 H | _lues of the - p=2
. parameter n n=>5
0.06 T ] n=10 -
004 | —> P-value - _
....n =20
Not shown
0.02 r _
o 2 | ,- -:
0 10 20 30 40 50 60 15 20
2
http://www.pp.rhul.ac.uk/~cowan/sda/ x Z
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Pearson’s y* test

Find probability corresponding to y* = 29.8 by inspecting

distribution of f( %) for 20 degrees of freedom

— data
8 | --- expected background

Then calculate the P-value = the probability, under

- -~ distribution from MC experiments - the hypothesis in question H,, of obtaining a result

as compatible or less with H, than the one actually
y observed

(o)

fzsny) dz
2 t

i.e. f(y?) forn; = 20

0.073 Careful: Is this reliable?

P

‘Q 0-1 | | 1 1 v |
= —— ¥ distribution for n = 20
0.08
0.06 |
004 | —> P-value
0.02 r
0
0 10 20 30 40 50 60
2
http://www.pp.rhul.ac.uk/~cowan/sda/ x

No! Too few entries / bin in
our original histogram

0.1 1 Obtained from MC program

T

Done by generating Poisson values n; for
each bin based on the mean value v;, and
then computing and recording the )(2 value
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Method of least squares

* |n many situations, measured values can be regarded as Gaussian
random variables

Conseqguence of the Central Limit Theorem (CLT)

® Total error often sum of a large number of small contributions

1 2
Z X, Sum of 1 die roll Z X,  Sum of 2 dice rolls

Sum of dice rolls example we
looked at in LO3

Roll n independent dice

Let X, be the outcome of roll i e |||| a ‘||||
Xi are i.i.d. - -)!llll @10 1III!.1- o ::.Illlll 14 1'J|1I:I~II.-_4
3 4

Z X; Sum of 3 dice rolls Z X,  Sum of 4 dice rolls

o Consider now a set of [V independent Gaussian random variablesy;,, i =1, ..., N

each related to another variable x;, which is assumed to be known without error
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Method of least squares

® Further

Each value y; has a different unknown mean 4,

And each value y; has known variance 0'i2

* As before we can understand this set of measurements (e.g. from a

single experiment) to be a random vector itself that changes if we
repeat the experiment

» The joint PDF describing this vector is the product of N Gaussians:

N 2
1 -y —4)
g(yl,...,yN;}tl,...,/IN,alz,...,GZ%,)=H exp( )

i=1 4/ 2707 207

l
Further assume that 4. = A(x;; @) i.e. function of some parameters
of interest we want to determine

Modern Methods of Data Analysis



Method of least squares

N 2
1 -y, — 4)

g(yl9"'9yN;/119'°°9AN,012,..., O-]%]):H eXp >
: 271_02 201'

Take the log (and drop additive terms that
do not depend on the parameters)

by — Ax;; 0
log (@) = — Z ))

Maximize by finding the values of the
parameters 0 that minimize y?*(0)

0)) ...the quadratic sum of the differences
between the measured (y;) and

N
2
x7(0) = Z , | |
hypothesized (4;) values, weighted by

=1 the inverse of the variances
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* Ingredients to a least square problem:

N values yy, ..., yyare measured with errors oy, ..., oy

The true value 4, = A(x;; @) depends on parameter(s) of interest 0

http://www.pp.rhul.ac.uk/~cowan/sda/

y I A i I 1
2 ) 1 The value of @ is
.+ 0. . .
e adjusted to minimize
’
15 . )
) N (= A 0))
7 (0) = Z 2
1+ - - 0;
i=1 L
A(x:0) —
05 F - ,
The parameters that minimize the y
are called the LS (‘least square’)
0 : : - : ' estimators 0, ..., 0,
0 1 2 3 4 5 6
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One more thing...

e What if the measurements are not independent but described by

an N-dimensional Gaussian PDF with known covariance matrix V
but unknown mean values?

