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Modern Methods of Data Analysis

• Hypothesis testing

• Particle selection example


• Neyman-Pearson Lemma


• Fisher discriminant function


• Higgs discovery & 
significance with a -valueP
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.
In order to test which values of the strength and

mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while
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Figure 10: Measurements of the signal strength parameter µ for
mH=126GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .
Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-

tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.
The probability for a single Higgs boson-like particle

to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
Since there are four Higgs boson productionmodes at

the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µtt̄H have been grouped together as they
scale with the tt̄H coupling in the SM, and are denoted

19
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Estimators and Parameter Estimation Review

̂μ =
1
n

n

∑
i=1

xi =
1

n − 1

n

∑
i=1

(xi − ̂μ)2̂σ2 ̂μ

Let  be  independent measurements with unknown mean  (e.g., mass) and 
variance . The estimators (denoted with ) are: 

x1, x2, . . . , xn n μ
σ2 ̂

Maximum Likelihood (ML) estimators (MLE) maximize the likelihood function for given data x

ℒ(θ) =
n

∏
i=1

f(xi; θ) ∂ ln ℒ
∂θi

= 0, i = 1, . . . , m

χ2(θ) = − 2 ln ℒ(θ) + constant =
N

∑
i=1

(yi − λ(xi; θ))2

σ2
i

 is often more convenient to 
work with than , and doesn’t 

change the estimation

ln ℒ
ℒ

Poisson example: MLE for the mean is just the data count [the usual arithmetic mean (avg.) estimator]

Least Squares (LS)  estimator finds the model parameters that minimize the total squared 
deviations of the data points  from the mean

χ 2

(xi, yi) Same as  for Gaussian 
and independent , so you often 

see  for comparison 

−2 ln ℒ
yi

−2 ln ℒ

MLE better than LS at low statistics, but numerical optimization may take longer

When fitting a histogram with Poisson errors ALWAYS perform a ML fit (not a  fit)χ2

But numerical estimation not really an issues 
anymore, so ML is the method of choice overall 
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• For MLE, the RCF inequality turns into an equality, so the RCF bound is 
indeed reached. For LS, the RCF bound can only be reached if Gaussian. If 
not, the estimator variance will be larger than it could be.


• For MLE, you have optimal coverage of a confidence interval (more next 
week). I.e., 68% really means “68%.”


• The inclusion of systematic errors into the likelihood via nuisance 
parameters (more later today) is straightforward with MLE. Not so easy with 
LS. 


• Don’t need to worry about binning with MLE. Binned converges to  
unbinned when . 


• When you use LS (for large enough event counts),  is 
approximated by the  distribution. As  is known, there’s no need for 
large MC. 

nbins → ∞

−2 ln ℒ
χ2 χ2

4

MLE vs. LS Review



Answer Time:  Quiz 5
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• Uncorrelated average: 5.41667


• Correlated average: 5.375

Quiz questions

Combining measurement with least squares

1. The �2 method o↵ers an easy way to combine measurements. For uncorrelated measured
quantities yi with variances �i one can determine the LS estimator �̂ to be

�̂ =

PN
i=1 yi/�

2
iPN

j=1 1/�
2
j

(1)

or for correlated measurements with covariance V one has

�̂ =
NX

i=1

wiyi with wi =

PN
j=1 (V

�1)ijPN
k,l=1 (V

�1)kl
. (2)

Note that
PN

i=1 wi = 1 and the variance of �̂ is given by V [�̂] =
PN

i,j=1 wiVijwj.

a) Calculate the average of two measured quantities y1 = 5 and y2 = 6 with a covariance
matrix

C =

✓
0.5. 0.2
0.2 0.7

◆
,

first using the uncorrelated formula Eq. 1 and then using the proper expression Eq. 2.
Remember that �2

i = Vii.

b) Calculate the correlated average of the same measured quantities but assume now that
the covariance matrix is given by

C =

✓
0.5. 0.55
0.55 0.7

◆
.

Why is the average (you should get �̂ = 4.5) not between 5 and 6? What is the variance
of the average?
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✓
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◆
,
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Remember that �2

i = Vii.
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✓
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◆
.

Why is the average (you should get �̂ = 4.5) not between 5 and 6? What is the variance
of the average?

