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Review

Estimators and Parameter Estimation

rLet X1, Xy, ..., X, be n independent measurements with unknown mean p (e.g., mass) and i

variance 2. The estimators (denoted with *) are: n

| A 1
A 2 A2
— —— X: o = . —_
Iz - E , — Z,(xl /)
=1 =1 J

aximum Likelihood (ML) estimators (MLE) maximize the likelihood function for given data x

_
m

A oln & In &£ is often more convenient to
3(0) — I If(xl-; 0) =0, i=1,...,m work with than £, and doesn’t
s 09i change the estimation

Poisson example: MLE for the mean is just the data count [the usual arithmetic mean (avg.) estimator]

\_ _

rI.east Squares (LS) )(2 estimator finds the model parameters that minimize the total squared h
deviations of the data points (x;, y;) from the mean

Same as —2 In & for Gaussian

) .
N . and independent y., so you often
, (v — A 0)) SEHEST i SO @
}4 (@) = — 21n £(0) + constant = E > see —2 In £ for comparison
i=1 O
LWhen fitting a histogram with Poisson errors ALWAYS perform a ML fit (not a )(2 fit) J

MLE better than LS at low statistics, but numerical optimization may take longer __ °Vtnumencal estimation not really an issues

anymore, so ML is the method of choice overall
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MLE vs. LS review

* For MLE, the RCF inequality turns into an equality, so the RCF bound is
indeed reached. For LS, the RCF bound can only be reached if Gaussian. If
not, the estimator variance will be larger than it could be.

* For MLE, you have optimal coverage of a confidence interval (more next
week). l.e., 68% really means “68%.”

® The inclusion of systematic errors into the likelihood via nuisance

parameters (more later today) is straightforward with MLE. Not so easy with
LS.

® Don’t need to worry about binning with MLE. Binned converges to
unbinned when n; . — ©9.

e When you use LS (for large enough event counts), —2 In &£ is

approximated by the )(2 distribution. As )(2 Is known, there’s no need for
large MC.
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Combining measurements with least squares

a) Calculate the average of two measured quantities y; = 5 and y, = 6 with a covariance

matrix
0.5. 0.2
U= (0.2 0.7) ’
first using the uncorrelated formulaEq. 7.26 and then using the proper expressionEgs. 7.29, 7.30
Remember that o7 = V;. l

Uncorrelated average: 5.41667 Reduces to Egs. 7.34 - 7.39 for

the case of 2 measurements

Correlated average: 5.375

b) Calculate the correlated average of the same measured quantities but assume now that
the covariance matrix is given by f(y) V
12
0.5. 0.55 p= =02k
_ 0. . 010
¢ (0.55 0.7> ' 4 152
Why is the average (you should get A= 4.5) not between 5 and 67 What is the variance
of the average?
Values are highly correlated (93%), i.e. very likely that true mean lies | |
on the opposite side of the value with the smaller error v Y >y
Variance: 1 — ! ! + ! 4+ 2p = o0 =1/0475 ~ 0.69 If p > 0,/0,, the weight w < 0, which
o> 1—-p?|ot o053 o010 means the weighted avg. does not lie
between y, and y,
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P-values

a) What is the interpretation of a p-value and what does a low p-value imply?

P-value: Probability to observe a LS fit result with a)(2 as large or larger
than the observed value, given the underlying (fit) model is true

b) Using the x? . table below decide if the following binned LS or x? fits describe the

observed data well:
# of free parameters in the fit

(X%, m,m) = (6.2,5,3), (X2, m) = (1.2,2,1), (X, 1, m) = (2.2,10, 3).