Start with the V-dimensional generalization of the Gaussian distribution (egn 2.28)

Take the log (and drop additive terms that
do not depend on the parameters)

logZ@0) = ...

Maximize by finding the values of the
parameters 6 that minimize

2 — Reduces to 1D case (previous slide)
x7(0) =
* if the covariance matrix is diagonal
See Cowan page 96
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Example: least square fit of a polynomial j

* As an example let us consider the following data:

y

http://www.pp.rhul.ac.uk/~cowan/sda/

—

—— 0" order, Y?=45.5
- - - 1% order, x2 = 3.99
4™ order, x2 = 0.0

T

Modern Methods of Data Analysis

Five measured values of a
quantity y with errors Ay

Let’s assume the measured

values y; each come from a

Gaussian distribution
centered around (unknown)

A; with a standard deviation

As hypotheses for A(x; ),
we try fitting polynomials of

order m:

Ax;0p, ... 0,) = ) 16,
=0

T

unknown parameters
| 41
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Example: least square fit of a polynomial i)

* As an example let us consider the following data:

y

http://www.pp.rhul.ac.uk/~cowan/sda/

—

—— 0" order, ¥?=455
- - - 1% order, x2 = 3.99
4" order, x2 = 0.0

T

Modern Methods of Data Analysis

With a O™ order
polynomial, we have a large

)(2 value

=455 0,=2.66%0.13

1% order polynomial:
7?=399  6,=0.93+0.30

6, = 0.68 £ 0.10

4™ order polynomial fit:

)(2 of zero and goes exactly
through all data points


http://www.pp.rhul.ac.uk/~cowan/sda/

Example: least square fit of a polynomial i)

e As for the ML method, the statistical errors and covariances can
be estimated using several methods

1) Analytically 2) MC method 3) graphical method

0" order polynomial fit 1 order polynomial fit
- ' wrveep——
R  (b)
46.5
46 t+
45.5
* B | - H ! Ll 0.4 G ] L
2.5 2.6 2.7 2.8 2.9 04 0.6 0.8 1 1.2 1.4
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Example: least square fit of a polynomial (iv)

e As for the ML method, the statistical errors and covariances can
be estimated using several methods

1) Analytically 2) MC method 3) graphical method

15 order polynomial fit

http://www.pp.rhul.ac.uk/~cowan/sda/

&éo = 000 = 0.30 (b)

65, = VU =0.10 _ !
Govlfo,01] = Uo1 = —0.028,

r = —0.90.

Strongly anti-correlated

parameters: Very important to i :
include the correlation coefficient 0.4 N - i
when reporting such a fit.
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Example: least square fit of a polynomial ()

e As for the ML method, the statistical errors and covariances can
be estimated using several methods

1) Analytically 2) MC method 3) graphical method

15 order polynomial fit

http://www.pp.rhul.ac.uk/~cowan/sda/

Contours in parameter space whose @
tangents are at 0; £ 6;, corresponding to a

one standard deviation departure from the
LS estimates:

70 =20)+1 =42 +1

08 |

-----------------------

0.6

N

H

0.7 T T T :
............................................. “vaswsvaTassmsatissaassivvarsy

You’ve seen this

06 r

1 before for the case

of ML estimates!

0.5 + truevalue - . 4 04 | i | [
‘7"”“‘““"" 1 0.4 0.6 0.8 1 1.2 1.4

04 | X | log? =10gZ x — 5

0.3

1 i 1
0.3 0.4 0.5 0.6 0.7

o
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Revisit




Revisit

Goodness of fit ()

» |f the measured values y; are Gaussian, the resulting least-squared
estimators coincide with the ML estimators.