• Values are highly correlated (93%), i.e. very likely that true mean lies 
on the opposite side of the value with the smaller error


• Variance:

6
Read more in Cowan section 7.6 & 7.61

Eq. 7.26 Eqs. 7.29, 7.30

Reduces to Eqs. 7.34 - 7.39 for 
the case of 2 measurements

1
σ2

=
1

1 − ρ2 [ 1
σ2

1
+

1
σ2

2
+

2ρ
σ1σ2 ] ⇒ σ = 0.475 ≈ 0.69

Combining measurements with least squares

ρ =
V12

σ1σ2
= 0.93

yy2y1

f(y)

μ

If , the weight , which 
means the weighted avg. does not lie 
between  and  

ρ > σ1/σ2 w < 0

y1 y2
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-value: Probability to observe a LS fit result with a  as large or larger 
than the observed value, given the underlying (fit) model is true
P χ2

2

P-Value Bonanza

2. In the lecture we discussed that the obtained �2 value from a binned LS fit contains infor-
mation of how probable an observation is given a presumed hypothesis. This probability is
called the p-value and is given by

p =

Z 1

�2
obs

f�2(x; n.d.f.) dx , (3)

where �2
obs is the observed �2 value, f�2 is the �2-distribution, and n.d.f. denotes the numbers

of degrees of freedom. If a LS fit has n bins and m free parameters, it is n.d.f. = n � m.
You can calculate this integral easily using ROOT via the TMath::Prob(x,ndf) function.

a) What is the interpretation of a p-value and what does a low p-value imply?

b) Using the �2
obs table below decide if the following binned LS or �2 fits describe the

observed data well:

(�2
obs, n,m) = (6.2, 5, 3), (�2

obs, n,m) = (1.2, 2, 1), (�2
obs, n,m) = (2.2, 10, 3).

2

P-Value Bonanza

2. In the lecture we discussed that the obtained �2 value from a binned LS fit contains infor-
mation of how probable an observation is given a presumed hypothesis. This probability is
called the p-value and is given by
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Z 1

�2
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f�2(x; n.d.f.) dx , (3)
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obs is the observed �2 value, f�2 is the �2-distribution, and n.d.f. denotes the numbers

of degrees of freedom. If a LS fit has n bins and m free parameters, it is n.d.f. = n � m.
You can calculate this integral easily using ROOT via the TMath::Prob(x,ndf) function.

a) What is the interpretation of a p-value and what does a low p-value imply?

b) Using the �2
obs table below decide if the following binned LS or �2 fits describe the

observed data well:

(�2
obs, n,m) = (6.2, 5, 3), (�2

obs, n,m) = (1.2, 2, 1), (�2
obs, n,m) = (2.2, 10, 3).

-values P

≈ 0.05 - 0.01 (dof = 2) 

7

-values P

# of points

# of free parameters in the fit

≈ 0.30 - 0.20 (dof = 1)

≈ 0.95 - 0.90 (dof = 7)

OK
Not well

Agreement 
maybe too 
good?

Grounds for checking that 
the errors have not been 
overestimated or are not 
correlated



Hypothesis tests
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Hypothesis tests   (i)

Goal of a statistical test: Statement about how well the observed 
data stand in agreement with a given 
predicted probability  

Hypothesis under consideration:    Null hypothesis or H0

If  fully determined  Simple hypothesis (focus on these for now) 

If              Composite hypothesis (  determined from data)

f(x) →

f(x) = f(x; θ) → θ

= Hypothesis!

could be a PDF  f(x)

Often compare validity of  by comparing to alternate hypotheses ( )H0 H1, H2, . . .

Notation:    
f(x |H0)
f(x |H1)

Use same notation as for 
conditional probability

 datax = (x1, x2, . . . , xn)

Interpret: Each hypothesis 
specifies a joint PDF 
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Hypothesis tests   (ii)

To investigate agreement, construct a test statistic t(x)
def statistic  A function of the observed 

measurements which contains no 
unknown parameters.

≡

 measured valuesx = (x1, x2, . . . , xn)

The test statistic can be a scalar  or a multidimensional vector
t = t(x)

t = (t1(x), t2(x), . . . , tm(x))

Each of the given hypotheses will imply a PDF for   t

Notation:    
g(t |H0)
g(t |H1)

Could have used the original vector of data ….  

