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Today

• Classical confidence intervals

• Exact method


• Examples: 

• Gaussian distributed estimator


• Poisson distributed estimator


• Likelihood and LS confidence intervals


• Multi-dimensional confidence regions

Evaluations: Lecture & Computerpraktikum.  
Please take a few minutes to fill them out. Your feedback is greatly 
appreciated. We will take your comments into consideration in trying to 
improve the course.  
Evaluation period: through 22 June (lecture) & 15 July (Computerpraktikum)

https://onlineumfrage.kit.edu/evasys/public/online/index/index?online_php=&p=G8U87&ONLINEID=685107110396747909582449651404219497159407
https://onlineumfrage.kit.edu/evasys/public/online/index/index?online_php=&p=GYNY6&ONLINEID=573917406799455864826073832153669516557517
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Type I versus Type II errorsQuiz questions

Type I versus Type II errors

1. You have two hypotheses H0 and H1 and a test statistics t distributed according to g(t|H0)
and g(t|H1), as shown in the figure below. You now choose a certain value tcut to accept H0

/ reject H0. Using the figure, explain the meaning of Type I and Type II errors.

Hypotheses, test statistics, significance level, power 47 

The test statistic t can be a multidimensional vector, t = (t l , ... , tm ). In fact, 
the original vector of data values x = (Xl, ... , xn) could be used. The point of 
constructing a statistic t of lower dimension (i.e. m < n) is to reduce the amount 
of data without losing the ability to discriminate between hypotheses. Let us 
suppose for the moment that we have chosen a scalar function t(x), which has 
the p.d.f. g(tIHo) if Ho is true, and g(tlHd if HI is true, as shown in Fig. 4.1. 

acceptHo 
1.5 

0.5 

o 
o 2 

reject Ho 

3 4 5 

Fig. 4.1 Probability densities for the 
test statistic t under assumption of the 
hypotheses Ho and Ht. Ho is rejected 
if t is observed in the critical region, 
here shown as t > tcut. 

Often one formulates the statement_ about the compatibility between the data 
and the various hypotheses in terms of a decision to accept or reject a given null 
hypothesis Ho. This is done by defining a critical region for t. Equivalently, one 
can use its complement, called the acceptance region. If the value of tactually 
observed is in the critical region, one rejects the hypothesis Ho; otherwise, Ho 
is accepted. The critical region is chosen such that the probability for t to be 
observed there, under assumption of the hypothesis Ho, is some value (x, called 
the significance level of the test. For example, the critical region could consist of 
values of t greater than a certain value tcut, called the cut or decision boundary, 
as shown in Fig. 4.1. The significance level is then 

(X = 100 

g(tIHo)dt. 
tcut 

(4.1 ) 

One would then accept (or, strictly speaking, not reject) the hypothesis H 0 if 
the value of t observed is less than tcut . There is thus a probability of ex to reject 
Ho if Ho is true. This is called an error of the first kind. An error of the second 
kind takes place if the hypothesis Ho is accepted (i.e. t is observed less than tcut) 
but the true hypothesis was not Ho but rather some alternative hypothesis HI. 
The probability for this is 

(4.2) 
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Type I

Type II

4

The probability of  to reject 
, even if  is true ( )

α
H0 H0 t > tcut

Accepting  although 
not true ( )

H0
t < tcut

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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Fisher etc.
2

Fisher / LS Hypotheses tests / Bonus Question (*)

2. Properties of the Fisher discriminant / LS / Bonus

a) Write down the definition of a Fisher discriminant of n data points x = (x1, x2, . . . , xn).

b) When is it beneficial to construct a Fisher discriminant instead using the full likelihood
ratio?

c) You carried out least square fits (LS) using two hypotheses and obtained �
2
0 and �

2
1.

What is the equivalent of the likelihood ratio for binned data?

d)* Explain step-by-step how you would obtain g(t|H0) and g(t|X1) using MC techniques

Computationally easier to construct, especially for high dimensional PDFs

that need MC simulation

Generate pseudo-experiments for  according to  or , then calculate  for 
each pseudo-experiment and produce histograms for both sets. The histograms 
will be proportional to  and .

x H0 H1 t(x)

g(t |H0) g(t |H1)

5

t(x) =
n

∑
i=1

aixi = aT x

 , where for hypothesis ,   −2 ln ( ℒ1

ℒ0 ) = χ2
1 − χ2

0 = Δχ2 i χ2
i = (xdata − xi) C−1

i (xdata − xi)

See Sec. 6.11 (Testing goodness-of-fit with ML) 
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Parameter estimation Review

Suppose:  observations  and PDF 


 Construct  to estimate true value  


  = value of estimator actually observed


  = estimate of its standard deviation

n (x1, x2, . . . , xn) f(x; θ)

→ ̂θ(x1, x2, . . . , xn) θ

→ ̂θobs

→ ̂σ ̂θ

6



Modern Methods of Data Analysis

• Discussed 3 methods on estimating the variance of the found 
estimators

• Analytical method: 
• Calculate the variance directly using the likelihood, e.g. 