Furthermore, the )(2 values can be used to test how likely it is that if the
hypothesis is true, you would measure the observed data

¢ |Important but subtle point: you can only make statements that how likely it is to

observe the data given that the hypothesis is true, BUT you cannot make a

statement how probable it is that the hypothesis is true

(5= 0) -
* The quantity IS @ measure for the deviation between the

O;

i measurement y; and the hypothesized A function

So )(2 IS @ measure of the total agreement between the observed data and
hypothesis
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Revisit

Goodness of fit i

¢ [t can be shown that, If

1.they, i =1, ..., N, are independent Gaussian RVs with known variances, al-z (or

are distributed according to an N-dimensional Gaussian with known covariance
matrix V);

2. the hypothesis A(x; 0, ..., 8 ) is linear in the parameters 0;; and

3. the functional form of the hypothesis is correct,

then the minimum value of)(2 Is distributed according to ’che)(2
-distribution with n degrees of freedom (n = N — m)

/ # of pointsT T# of free parameters in the fit

. _ nf2—1_—z/2 _
Zin) = Z e ¥, n=1,2, ...
fzn) 212 T'(n/2)

Ezl=| . L wtpwr g, ., — 5 |Expectationvalueisn = N —m
Yo 2L Thus oft 2/n and speak
oo . us often quote ¥“/n and speaks
_ 2 n/2—1,-z/2 _ o
V[z]—uo (z—n) T ¢ dz =2n of a good fit |f)(2/n ~ 1
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Revisit

Goodness of fit i

o If ;(2/11 > 1, then there is some reason to doubt the hypothesis.

o If )(2/11 < 1, fit is better than expected given the size of the

measurement errors (but must check that the o; have not been
overestimated or are not correlated).

One can calculate the probability that the hypothesis would lead to a )(2 equal
or worse (i.e. greater) than the actually one obtained:

P = [ fzsny) dz
XZ

The P-value at which one decides to reject a hypothesis is subjective, but
note that underestimated errors can cause a correct hypothesis to give a bad

(i.e. large) )(2

P-value also called observed significance level
or confidence level of the test
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Revisit

Goodness of fit: Polynomial fit example

http://www.pp.rhul.ac.uk/~cowan/sda/

Y ' ‘ ' " ™ Normalized histogram of 1000 simulated
6 — o" order, X2=45-5 i 7
--- 1% order, x°=3.99 _ ‘G?: Vo, v .
4" order, 1%= 0.0 i = X f;om MC experiments
dl T Py SO ng=3)
2 + * P _,___;-'*’ _
0 i g 1 ] L 0.1 E—
0 1 2 3 4 5 6
X
®
0
0
X2
This gives P = 0.263, i.e.
i 0
in 26.3% of all cases we Can be checked with MC: ‘true’ parameters (6,, 0,) are
expect an observed )(2 taken from the real experiment, and a ‘measured’ value for

each data point is generated from a Gaussian of width o
given by the corresponding errors

value as large or greater
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Revisit

Goodness of fit: Polynomial fit example i

http://www.pp.rhul.ac.uk/~cowan/sda/

y
61 | — o™order, x2=45.5 | i
--- 1% order, x*=3.99 _
4" order, x*=0.0 i, -7
4 e .

o 0™ order Polynomial fit:
y>=455

The corresponding significant
levelis P =3.1-107°, i.e.
very small probability to

observe such a data set if
underlying hypothesis is true

Interpret: If this horizontal-line hypothesis

were true, one would expect a )(2 as high

or higher than the one obtained in only 3
out of a billion experiments
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Least squares with binned data j

e As for the ML method, one can also carry out LS fits with binned
data

So far the function relating “true” values A to the variable x was not
necessarily a PDF. This however can be remedied easily by making it
proportional to one:

10 =n | fi0)dx = np )

e

total number PDF probability to
of events end up in i™" bin

The parameters @ are found by minimizing the quantity

N (v, = 240))°
70)= ). S )

2
O:
i=1 -
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Least squares with binned data i

¢ |f the mean number of entries in each bin is small compared to the total
number of entries, the contents of each bin are approximatively Poisson

distributed.