Question: Why not simply use the original vector of data ?x = (x1, x2, . . . , xn)

Answer: Constructing a statistic of lower dimension  reduces the amount of 
data without losing the ability to discriminate between hypotheses.

m < n
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PDF of test statistics

Hypotheses, test statistics, significance level, power 47 

The test statistic t can be a multidimensional vector, t = (t l , ... , tm ). In fact, 
the original vector of data values x = (Xl, ... , xn) could be used. The point of 
constructing a statistic t of lower dimension (i.e. m < n) is to reduce the amount 
of data without losing the ability to discriminate between hypotheses. Let us 
suppose for the moment that we have chosen a scalar function t(x), which has 
the p.d.f. g(tIHo) if Ho is true, and g(tlHd if HI is true, as shown in Fig. 4.1. 

acceptHo 
1.5 

0.5 

o 
o 2 

reject Ho 

3 4 5 

Fig. 4.1 Probability densities for the 
test statistic t under assumption of the 
hypotheses Ho and Ht. Ho is rejected 
if t is observed in the critical region, 
here shown as t > tcut. 

Often one formulates the statement_ about the compatibility between the data 
and the various hypotheses in terms of a decision to accept or reject a given null 
hypothesis Ho. This is done by defining a critical region for t. Equivalently, one 
can use its complement, called the acceptance region. If the value of tactually 
observed is in the critical region, one rejects the hypothesis Ho; otherwise, Ho 
is accepted. The critical region is chosen such that the probability for t to be 
observed there, under assumption of the hypothesis Ho, is some value (x, called 
the significance level of the test. For example, the critical region could consist of 
values of t greater than a certain value tcut, called the cut or decision boundary, 
as shown in Fig. 4.1. The significance level is then 

(X = 100 

g(tIHo)dt. 
tcut 

(4.1 ) 

One would then accept (or, strictly speaking, not reject) the hypothesis H 0 if 
the value of t observed is less than tcut . There is thus a probability of ex to reject 
Ho if Ho is true. This is called an error of the first kind. An error of the second 
kind takes place if the hypothesis Ho is accepted (i.e. t is observed less than tcut) 
but the true hypothesis was not Ho but rather some alternative hypothesis HI. 
The probability for this is 

(4.2) 

Goal: Formulate a statement about the 
compatibility between data and various 
hypotheses in terms of a decision to accept 
or reject H0

Define a critical region for  with t tcut

 : reject , accept 


 : accept  

tobs > tcut H0 H1

tobs < tcut H0

Choose  s.t. the probability to observe 
 is set to some significance level   
tcut

t > tcut α

α = ∫
∞

tcut

g(t |H0)dt
significance level

There is the probability of  to reject 
 even if  is true:     Type I error

α
H0 H0

Accept  although not true

 ( ):         Type II error

H0
t < tcut

e.g.,  is trueH1 β = ∫
tcut

−∞
g(t |H1)dt

Power of the test to 
discriminate against 

1 − β =
H1

Acceptance region 
(complement of critical region)

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Ex. with particle selection
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• As an example: our test statistic  represents the measured 
ionization created by a charged particle of a known momentum 
traversing a detector

• The amount of ionization is subject to fluctuations from particle to particle 

and depends (for a fixed momentum) on the particle’s mass

t

13

Example with particle selection

 i

f(i)

e

𝜋

dE/dx - separation power 

20 

Ws =
dE / dx

A
− dE / dx

B

σ (dE / dx)

PID by dE/dx never reaches a good particle separation 

[a
u]

 Define some 
function 

→
t(i)

p

K
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• , 


• Selection efficiencies:  and 

H0 = e H1 = π

ϵe ϵπ

14

Electron and pion hypothesis
PDF of electron 

hypothesis for  
test statistic t

PDF of pion 
hypothesis for  
test statistic t

Hypotheses, test statistics, significance level, power 47 

The test statistic t can be a multidimensional vector, t = (t l , ... , tm ). In fact, 
the original vector of data values x = (Xl, ... , xn) could be used. The point of 
constructing a statistic t of lower dimension (i.e. m < n) is to reduce the amount 
of data without losing the ability to discriminate between hypotheses. Let us 
suppose for the moment that we have chosen a scalar function t(x), which has 
the p.d.f. g(tIHo) if Ho is true, and g(tlHd if HI is true, as shown in Fig. 4.1. 
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here shown as t > tcut. 