• Often does not work. If it works, can become very complicated: a priori trivial 
changes in the fit function (e.g. linear to quadratic PDF) result in you needing to 
recalculate complicated expressions

7

Analytical method, MC, RCF bound  (i)

Example of an ML estimator: an exponential distribution 73 

As an example consider a sample of 50 Monte Carlo generated decay times 
t distributed according to an exponential p.d.f. as shown in Fig. 6.2. The values 
were generated using a true lifetime T = 1.0. Equation (6.6) gives the ML esti-
mate f = 1.062. The curve shows the exponential p.d.f. evaluated with the ML 
estimate. 

0.75 
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0.25 

o 
o 2 3 4 5 

Fig. 6.2 A sample of 50 Monte Carlo 
generated observations of an expo-
nential random variable t with mean 
T = 1.0. The curve is the result 
of a maximum likelihood fit, giving 
T = 1.062. 

Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

Review

f(t; τ) =
1
τ

e−t/τ
log ℒ(τ) =

n

∑
i=1

log f(ti; τ) =
n

∑
i=1

(log
1
τ

−
ti
τ )

V[ ̂τ] = E[ ̂τ2] − (E[ ̂τ])2

= ∫ . . . ∫ ( 1
n

n

∑
i=1

ti)
2

1
τ

e−t1/τ . . .
1
τ

e−tn/τ dt1 . . . dtn

− ∫ . . . ∫ ( 1
n

n

∑
i=1

ti) 1
τ

e−t1/τ . . .
1
τ

e−tn/τ dt1 . . . dtn

2

=
τ2

n

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

• Discussed 3 methods on estimating the variance of the found 
estimators

• MC Method 
• Simulate a large number of experiments, compute the ML or LS estimates


• Simple. Often a good cross-check for variances obtained via other methods 
(e.g. RCF/graphical) if validity is in question; can become too computationally 
expensive though.
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Analytical method, MC, RCF bound  (ii)
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,-.... 
• to' 
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50 

o 
o 0.5 1.5 

Variance of ML estimators: the ReF bound 77 

2 

Fig. 6.3 A histogram of the ML es-
timate T from 1000 Monte Carlo ex-
periments with 50 observations per ex-
periment. For the Monte Carlo 'true' 
parameter T, the result of Fig. 6.2 was 
used. The sample standard deviation is 
s = 0.151. 

here holds are almost always met in practical situations (cf. [Ead71] Section 
7.4.5). In the case of equality (i.e. minimum variance) the estimator is said to be 
efficient. It can be shown that if efficient estimators exist for a given problem, 
the maximum likelihood method will find them. Furthermore it can be shown 
that ML estimators are always efficient in the large sample limit, except when 
the extent of the sample space depends on the estimated parameter. In practice, 
one often assumes efficiency and zero bias. In cases of doubt one should check 
the results with a Monte Carlo study. The -general conditions for efficiency are 
discussed in, for example, [Ead71] Section 7.4.5, [Stu91] Chapter 18. 

For the example of the exponential distribution with mean r one has from 
equation (6.5) 

o2logL =!!..- =!!..- (1- 2f) (6.17) 
or2 r2 r n r2 r 

i=1 

and objor = 0 since b = 0 (see equation (6.7)). Thus the RCF bound for the 
variance (also called the minimum variance bound, or MVB) of T is 

A 1 
V[r]:2: E[-;2(1- 2:)] 

1 
n 

(6.18) 

where we have used equation (6.7) for E[ f]. Since r2 j n is also the variance 
obtained from the exact calculation (equation (6.15)) we see that equality holds 
and f = 2::7=1 ti is an efficient estimator for the parameter T. 