# of points

Degrees of freedom (df) x2 valuel2°! P _Values
1 0.004 | 0.02 | 0.06  0.150.46 |1.07 | 164 | 271 |3.84 6.63 | 10.83 ~ 0.30-0.20 (dof=1) OK
2 0.10 |0.21 |0.45 071 1.39 241 (322 461 599 921 13.82 ~ 0.05 - 0.01 (dof =2) Not well
3 0.35 |0.58 1.01 1.42 2.37 366 464 625 7.81 |11.34 | 16.27
4 0.71 |1.06 1.65 2.20 3.36 4.88 599 |7.78 9.49 |13.28 | 18.47
5 114 |1.61 234 | 3.00 435 6.06 7.29 924 |11.07 | 15.09 | 20.52
6 163 | 220 3.07|3.83 535|723 856 | 10.64| 1259  16.81 22.46 Agreement
7 217 |2.83| 3.82 | 4.67 |6.35(8.38 |9.80 |12.02 [14.07 1848 | 2432 | | = (0.95 - 0.90 (dof = /) maybe too
8 2.73 |3.49 459 553 7.34|952 |11.03 13.36 15.51 | 20.09 | 26.12 good?
9 3.32 |4.17 | 5.38 6.39 8.34 | 10.66 12.24 14.68 16.92 | 21.67 | 27.88
10 3.94 487 6.18 7.27 9.34|11.78 | 13.44 1599 18.31 | 23.21 | 29.59

P value (Probability) 095 090 080 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001
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Hypothesis tests (i

Goal of a statistical test: Statement about how well the observed i A
. . . = Hypothesis!
data stand in agreement with a given
predicted probability
_ ),
Hypothesis under consideration: Null hypothesis or H|,
?

could be a PDF f(x)

If f(x) fully determined — Simple hypothesis (focus on these for now)

If f(x) = f(x;0) — Composite hypothesis (0 determined from data)

Often compare validity of H, by comparing to alternate hypotheses (H,, H,,...)

Notation: f(x|H,)

Use same notation as for

H conditional probability

f (x | 1) Interpret: Each hypothesis
t specifies a joint PDF
X = (x{,X5,...,X,) data
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Hypothesis tests (i)

def statistic = A function of the observed
measurements which contains no

To investigate agreement, construct a test statistic 7(x) unknown parameters.

?

x = (Xy,X5,...,X,) measured values

Each of the given hypotheses will imply a PDF for ¢

Notation: g(¢| H,)
g(t| Hy)

The test statistic can be a scalar t = #(x) or a multidimensional vector

= (4(x), (%), ..., 1,(x))

Question: Why not simply use the original vector of data x = (x{, Xy, ..., Xx,)?

Answer: Constructing a statistic of lower dimension m < n reduces the amount of
data without losing the ability to discriminate between hypotheses.
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g(1)

1.5

Goal: Formulate a statement about the

compatibility between data and various

hypotheses in terms of a decision to accept

or reject H,

0.5

Define a critical region for 7 with

fhs > L.y - reject H,, accept H,

tObS < tCllt : accept HO Acceptance region

(complement of critical region)

http://www.pp.rhul.ac.uk/~cowan/sda/

I ] 1 |

[

cut

accept H, -.a. reject H,

There is the probability of a to reject
Hyevenif Hyis true:  Type | error

Choose 7, s.t. the probability to observe

t > 1., 1s set to some significance level @

o =
T

significance level

o0

tcut

g(t| Hy)dt

Modern Methods of Data Analysis

Accept H, although not true

(t < 1. Type Il error

I

e.g., Histrue /[ = [ g(t|Hy)dt
— Q0
1 — f = Power of the test to
discriminate against H,
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Example with particle selection

* As an example: our test statistic 7 represents the measured
lonization created by a charged particle of a known momentum
traversing a detector

The amount of ionization is subject to fluctuations from particle to particle
and depends (for a fixed momentum) on the particle’s mass

T ALEPH
= 8 _ i :
. 8 7 i A
< 6 , P
= i >
O - k'
= 4 =
i y %P | e
4 € Ly | ;’ — Define some
. “"\*{'3’@&%‘*3 § “‘h :~ ; “}ﬁ;ﬁ m‘fmr% ..u _, " 9
I St Mﬁ;w S function (i)
0 1 1 1 ' L lI 1 1 1 L lI 1 1
10 1 10 > fO)
) momentum (GeV)
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Electron and pion hypothesis