Often one formulates the statement_ about the compatibility between the data 
and the various hypotheses in terms of a decision to accept or reject a given null 
hypothesis Ho. This is done by defining a critical region for t. Equivalently, one 
can use its complement, called the acceptance region. If the value of tactually 
observed is in the critical region, one rejects the hypothesis Ho; otherwise, Ho 
is accepted. The critical region is chosen such that the probability for t to be 
observed there, under assumption of the hypothesis Ho, is some value (x, called 
the significance level of the test. For example, the critical region could consist of 
values of t greater than a certain value tcut, called the cut or decision boundary, 
as shown in Fig. 4.1. The significance level is then 

(X = 100 

g(tIHo)dt. 
tcut 

(4.1 ) 

One would then accept (or, strictly speaking, not reject) the hypothesis H 0 if 
the value of t observed is less than tcut . There is thus a probability of ex to reject 
Ho if Ho is true. This is called an error of the first kind. An error of the second 
kind takes place if the hypothesis Ho is accepted (i.e. t is observed less than tcut) 
but the true hypothesis was not Ho but rather some alternative hypothesis HI. 
The probability for this is 

(4.2) 

• Both can be brought arbitrarily close to zero or 
unity by appropriate choice of 


• However, there is a price: the higher the 
signal efficiency, the larger the contamination 

tcut
(i.e., by making a looser or 

tighter cut on the ionization)

(i.e., the purity of the electron 
sample decreases since some 

pions are accepted as well)

ϵe = ∫
tcut

−∞
g(t |e)dt = 1 − α

ϵπ = ∫
tcut

−∞
g(t |π)dt = β
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• If the relative fractions of pions and electrons are not known, one 
can carry out a likelihood fit to the test statistic


•  is distributed according to 


• Knowing  allows one to determine the total number of electrons in the 
sample: 

t

ae

15

Relative fractions 

# of electrons

total number of events

relative fraction 
of electrons

relative fraction of 
pions ( )aπ = 1 − ae

f(t; ae) = aeg(t |e) + (1 − ae)g(t |π)

Ne = aeNtot
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• Alternatively one may want to select electron candidates by requiring 



• This leads to  accepted out of the  particles


• One then often also wants to determine the total number of electrons before the 
cut on . The number of accepted particles is 

t < tcut

Nacc Ntot

t

16

Electron candidates

only possible if efficiencies 
under cut are different

Nacc = ϵeNe + ϵπNπ

= ϵeNe + ϵπ(Ntot − Ne)

Ne =
Nacc − ϵπNtot

ϵe − ϵπ



Recall Bayes’ Formalism
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Why is Bayes’ so important?

Evidence | Fact)P(E = F =
(collected from data)

Bayes’
Fact | Evidence)P(F = E =

(categorize a new data point)

It links belief to 
evidence in 
probability

Given new evidence , update belief of fact 

Prior belief  Posterior belief


E F
→

P(F) → P(F |E)

Review
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Bayes’ Theorem terminology

You receive an email with the word “Dear in it.

What is the probability that the email is spam?

• 60% of all email in 2016 is spam.


• 20% of spam has the word “Dear.”


• 1% of non-spam has the word “Dear.”

P(F |E) =
P(E |F) P(F)

P(E)

priorlikelihood
posterior

normalization constant

P(F)
P(E |F)

P(E |FC)

P(F |E)

prior

likelihood

posterior

Review



Now let’s use it in our ex.
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h(e | t) =
aeg(t |e)

aeg(t |e) + aπg(t |π)

• The probability that a particle with an observed value of  is an electron or pion, 
and , can be obtained from the PDFs of and  using Bayes’ theorem:

t h(e | t)
h(π | t) g(t |e) g(t |π)

21

Bayes again

prior probability that particle is an e

Frequentist: fraction of times a particle

with a given  will be an electron (pion)t

Bayesian: degree of belief that a given 

particle with a measured value of  

is an electron (pion)

t

h(π | t) =
aπg(t |π)

aeg(t |e) + aπg(t |π)
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• Often one cares for the purity  of a sample of electron 
candidates selected with . 


• The purity is given by 

pe
t < tcut

22

Purity

This is the mean electron probability  
averaged over the interval 

h(e | t)
(−∞, tcut]

pe =
number of electrons with t < tcut

number of all particles with t < tcut

=
∫ tcut

−∞
aeg(t |e)dt

∫ tcut

−∞ (aeg(t |e) + (1 − ae)g(t |π)) dt

=
aeϵeNtot

Naccepted



Take 5



Neyman-Pearson Lemma
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Neyman-Pearson Lemma
For  scalar, choice of  is straightforwardt = t(x) tcut

Chosen depending on the efficiency 
and purity of the selected particles 

desired for further analysis. 