For the case of more than one parameter, () = (()1, ... , Om), the correspond-
ing formula for the inverse of the covariance matrix of their estimators Vij = 
cov [Oi , OJ] is (assuming efficiency and zero bias) 

(6.19) 

Review

f(t; τ) =
1
τ

e−t/τ

http://www.pp.rhul.ac.uk/~cowan/sda/ http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

• Discussed 3 methods on estimating the variance of the found 
estimators

• RCF/graphical method 

• Very nice graphical way to obtain the variance from the likelihood or LS 
curves

9

Analytical method, MC, RCF bound  (iii)

Example of an ML estimator: an exponential distribution 73 
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Suppose that one is interested not in the mean lifetime but in the decay 
constant A = l/T. How can we estimate A? -In general, given a function a(O) of 
some parameter 0, one has 

8L = 8L 8a = 0 
80 8a 80 . (6.8) 

Thus 8L/80 = 0 implies 8L/8a = 0 at a = a(O) unless 8a/80 = O. As long as this 
is not the case, one obtains the ML estimator of a function simply by evaluating 
the function with the original ML estimator, i.e. a = a(O). The estimator for 
the decay constant is thus = l/f = n/ 2:7=1 ti. The transformation invariance 
of ML estimators is a convenient property, but an unbiased estimator does not 
necessarily remain so under transformation. As will be derived in Section lOA, 
the expectation value of is 

n 1 n E[A]=A-=--, 
n-1 Tn-1 

(6.9) 

so l/f is an unbiased estimator of l/T only in the limit of large n, even 
though f is an unbiased estimator for T for any value of n. To summarize, the 
ML estimator of a function a of a parameter () is simply a = a(O). But if 0 is 
an unbiased estimator of () (E[O] = ()) it does not necessarily follow that a(O) is 
an unbiased estimator of a(O). It can be shown, however, that the bias of ML 
estimators goes to zero in the large sample limit for essentially all practical cases. 

for bias free and efficient estimators 

Review

f(t; τ) =
1
τ

e−t/τ

Rao-Cramer-
Frechet (RCF) 
inequality

V[ ̂θ] ≥
(1 + ∂b

∂θ )
2

E [− ∂2 log ℒ
∂θ2 ]

( ̂V−1)ij
=

∂2 log ℒ
∂θi∂θj θ= ̂θ

̂σ2
̂θ = (−1/ ∂2 log ℒ

∂θ2 ) θ= ̂θ

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

• Discussed 3 methods on estimating the variance of the found 
estimators

• RCF/graphical method

10

Analytical method, MC, RCF bound  (iv)

Variance of ML estimators: graphical method 79 

By definition of B we know that log L (B) = log Lmax and that the second term 
in the expansion is zero. Using equation (6.22) and ignoring higher order terms 
gIves 

(8 - 0)2 
log L(8) = log Lmax - __ , 

20-2 e 
(6.24) 

or 

A 1 
log L(8 ± O"e) = log Lmax - "2. (6.25) 

That is, a change in the parameter 8 of one standard deviation from its ML 
estimate leads to a decrease in the log-likelihood of 1/2 from its maximum value. 

It can be shown that the log-likelihood function becomes a parabola (i.e. 
the likelihood function becomes a Gaussian curve) in the large sample limit. 
Even if log L is not parabolic, one can nevertheless adopt equation (6.25) as the 
definition of the statistical error. The interpretation of such errors is discussed 
further in Chapter 9. 

As an example of the graphical method for determining the variance of an es-
timator, consider again the examples of Sections 6.2 and 6.5 with the exponential 
distribution. Figure 6.4 shows the log-likelihood function log L( r) as a function 
of the parameter r for a Monte Carlo experiment consisting of 50 measurements. 
The standard deviation of f is estimated by changing r until log L( r) decreases 
by 1/2, giving Llf_ = 0.137, Llf+ = 0.165. In this case logL(r) is reasonably 
close to a parabola and one can approximate 0" f Ll f _ Ll f + 0.15. This 
leads to approximately the same answer as from the exact standard deviation 
r /...;n evaluated with r = f. In Chapter 9 the interval [f - Ll f _ , f + Ll f +] will 
be reinterpreted as an approximation for the 68.3% central confidence interval 
(cf. Section 9.6). 

-53 

-53.5 

-54 
0.8 1.2 1.4 1.6 

Fig. 6.4 The log-likelihood function 
logL(T). In the large sample limit, the 
widths of the intervals [i-Lli-,il and 
[i,f + Llf+l correspond to one stan-
dard deviation at. 