— _ PDF of electron
@ HO — €, H 1 =7 hypothesis for
. .. ] test statistic ¢
» Selection efficiencies: €, and ¢ \
<> 2 T T T -~
tcut
€, = g(tledt=1—a
— 00
tcut
€r = g(t| m)dt
— 00

* Both can be brought arbitrarily close to zero or PDF of pion

: : : : : hypothesis for
(i.e., b ki I
unlty by approprlate ChOICe Of tCllt tighi?er c{l:noan t’;ii"o:iz:ii:)% test statistic ¢

®* However, there is a price: the higher the | |
. . . ] (i.e., the purity of the electron
signal efficiency, the larger the contamination sample decreases since some

pions are accepted as well)
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Relative fractions

o If the relative fractions of pions and electrons are not known, one
can carry out a likelihood fit to the test statistic

t Is distributed according to

ft;a,) =ag(t|e)+ (1 —a,)g(t|7)
/ N

relative fraction relative fraction of
of electrons pions (@, =1 —a,)

e Knowing a, allows one to determine the total number of electrons in the
sample:

Ne = a, NtOt « total number of events

/

# of electrons
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Electron candidates

® Alternatively one may want to select electron candidates by requiring
< Ty

This leads to NV,.. accepted out of the N, particles

One then often also wants to determine the total number of electrons before the
cut on . The number of accepted particles is

Nacc — eeNe L €7ZN77:
€eN e ¥ Gn(N tot N, e)

N — Nacc

e
€e — €1

\ only possible if efficiencies

under cut are different

— €, N
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Recall Bayes’ Formalism



Review

Why is Bayes’ so important?

It links belief to
evidence in

P(L = Evidence | I = Fact) probability

(collected from data)

P(F = Fact | £ = Evidence)

(categorize a new data point)

Given new evidence E, update belief of fact F
Prior belief — Posterior belief

P(F) - P(F|E)
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Bayes’ Theorem terminology

* 60% of all email in 2016 is spam. P(F) prior
e 20% of spam has the word “Dear.”
» 1% of non-spam has the word “Dear.” P(E|F%)

You receive an email with the word “Dear in it.
What is the probability that the email is spam?  P(F'| E) posterior

posterior P( E ‘ F ) P (F )
P(F|E) = T PE)
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Bayes again

» The probability that a particle with an observed value of ¢ is an electron or pion, i(e | )
and h(x| 1), can be obtained from the PDFs of g(7| e)and g(¢| #) using Bayes’ theorem:

prior probability that particle is an e

|

a,g(t|e)
a,g(t|e) + a,g(t| )

hie|t) =

a,g(t| )
ag(t|e) + a,g(t| x)

/ N\

Bayesian: degree of belief that a given

particle with a measured value of 7
Is an electron (pion)

h(z|t) =

Frequentist: fraction of times a particle
with a given 7 will be an electron (pion)
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Purity

o Often one cares for the purity p, of a sample of electron
candidates selected with 7 < 7_ ;.

* The purity Is given by

number of electrons with ¢ < 7_

Pe = humber of all particles with 7 < 7.,

[ a,g(t] e)dr
ﬂcut (ac.g(t]€) + (1 — a,)g(t| 7)) dt

(o)

aeeeN tot

N, accepted This is the mean electron probability h(e | 7)
averaged over the interval (— oo, 7, ]
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Neyman-Pearson Lemma



Neyman-Pearson Lemma

For t = t(x) scalar, choice of 7, is straightforward —>

What if 1 = (£;(x), t,(x), . ..

,1,(x)) is a vector?

Chosen depending on the efficiency
and purity of the selected particles
desired for further analysis.

e.g., can require that they give a max.
purity for a given efficiency.