What if  is a vector? t = (t1(x), t2(x), . . . , tm(x))
 Which  cut offers ideal separation?⇒ t1,2

Neyman-Pearson:  

Acceptance region giving the highest 
power (and hence highest signal purity) 
for a given significance level  is the 

region in space s.t. 

α
t−

g(t |H0)
g(t |H1)

> c
Constant determined by 

desired efficiency

e.g., can require that they give a max. 
purity for a given efficiency.

This maps a vector 
statistic onto a 1D statistic

r =
g(t |H0)
g(t |H1)

Called the likelihood ratio for 
simple hypotheses  and  

(Corresponding acceptance region 
given by )

H0 H1

r > c

⇒

[ 289 ]
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Given vector of data , 
construct a 1D test statistic:

x = (x1, x2, . . . , xn)

Constructing a test statistic

t(x) =
f(x |H0)
f(x |H1)

To construct , need to know t f  Very difficult if PDF is multi-dimensional⇒

In practice, need to use MC to estimate f(x |Hi)  Scales terribly: ⇒ ∼ Mn

# of bins

# of components

The likelihood ratio gives 
the highest probability to 

reject  if  is trueH1 H0

What can we do if we can’t determine  as D histograms?f(x |Hi) n

 Make a simpler assumption for the functional form of 
, and choose the best function having this form 

⇒
t(x)

Today: Consider linear functions of the 


Later in the semester: Non-linear 
functions (e.g., Neural Networks)

xi



Linear test statistic
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Linear test statistic  (i)

t(x) =
n

∑
i=1

aixi = aT xSimplest form is a linear function:

Goal: determine the  to maximize the separation between the PDFs  &  ai g(t |H0) g(t |H1)

What now?
Maximize separation |τ1 − τ2 |

Minimize spread

Fisher discriminant 
function

Mean values and 
covariance matrix of 
the data , for each 
hypothesis 

x
k (Vk)ij

= ∫ (x − μk)i(x − μk)j f(x |Hk)dx1 . . . dxn

(μk)i
= ∫ xi f(x |Hk)dx1 . . . dxn

Characterizes the data

Each hypothesis  is 
characterized by an 
expectation value 
and variance

k τk = ∫ tg(t |Hk)dt

Σ2
k = ∫ (t − τk)2g(t |Hk)dt

Characterizes the hypotheses

= aT μk

= aTVka

Subtle connection 
between  and μ τ
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Linear test statistic  (ii) Fisher discriminant 
function

Quantified by:

J(a) =
(τ0 − τ1)2

Σ2
0 + Σ2

1
=

∑n
i,j=1 aiaj(μ0 − μ1)i(μ0 − μ1)j

∑n
i,j=1 aiaj(V0 + V1)ij

=
aTBa
aTWa

∂J(a)
∂ai

= 0

To find maximum separation:

Sum of the covariance matrices within the classes

Separation between the 2 classes corresponding to 
 and H0 H1

a ∝ W−1(μ0 − μ1)⇒ To determine the coefficients, 
need the matrix  and the 

expectation values  
W

μ(0,1)

Often estimated from a set 
of training data (e.g., MC 

simulation)

Key point: one does not need to determine the full joint 
PDFs  &  as D histograms; only the 
means  and variances  must be found. 

f(x |H0) f(x |H1) n
μk Vk
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• If  and  are both multi-D Gaussians with common covariances 
, the Fisher discriminant has some interesting properties:

f(x |H0) f(x |H1)
V = V0 = V1

30

Fisher discriminant for multi-D Gaussians

• Linear Fisher becomes :

• The (exact) Likelihood ratio is then given by

f(x |Hk) =
1

(2π)n/2 |V |1/2 exp [−
1
2

(x − μk)TV−1(x − μk)] Recall the definition of the multi-
D Gaussian in L03, slide 33

t(x) = a0 + (μ0 − μ1)TV−1x

r =
f(x |H0)
f(x |H1)

= exp [−
1
2

(x − μ0)TV−1(x − μ0) +
1
2

(x − μ1)TV−1(x − μ1)]
= exp [(μ0 − μ1)TV−1x −

1
2

μT
0 V−1μ0 +

1
2

μT
1 V−1μ1]

∝ et

t ∝ log r + const .⇒ The Fisher discriminant is as good a 
test statistic as the full likelihood

Monotonic function of r
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• We can again make statements regarding the probability of  given the data :H0 x