The variance thus becomes equal to the mean so that we recover

¥, (3~ 4(6)

’ _ i ()’i — ”Pi(e))z

&~ 0)

i1 np{(0)

This takes us back to

the original Pearson )(2
we introduced atthe | .| _n 1|
beginning! ooﬂ N Tkt =31}

e An alternative method is to approximate the variance as the number of

entries in bin 1 by the number of entries actually observed in y;. This is
called the modified least-squares method:

— 1(0)
240) = Z b )

i=1 Vi

N (y, - np(®)’
Z

i=1 Yi

Modern Methods of Data Analysis

Easier to handle, but errors
maybe poorly estimated if any
of the bins contain few events.

Bins with no events create
a division by zero!
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Combining measurements with least squares

Based on Cowan Sec. 7.6

1. The x? method offers an easy way to combine measurements. For ‘uncorrelated measured
quantities y; with variances o; one can determine the LS estimator A to be

Z;'Vﬂ 1/032'

or for correlated measurements with covariance V one has

N N -1
N - (V .
A= E W, Y; with w,; = Z]f,_l( )i .
i=1 Zk,l:l (V")

Note that Z,fil w; = 1 and the variance of \ is given by V[\] = ij;:l w; Vijw;.

a) Calculate the average of two measured quantities y; = 5 and y, = 6 with a covariance

matrix
0.5. 0.2
C= (0.2 0.7) ’
first using the uncorrelated formula Eq. 1 and then using the proper expression Eq. 2.
Remember that o? = Vj;.

b) Calculate the correlated average of the same measured quantities but assume now that
the covariance matrix is given by

0.5. 0.55
¢= (0.55 0.7) |

Why is the average (you should get A = 4.5) not between 5 and 6? What is the variance
of the average?
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P-values

2. In the lecture we discussed that the obtained y? value from a binned LS fit contains infor-
mation of how probable an observation is given a presumed hypothesis. This probability is
called the p-value and is given by

p= :ofxz(:v; n.d.f.)dz, (3)

Xobs

where x?2,, is the observed x? value, f,2 is the x*-distribution, and n.d.f. denotes the numbers
of degrees of freedom. If a LS fit has n bins and m free parameters, it is n.d.f. = n — m.
You can calculate this integral easily using ROOT via the TMath: :Prob(x,ndf) function.

a) What is the interpretation of a p-value and what does a low p-value imply?

b) Using the x2,, table below decide if the following binned LS or x? fits describe the
observed data well:

(X2, m) = (6.2,5,3), (X e, 1, m) = (1.2,2,1), (X%, 1, m) = (2.2,10, 3).

Degrees of freedom (df) X2 valuel2°]
1 0.004 1 0.02 |0.06 0.15|/046 1.07 (164 |271 3.84 |6.63 | 10.83
2 0.10 |0.21 1045 /0.71 139|241 322 461 |599 | 9.21 13.82
3 035 |058 1.01 142 237|366 464 625 |7.81 | 11.34 16.27
4 0.71 1.06 165 220 | 3.36 | 488 599 | 7.78 9.49 |13.28 18.47
5 1.14 161|234  3.00 435 6.06 |729 924 |11.07 | 15.09 20.52
6 1.63 | 220 3.07 383 535 723 856 | 10.64 | 1259 16.81 | 22.46
7 217 1283|382 467 |6.35 838 |9.80 |12.02 14.07 | 18.48 24.32
8 273 349|459 553|734 952 |11.03 | 13.36 15.51 |20.09 26.12
9 3.32 | 417 5.38 6.39 8.34|10.66 1224 1468 16.92 21.67  27.88

10 3.94 487 |6.18 7.27 |9.34 | 11.78 | 13.44 15.99  18.31 | 23.21 29.59
P value (Probability) 095 090 080 0.70 050 030 020 0.10 0.05 0.01 0.001
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For next time

* Required reading
Cowan textbook: chapters 4, 6.9-6.13, 7

e Suggested reading: /Reading material/ LO5 /

Very nice Cambridge lecture series in 4 PDFs.
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* Hypothesis testing

* Neyman-Pearson Lemma
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