= Which t, , cut offers ideal separation?

theProblem

J. Neyman, nstitute,

Neyman-Pearson:

Acceptance region giving the highest
power (and hence highest signal purity)

for a given significance level & is the

region in f—space s.t.

g(t| Hy)
g(t| Hy)

> C

Constant determined by

desired efficiency

Modern Methods of Data Analysis

st Efficient Tests

Soc. Sci. Lit. Vai
sonl, Department of

This maps a vector
statistic onto a 1D statistic

g(t| Hy)
g(t| Hy)

Called the likelihood ratio for

simple hypotheses Hy, and H,
(Corresponding acceptance region

given by r > ¢)
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Constructing a test statistic

Given vector of datax = (x;, x,,...,x,), H.
construct a 1D test s’catistic:1 ’ ) t(X) — f (x ‘ O)
N 3 ><>‘>1(,/35/3</U°) f(x ‘Hl)
SRl
L K i“/; £l /ll) TE’: nighest probabity to

reject H, if H is true

To construct ¢, need to know f = Very difficult if PDF is multi-dimensional

l# of components

In practice, need to use MC to estimate f(x | H)) = Scales terribly: ~ M"

# of bins

4 N

What can we do if we can’t determine f(x | H,) as nD histograms?

= Make a simpler assumption for the functional form of Today: Consider linear functions of the x;

t(x), and choose the best function having this form Laterinthe semester: Non-linear
functions (e.g., Neural Networks)

\_ J
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Linear test statistic (j

n
Simplest form is a linear function:

=1

Goal: determine the a, to maximize the separation between the PDFs g(z| H,) & g(t| H,)

Characterizes the data
Mean values and (’uk)i = inf(x |H)dx, ...dx,
covariance matrix of T t
the data x, for each
hypothesis k <Vk)ij = J(x — u)(x — ) f(x | Hpdx, . . . dx,
. Characterizes the hypotheses

Each hypothesis k is 7, = | 1g(¢t| H))dt = aTﬂk What now?
Characte_rlzed by an ) Subtle connection | Maximize separation |7, — T,
expectation value . SHES TG

: Minimize spread
and variance 2]% — (t _ Tk)zg(t | Hk)df — aTVka
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Linear test statistic i)

Quantified by: Separation between the 2 classes corresponding to
Hyand H,
n
(TO — 71)2 Zi,j=1 aiaj(/’tO - /’tl)i(/’lo - /’tl)j aTBa
] (a) — > > = - — TW
ZO + 21 zi,jZl aiaj( VO + Vl)ij a a

Sum of the covariance matrices within the classes

To find maximum separation:

0J ((l) _1 To determine the coefficients,
5 =0 : ax W (ﬂO R ﬂl) need the matrix W and the
a.

; expectation values Ko

T

Key point: one does not need to determine the full joint

: Often estimated from a set
PDFs f(x | Hy) & f(x | H,) as nD histograms; only the of training data (e.q., MC
means W, and variances V, must be found. simulation}
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Fisher discriminant for multi-D Gaussians

o If f(x| Hy) and f(x| H,) are both multi-D Gaussians with common covariances

V =V, = V|, the Fisher discriminant has some interesting properties:

1 1
— (v — Ty/—1(y _ Recall the definition of the multi-
[f(x | Hk) (272')”/2 | vV | 172 CXP 9 (x ﬂk) v (x ﬂk)] D Gaussian in LOS, slide 33 J

e Linear Fisher becomes : #(x) = ay+ (uy — pu)'Vlx

® The (exact) Likelihood ratjo is then given by

_f(x|H()) _
r= =e
J(x|Hyp)

: t « log r + const.