31

Bayes’ again

prior probabilities

Next lecture: What if  are not Gaussian 
or don’t share a common covariance?

f

P(H0 |x) =
f(x |H0)π0

f(x |H0)π0 + f(x |H1)π1
=

f(x |H0)π0

f(x |H0)π0 (1 + f(x |H1)
f(x |H0)

π1

π0 )
=

1
1 + π1

r π0

• Now substitute  from the last slide:r ∝ et

P(H0 |x) =
1

1 + e−t
≡ s(t)

The prior probabilities have been absorbed into the offset

a0 = log
π0

π1
−

1
2

μT
0 V−1μ0 +

1
2

μT
1 V−1μ1

Remaining terms from final expression 
for  in the previous slide, also 
absorbed into  

r
a0

This function  is called a sigmoid functions(t)

s(t)

t

Remember this function later 
when we talk about NN 

activation functions 



Recall the Higgs discovery

Adapted from 
https://indico.cern.ch/event/508168/contributions/2028747/attachments/
1307803/1962991/Statistical-Reasoning-HASCO16.pdf

https://indico.cern.ch/event/508168/contributions/2028747/attachments/1307803/1962991/Statistical-Reasoning-HASCO16.pdf
https://indico.cern.ch/event/508168/contributions/2028747/attachments/1307803/1962991/Statistical-Reasoning-HASCO16.pdf
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• Discovery of the Higgs boson 

33

Recall this example from the intro. lecture
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.
In order to test which values of the strength and

mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while

)µSignal strength (

    
   -1     0     1

    

Combined

 4l→ (*) ZZ→H 

γγ →H 

νlν l→ (*) WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.8 - 5.9 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.8 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 5.9 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 5.8 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s

-1Ldt = 4.6-4.7 fb∫ = 7 TeV:  s

 = 126.0 GeVHm

 0.3± = 1.4 µ

ATLAS 2011 - 2012

Figure 10: Measurements of the signal strength parameter µ for
mH=126GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .
Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-

tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.
The probability for a single Higgs boson-like particle

to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
Since there are four Higgs boson productionmodes at

the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µtt̄H have been grouped together as they
scale with the tt̄H coupling in the SM, and are denoted
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t, W

• When did this peak become a 
discovery?

I.e. when did we consider it as incompatible 
with the background hypothesis (SM without 
Higgs)? 

• Estimate  and  under the 
peak, then calculate the significance 
(goodness of fit)

NBkgd NData

The largest absolute signal yield as defined above is
taken as the systematic uncertainty on the background
model. It amounts to ±(0.2−4.6) and ±(0.3−6.8) events,
depending on the category for the 7 TeV and 8 TeV data
samples, respectively. In the final fit to the data (see
Section 5.7) a signal-like term is included in the likeli-
hood function for each category. This term incorporates
the estimated potential bias, thus providing a conserva-
tive estimate of the uncertainty due to the background
modelling.

5.6. Systematic uncertainties
Hereafter, in cases where two uncertainties are

quoted, they refer to the 7 TeV and 8 TeV data, respec-
tively. The dominant experimental uncertainty on the
signal yield (±8%, ±11%) comes from the photon re-
construction and identification efficiency, which is es-
timated with data using electrons from Z decays and
photons from Z → !+!−γ events. Pile-up modelling
also affects the expected yields and contributes to the
uncertainty (±4%). Further uncertainties on the sig-
nal yield are related to the trigger (±1%), photon isola-
tion (±0.4%, ±0.5%) and luminosity (±1.8%, ±3.6%).
Uncertainties due to the modelling of the underlying
event are ±6% for VBF and ±30% for other produc-
tion processes in the 2-jet category. Uncertainties on the
predicted cross sections and branching ratio are sum-
marised in Section 8.
The uncertainty on the expected fractions of signal

events in each category is described in the following.
The uncertainty on the knowledge of the material in
front of the calorimeter is used to derive the amount of
possible event migration between the converted and un-
converted categories (±4%). The uncertainty from pile-
up on the population of the converted and unconverted
categories is ±2%. The uncertainty from the jet energy
scale (JES) amounts to up to ±19% for the 2-jet cate-
gory, and up to ±4% for the other categories. Uncertain-
ties from the JVF modelling are ±12% (for the 8 TeV
data) for the 2-jet category, estimated from Z+2-jets
events by comparing data and MC. Different PDFs and
scale variations in the HqT calculations are used to de-
rive possible event migration among categories (±9%)
due to the modelling of the Higgs boson kinematics.
The total uncertainty on the mass resolution is ±14%.