Likelihood

Taylor expand around maximum

Review

logℒ(θ) = logℒ( ̂θ) + [ ∂logℒ
∂θ ]

θ= ̂θ
(θ − ̂θ) +

1
2! [ ∂2logℒ

∂θ2 ]
θ= ̂θ

(θ − ̂θ)2 + . . .

logℒ( ̂θ ± ̂σ ̂θ) = logℒmax −
1
2

http://www.pp.rhul.ac.uk/~cowan/sda/

Exponential function example 
from the previous slides

100 The method of least squares 

(a) 
x2 = X2

mln + 1 
46.5 

0.8 1-----1--
············································ .. T· .. ······ ......................................... . 

46 

0.6 

45.5 ........•.......... : ......................... . LS estimate 

0.4 L-_---L"--_...l..-_--'-__ -L.l._---' 
2.5 2.6 2.7 2.8 2.9 0.4 0.6 0.8 1.2 1.4 

Fig. 7.3 (a) The X2 as a function of eo for the zero-order polynomial fit shown in Fig. 7.2. 
The horizontal lines indicate X;'in and X;'in + 1. The corresponding eo values (vertical lines) are 
the LS estimate 00 and 00 ± 0-eo' (b) The LS estimates Bo and [h for the first-order polynomial 

fit in Fig. 7.2. The tangents to the contour X2 (Bo, B1 ) = X;'in + 1 correspond to 00 ± 0-eo and 

Ol±0-81' 

(;-9
0 

yr;: = 0.30 

(;-9
1 

;0:; = 0.10 

cov[eo, e1 ] = U0 1 = -0.028, 

corresponding to a correlation coefficient of r = -0.90. As in the case of maxi-
mum likelihood, the standard deviations correspond to the tangents of the ellipse, 
and the correlation coefficient to its width and angle of inclination (see equations 
{6.31} and (6.32)). 

Since the two estimators eo and e1 have a strong negative correlation, it is 
important to include the covariance, or equivalently the correlation coefficient, 
when reporting the results of the fit. Recall from Section 1.7 that one can always 
define two new quantities, i}o and i}1, from the original eo and e1 by means of 
an orthogonal transformation such that cov[i}o, 7h] = O. However, although it is 
generally easier to deal with uncorrelated quantities, the transformed parameters 
may not have as direct an interpretation as the original ones. 

7.4 Least squares with binned data 
In the previous examples, the function relating the 'true' values). to the variable 
x was not necessarily a p.d.f. for x, but an arbitrary function. It can, however, 
be a p.d.f., or it can be proportional to one. Suppose, for example, one has n 

http://www.pp.rhul.ac.uk/~cowan/sda/

LS

χ2(θ) = χ2( ̂θ) + 1 = χ2
min + 1

Example from the  order 
polynomial fit in Fig. 7.2

0th

For the case of  linear in the parameters λ(x; θ) θ

http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/
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Analytical method, MC, RCF bound  (v)
Review

Report  as a proxy for  distributed as 


For most practical estimators: Gaussian in the large 
sample limit 


But what if  is NOT Gaussian?

̂θobs ± ̂σ ̂θ θ ± σθ g( ̂θ; θ)

g( ̂θ) →

g( ̂θ)

Interpret: repeated estimates all based on  observations of  
would be distributed according to a PDF  centered around 
some true value  and true standard deviation , which are 
estimated to be  and 

n x
g( ̂θ)

θ σ ̂θ
̂θobs ̂σ ̂θ

 Need to report confidence intervals (which can lead to asymmetric error bars)⇒

sampling PDF



Confidence Intervals

Statistical errors, confidence intervals and limits

Up to now: when discussing ‘error analysis’ we focused on estimating the 
(co)variances of estimators. This is not always adequate and other ways of 

communicating the statistical uncertainty of measurements have to be found.


✓̂obs ± �̂✓̂
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• Suppose you have  observations of a random 
variable , which can be used to evaluate an 
estimator for an unknown true parameter :


• Furthermore, suppose we know the PDF of  
denoted by 


• From , can determine  and  such that 
there are fixed probabilities  and  to observe

 or 

n
X

θ

̂θ
g( ̂θ; θ)

g( ̂θ; θ) νβ uα
β α

̂θ < νβ
̂θ > uα
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

̂θ(x1, …, xn) = ̂θobs

120 Statistical errors, confidence intervals and limits 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

Alternative (& often =) method 
of reporting the statistical 

uncertainty of a measurement

Next: lets build the CI step by step…

value obtained

Real value of  unknown, BUT for a given  one 
knows what the PDF of  would be  

θ θ
̂θ

Shows the probability density for an estimator  
for a particular value of the true parameter 

̂θ
θ
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on n observations of x would be distributed according to a p.d.f. g(O) centered 
around some true value () and true standard deviation (J' 0' which are estimated 
to be Oobs and Cr o. 