Monotonic function of

1 1
S0~ Ho)' Vi x — p) + S = ) 'V x - ﬂl)]

' 1 1
(o —p)'V'x — EﬂoT Vi, + EMT V_lﬂll

The Fisher discriminant is as good a
test statistic as the full likelihood
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Bayes’ again

o We can again make statements regarding the probability of H,, given the data x:

o f(x | Hy)m, - flx | Hy)m, |
0 _ o X | y) 7 - "1
foe | Homy + f& 1 HDm o | Hoy, (1 + fﬁxliﬁ - ) L+

t t

prior probabilities

o Now substitute r & e’ from the last slide:

The prior probabilities have been absorbed into the offset

v

P(Hy|x) = e = 5(1) S R B
+ e ag=log— ——p V" py+—p; V'
/8 2 2
Remaining terms from final expression
This function S(t) is called a sigmoid function for r in the previous slide, also
ol absorbed into g,
s(t)
oa Remember this function later
4 when we talk about NN _ _
1 activation functions Next lecture: What if f are not Gaussian
or don’t share a common covariance?
10 5 s T t
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Recall the Higgs discovery


https://indico.cern.ch/event/508168/contributions/2028747/attachments/1307803/1962991/Statistical-Reasoning-HASCO16.pdf
https://indico.cern.ch/event/508168/contributions/2028747/attachments/1307803/1962991/Statistical-Reasoning-HASCO16.pdf

Recall this example from the intro. lecture

® Discovery of the Higgs boson o
. T
§3500 ATLAS ¢+ Data H----- LW A
> 3000 ——— Sig+Bkg Fit (m =126.5 GeV)
T B N, e Bkg (4th order polynomial)
L% 2500 AAAANANAN TY

.Q
4
..
.

IlIIIIIIlIlll|IIII|IIII

{s=7 TeV, ﬁ.dt=4.8fb"

lIIIlIIII IllI|IIII|IIII|IIIIIIIIIIIIIl

1000:— ~ _ p Q_O T T1 | T T T | T T | T T1 | T T | T 11 | T T LI
b e = ATLAS 2011 - 2012 b
= @ § Vs=7TeV: [Ldt=4.6-4.8 b o= ExXp.
()]
2 o + A (s=8TeV: [Ldt=5859 b’ 10
» ¢ g ¢ ¢ ¢ ¢ { [ =cgozesecenocpeccencaccacascaccscascasessascscessasessassssessans
T 0 I T Tttt ' + o abie Nl alning {5 Sl S = Oo
g’ -100 + +-+ + + + H ¢ ‘IO'1 ------------------------------------------------------------ 1o
?-200 (b) 102 --ee. 0\ /T 20
100 110 120 130 140 150 160 LU S e 30
mYY [GeV] 10-4 AN
109 .\ o 4o
« When did this peak become a 10
discovery? w07 TN el T >0
l.e. when did we consider it as incompatible 10:2
with the background hypothesis (SM without 10 g R SR 60
Higgs)? e .
10 I I | | I I | I I | | I I | | L1 11 | 1 1 Is‘L | [ I | | [ I
: 110 115 120 125 130 135 140 145 150
- Estimate Np;,4 and Np,, under the m,, [GeV]
peak, then calculate the significance
(goodness of fit)
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Significance statement with a P-value

e Quantify the compatibility of data with hypothesis, e.g., the
Standard Model (SM) of particle physics

Define a test statistic 7 (e.g., # of events)

Calculate the P-value on the PDF, the likelihood f(# | H,)) for ¢ given a

hypothesis H, (e.g. background/SM without Higgs) 00
P = J f(t| Hy) dt
l

obs

More likely observation

¥ Ns
—

A p-val s

g Ho wrong ? '/ Additional |Conventional thresholds:
S signal ? P <0.03, 20, = Happens often
2 Very un-likely Very un-likely )
S | observations observations P < 0.002, 3o, = Evidence
8 Y L, Y P <107/, 56, = Discovery!
. data point\ | '

-« = >

_ Np
Set of possible results t
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Significance statement with ¢

e The P-value can be transformed into the number of sigma:
Z=ao1(1-P)

O = the cumulative (integral) of the Normal distribution

®~! = the inverse (quantile)

® With root: sigma = ROOT:Math::normal_quantile_c(p-value,1)