The dominant contribution (±12%) comes from the un-
certainty on the energy resolution of the calorimeter,
which is determined from Z→ e+e− events. Smaller
contributions come from the imperfect knowledge of the
material in front of the calorimeter, which affects the ex-
trapolation of the calibration from electrons to photons
(±6%), and from pile-up (±4%).
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Figure 4: The distributions of the invariant mass of diphoton can-
didates after all selections for the combined 7 TeV and 8 TeV data
sample. The inclusive sample is shown in (a) and a weighted version
of the same sample in (c); the weights are explained in the text. The
result of a fit to the data of the sum of a signal component fixed to
mH = 126.5 GeV and a background component described by a fourth-
order Bernstein polynomial is superimposed. The residuals of the data
and weighted data with respect to the respective fitted background
component are displayed in (b) and (d).

5.7. Results

The distributions of the invariant mass, mγγ, of the
diphoton events, summed over all categories, are shown
in Fig. 4(a) and (b). The result of a fit including a signal
component fixed to mH = 126.5 GeV and a background
component described by a fourth-order Bernstein poly-
nomial is superimposed.
The statistical analysis of the data employs an un-

binned likelihood function constructed from those of
the ten categories of the 7 TeV and 8 TeV data samples.
To demonstrate the sensitivity of this likelihood analy-
sis, Fig. 4(c) and (d) also show the mass spectrum ob-
tained after weighting events with category-dependent
factors reflecting the signal-to-background ratios. The
weight wi for events in category i ∈ [1, 10] for the 7 TeV
and 8 TeV data samples is defined to be ln (1 + S i/Bi),

10
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• Quantify the compatibility of data with hypothesis, e.g., the 
Standard Model (SM) of particle physics


• Define a test statistic  (e.g., # of events)  


• Calculate the -value on the PDF, the likelihood  for  given a 
hypothesis  (e.g. background/SM without Higgs)

t
P f(t |H0) t

H0

34

Significance statement with a -valueP

P = ∫
∞

tobs

f(t |H0) dt

Conventional thresholds: 
,    ,       Happens often 

,  ,       Evidence 
,    ,       Discovery!

P ≲ 0.03 2σ ⇒
P ≲ 0.002 3σ ⇒
P ≲ 10−7 5σ ⇒
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• The -value can be transformed into the number of sigma:


•  = the cumulative (integral) of the Normal distribution 


•  = the inverse (quantile)


• With root: sigma = ROOT:Math::normal_quantile_c(p-value,1)

P

Φ
Φ−1

35

Significance statement with σ

Z = Φ−1(1 − P)

Evidence

Discovery Area  of the tails outside 
 from the mean of a 
Normal distribution

α
±δ
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The -values of the Higgs DiscoveryP
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Figure 9: The observed (solid) local p0 as a function of mH in the
low mass range. The dashed curve shows the expected local p0 under
the hypothesis of a SM Higgs boson signal at that mass with its ±1σ
band. The horizontal dashed lines indicate the p-values corresponding
to significances of 1 to 6 σ.

110–150GeV, which is approximately the mass range
not excluded at the 99% CL by the LHC combined SM
Higgs boson search [139] and the indirect constraints
from the global fit to precision electroweak measure-
ments [12].

9.3. Characterising the excess
The mass of the observed new particle is esti-

mated using the profile likelihood ratio λ(mH) for
H→ZZ(∗)→ 4# and H→ γγ, the two channels with the
highest mass resolution. The signal strength is al-
lowed to vary independently in the two channels, al-
though the result is essentially unchanged when re-
stricted to the SM hypothesis µ = 1. The leading
sources of systematic uncertainty come from the elec-
tron and photon energy scales and resolutions. The re-
sulting estimate for the mass of the observed particle is
126.0 ± 0.4 (stat) ± 0.4 (sys) GeV.
The best-fit signal strength µ̂ is shown in Fig. 7(c) as

a function of mH . The observed excess corresponds to
µ̂ = 1.4 ± 0.3 for mH = 126GeV, which is consistent
with the SM Higgs boson hypothesis µ = 1. A sum-
mary of the individual and combined best-fit values of
the strength parameter for a SM Higgs boson mass hy-
pothesis of 126GeV is shown in Fig. 10, while more
information about the three main channels is provided
in Table 7.
In order to test which values of the strength and

mass of a signal hypothesis are simultaneously consis-
tent with the data, the profile likelihood ratio λ(µ,mH) is
used. In the presence of a strong signal, it will produce
closed contours around the best-fit point (µ̂, m̂H), while