For most practical estimators, the sampling p.d.f. g(O) becomes approxi-
mately Gaussian in the large sample limit. If more than one parameter is es-
timated, then the p.d.f. will become a multidimensional Gaussian characterized 
by a covariance matrix V. Thus by estimating the standard deviation, or for 
more than one parameter the covariance matrix, one effectively summarizes all 
of the information available about how repeated estimates would be distributed. 
By using the error propagation techniques of Section 1.6, the covariance matrix 
also gives the equivalent information, at least approximately, for functions of the 
estimators. 

Although the 'standard deviation' definition of statistical error bars could in 
principle be used regardless of the form of the estimator's p.d.f. g(O), it is not, 
in fact, the conventional definition if g(O) is not Gaussian. In such cases, one 
usually reports confidence intervals as described in the next section; this can in 
general lead to asymmetric error bars. In Section 9.3 it is shown that if g(O) is 
Gaussian, then the so-called 68.3% confidence interval is the same as the interval 
covered by Oobs ± Cro. 

9.2 Classical confidence intervals (exact method) 
An alternative (and often equivalent) method of reporting the statistical error of 
a measurement is with a confidence interval, which was first developed by Ney-
man [Ney37]. Suppose as above that one has n observations of a random variable 
x which can be used to evaluate_an estimator O(Xl' ... , xn) for a parameter (), 
and that the value obtained is Oobs. Furthermore, suppose that by means of, 
say, an analytical calculation or a Monte Carlo study, one knows the p.d.f. of 0, 
g(O; ()), which contains the true value () as a parameter. That is, the real value 
of () is not known, but for a given (), one knows what the p.d.f. of 0 would be. 

Figure 9.1 shows a probability density for an estimator 0 for a particular 
value of the true parameter (). From g(O; ()) one can determine the value U Q such 
that there is a fixed probability Q' to observe 0 2: U Q , and similarly the value 
v{3 such that there is a probability (3 to observe 0 :::; v{3. The values U Q and v{3 
depend on the true value of (), and are thus determined by 

and 

j V/J(8) 
(3 = P(O:::; v{3(())) = -00 g(O;())dO = G(v{3(());()), (9.2) 

where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). 
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9.2 Classical confidence intervals (exact method) 
An alternative (and often equivalent) method of reporting the statistical error of 
a measurement is with a confidence interval, which was first developed by Ney-
man [Ney37]. Suppose as above that one has n observations of a random variable 
x which can be used to evaluate_an estimator O(Xl' ... , xn) for a parameter (), 
and that the value obtained is Oobs. Furthermore, suppose that by means of, 
say, an analytical calculation or a Monte Carlo study, one knows the p.d.f. of 0, 
g(O; ()), which contains the true value () as a parameter. That is, the real value 
of () is not known, but for a given (), one knows what the p.d.f. of 0 would be. 

Figure 9.1 shows a probability density for an estimator 0 for a particular 
value of the true parameter (). From g(O; ()) one can determine the value U Q such 
that there is a fixed probability Q' to observe 0 2: U Q , and similarly the value 
v{3 such that there is a probability (3 to observe 0 :::; v{3. The values U Q and v{3 
depend on the true value of (), and are thus determined by 

and 

j V/J(8) 
(3 = P(O:::; v{3(())) = -00 g(O;())dO = G(v{3(());()), (9.2) 

where G is the cumulative distribution corresponding to the p.d.f. g(O; ()). CDF … so  and  are the probabilities!α β

 and  depend on the true value  and are thus determined byuα uβ θ

http://www.pp.rhul.ac.uk/~cowan/sda/
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

g( ̂θ; θ)

Confidence Belt  (iv)
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

The probability for the estimator  
to be inside the belt, regardless of 
the value of 
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θ
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

g( ̂θ; θ)

Confidence Interval  (i)
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

If  and  are 
monotonically increasing 
functions of , then one 
can determine the inverse 
functions 

uα(θ) νβ(θ)

θ

(Should be the case if  is 
a good estimator for )

̂θ
θ
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then imply respectively 

Classical confidence intervals (exact method) 

iJ 2: Ua(O), 

iJ::;Vf3(O), 

a(iJ) 2: 0, 

b(iJ) ::; O. 

Equations (9.1) and (9.2) thus become 

or taken together, 

P(a(iJ) 2: 0) = a, 

P(b(iJ) ::; 0) = (3, 

P(a(iJ)::; 0::; b(iJ)) = 1- a-(3. 