Q0 %) 1o )
0.3173 lo 0.2 1.28¢0
4.55 x1072 | 20 0.1 1.640
(' Evidence 2.7 x1073 30 ) 0.05 1.960 J 1
6.3x10~° | 4o 0.01 2.580 S —
57x107 50 0.001 3.994 Area a of the tails outside
2.0x1070 | 60 1074 | 3.890 o from the mean of 2
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The P-values of the Higgs Discovery

{s=7 TeV, ﬁ_dt—4 8fb™
{s=8 TeV, ﬁ.dt_s ofb™

/According to the NP lemma the likelihood ratio of | 3. K ATLAS v om
two alternative models/hypotheses H; and H,, is 2 3000~ T ot mens e
o S SR O Bkg (4th order polynomial)
the best test statistic e — @ %%
likelihood ratio 2000 =T
l 1500

l < (,Ml) 1000
) = e T Ho) -> L)
_ _

The Poisson distribution

‘g(/’l) — HP(NData ; MNSlg + NBkg) models the statistical _ =200 (b)

fluctuations of the data

.............................

Events - Bkg
)
o O
—e—
—o—
—o—
10—
+o—
}
_._
-
-
-
-@-
-~

S F ATLAS 2011-2012 = -
Test for deviations from the background only model (e.g., 3 Ezgg }tj;;‘g;‘giﬁ 53‘2‘
SM w/out Higgs). Put ;= 0 (bkg only, it g to data, and B e G e 1
integrate from Np,, to 0o to obtain the P-value. Y OO -
A S0 deviation from u = 0 was achieved around 125 GeV. T B Y A 4o
10°
A e L S 50
The same calculation with ¢ = 1( SM with Higgs) N e .
fits the data well in that region, within 1o 11%'_‘1‘1’ .
110415 120 125 130 135 140 145 150
le., First find a deviation (u = 0), m, [GeV]

then check alternative models (u = 1)
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For next time

* Required reading
Cowan textbook: Chapter 4 (through 4.4.1)
Reading material / LO6 / Statistical-Reasoning-HASCO16
Reading material / LO5 / LO3_Statistics_Fitting_|Il

e Extra reading for fun: /Reading material / LO6 /

NeymanPearson (original paper)
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Next time

e (Classical Confidence intervals
Exact method

Examples:
® (Gaussian distributed estimator
® Poisson distributed estimator

e Correlation coefficient, transformation of parameters

Likelihood and LS Confidence intervals

e Limits near a physical boundary

Shifted and Bayesian approaches

Example: Upper limit on the mean of a Poisson variable with
background
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Quiz Time: 6t Round



Type | vs. type |l errors

1. You have two hypotheses Hy and H; and a test statistics ¢ distributed according to g(t|Hy)
and g(t|H,), as shown in the figure below. You now choose a certain value ¢, to accept Hy
/ reject Hy. Using the figure, explain the meaning of Type I and Type II errors.

N 2 T T T T
|
o tcut
accept H wi-i-in reject H
15 ¢
1 -
0.5 [
0
0 1 2 3
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Fischer / LS hypothesis tests

2. Properties of the Fisher discriminant / LS / Bonus

a) Write down the definition of a Fisher discriminant of n data points x = (z1, zs, ..., Zy).

b) When is it beneficial to construct a Fisher discriminant instead using the full likelihood
ratio?

c¢) You carried out least square fits (LS) using two hypotheses and obtained 2 and x3.
What is the equivalent of the likelihood ratio for binned data?

d)* Explain step-by-step how you would obtain g(¢|Hy) and g(¢|X1) using MC techniques
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® Part of the material presented in this lecture is taken from the following

sources. See the active links (when available) for a complete reference

Recall the Higgs Discovery section adapted from https://indico.cern.ch/event/508168/
contributions/2028747/attachments/1307803/1962991/Statistical-Reasoning-HASCO16.pdf

Statistical Data Analysis textbook by G. Cowan (U. London): all figures & equations with white

background
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