)µSignal strength (
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Combined
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γγ →H 

νlν l→ (*) WW→H 

ττ →H 

 bb→W,Z H 
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Figure 10: Measurements of the signal strength parameter µ for
mH=126GeV for the individual channels and their combination.

in the absence of a signal the contours will be upper
limits on µ for all values of mH .
Asymptotically, the test statistic −2 lnλ(µ,mH) is dis-

tributed as a χ2 distribution with two degrees of free-
dom. The resulting 68% and 95% CL contours for the
H→ γγ and H→WW (∗)→ #ν#ν channels are shown in
Fig. 11, where the asymptotic approximations have been
validated with ensembles of pseudo-experiments. Sim-
ilar contours for the H→ ZZ(∗)→ 4# channel are also
shown in Fig. 11, although they are only approximate
confidence intervals due to the smaller number of can-
didates in this channel. These contours in the (µ,mH)
plane take into account uncertainties in the energy scale
and resolution.
The probability for a single Higgs boson-like particle

to produce resonant mass peaks in the H→ ZZ(∗)→ 4#
and H→ γγ channels separated by more than the ob-
served mass difference, allowing the signal strengths to
vary independently, is about 8%.
The contributions from the different production

modes in the H→ γγ channel have been studied in order
to assess any tension between the data and the ratios of
the production cross sections predicted in the Standard
Model. A new signal strength parameter µi is introduced
for each production mode, defined by µi = σi/σi,SM. In
order to determine the values of (µi, µ j) that are simul-
taneously consistent with the data, the profile likelihood
ratio λ(µi, µ j) is used with the measured mass treated as
a nuisance parameter.
Since there are four Higgs boson productionmodes at

the LHC, two-dimensional contours require either some
µi to be fixed, or multiple µi to be related in some way.
Here, µggF and µtt̄H have been grouped together as they
scale with the tt̄H coupling in the SM, and are denoted
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According to the NP lemma the likelihood ratio of 
two alternative models/hypotheses  and  is 
the best test statistic

H1 H0

t(x) =
f(x |H1)
f(x |H0)

I.e., First find a deviation ( ),  
then check alternative models ( )

μ = 0
μ = 1

ℒ(μ) = ∏
i

P(NData ; μNSig + NBkg) Q(μ1) =
ℒ(μ1)
ℒ(μ0)

r =
ℒ(μ1)
ℒ(μ0)

signal strength
likelihood ratio

ℒ(NB) =
NND

B

ND!
e−NB

Test for deviations from the background only model (e.g., 
SM w/out Higgs). Put  (bkg only), fit  to data, and 
integrate from  to  to obtain the -value.

A  deviation from  was achieved around 125 GeV.


μ1 = 0 μ0
NData ∞ P

5σ μ = 0

The same calculation with ( SM with Higgs) 
fits the data well in that region, within    

μ = 1
1σ

The Poisson distribution 
models the statistical 

fluctuations of the data
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• Required reading

• Cowan textbook: Chapter 4 (through 4.4.1)


• Reading material / L06 / Statistical-Reasoning-HASCO16


• Reading material / L05 / L03_Statistics_Fitting_II


• Extra reading for fun: /Reading material / L06 /

• NeymanPearson (original paper) 

37

For next time
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Next time

• Classical Confidence intervals

• Exact method


• Examples: 

• Gaussian distributed estimator


• Poisson distributed estimator


• Correlation coefficient, transformation of parameters


• Likelihood and LS Confidence intervals


• Limits near a physical boundary

• Shifted and Bayesian approaches


• Example: Upper limit on the mean of a Poisson variable with 
background



Quiz Time:  6th Round



Modern Methods of Data Analysis 40

Type I vs. type II errors
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Fischer / LS hypothesis tests
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• Part of the material presented in this lecture is taken from the following 

sources. See the active links (when available) for a complete reference   


• Recall the Higgs Discovery section adapted from https://indico.cern.ch/event/508168/
contributions/2028747/attachments/1307803/1962991/Statistical-Reasoning-HASCO16.pdf


• Statistical Data Analysis textbook by G. Cowan (U. London): all figures & equations with white 

background
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