121 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

If the functions a( iJ) and b( iJ) are evaluated with the value of the estimator 
actually obtained in the experiment, iJobs, then this determines two values, a 
and b, as illustrated in Fig. 9.2. The interval [a, b] is called a confidence interval 
at a confidence level or coverage probability of 1 - a - (3. The idea behind 
its construction is that the coverage probability expressed by equations (9.7), 
and hence also (9.8), holds regardless of the true value of 0, which of course is 
unknown. It should be emphasized that a and b are random values, since they 
depend on the estimator iJ, which is itself a function of the data. If the experiment 
were repeated many times, the interval [a, b] would include the true value of the 
parameter 0 in a fraction 1 - a - (3 of the experiments. 

The relationship between the interval [a, b] and its coverage probability 1 -
a - (3 can be understood from Fig. 9.2 by considering the hypothetical true value 
indicated as Otrue. If this is the true value of 0, then iJobs will intersect the solid 
segment of the vertical line between U a (Otrue) and vf3 (Otrue) with a probability of 
1 - a - (3. From the figure one can see that the interval [a, b] will cover Otrue if 
iJobs intersects this segment, and will not otherwise. 

In some situations one may only be interested in a one-sided confidence in-
terval or limit. That is, the value a represents a lower limit on the parameter 0 
such that a ::; 0 with the probability 1- a. Similarly, b represents an upper limit 
on 0 such that P(O ::; b) = 1 - (3. 

Two-sided intervals (i.e. both a and b specified) are not uniquely determined 
by the confidence level 1 - a - (3. One often chooses, for example, a = (3 = ,/2 
giving a so-called central confidence interval with probability 1 - ,. Note that a 
central confidence interval does not necessarily mean that a and b are equidistant 
from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param-
eter 0 for which a fraction a of repeated estimates iJ would be higher than the 
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from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param-
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This then implies:

If the functions  and  are evaluated with the 
value of the estimator obtained in the experiment 
( ), then this determines 2 values 

a( ̂θ) b( ̂θ)

̂θobs [a, b]

Confidence Interval  (ii)
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 
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If the functions a( iJ) and b( iJ) are evaluated with the value of the estimator 
actually obtained in the experiment, iJobs, then this determines two values, a 
and b, as illustrated in Fig. 9.2. The interval [a, b] is called a confidence interval 
at a confidence level or coverage probability of 1 - a - (3. The idea behind 
its construction is that the coverage probability expressed by equations (9.7), 
and hence also (9.8), holds regardless of the true value of 0, which of course is 
unknown. It should be emphasized that a and b are random values, since they 
depend on the estimator iJ, which is itself a function of the data. If the experiment 
were repeated many times, the interval [a, b] would include the true value of the 
parameter 0 in a fraction 1 - a - (3 of the experiments. 

The relationship between the interval [a, b] and its coverage probability 1 -
a - (3 can be understood from Fig. 9.2 by considering the hypothetical true value 
indicated as Otrue. If this is the true value of 0, then iJobs will intersect the solid 
segment of the vertical line between U a (Otrue) and vf3 (Otrue) with a probability of 
1 - a - (3. From the figure one can see that the interval [a, b] will cover Otrue if 
iJobs intersects this segment, and will not otherwise. 

In some situations one may only be interested in a one-sided confidence in-
terval or limit. That is, the value a represents a lower limit on the parameter 0 
such that a ::; 0 with the probability 1- a. Similarly, b represents an upper limit 
on 0 such that P(O ::; b) = 1 - (3. 

Two-sided intervals (i.e. both a and b specified) are not uniquely determined 
by the confidence level 1 - a - (3. One often chooses, for example, a = (3 = ,/2 
giving a so-called central confidence interval with probability 1 - ,. Note that a 
central confidence interval does not necessarily mean that a and b are equidistant 
from the estimated value iJ, but only that the probabilities a and (3 are equal. 

By construction, the value a gives the hypothetical value of the true param-
eter 0 for which a fraction a of repeated estimates iJ would be higher than the 
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Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
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one actually obtained, Bobs, as is illustrated in Fig. 9.3. Similarly, b is the value 
of () for which a fraction {3 of the estimates would be lower than Bobs. That is, 
taking eobs = ua(a) = v,6(b), equations (9.1) and (9.2) become 

(9.9) 

{3 

The previously described procedure to determine the confidence interval is thus 
equivalent to solving (9.9) for a and b, e.g. numerically. 
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9 Fig. 9.3 (a) The p.d.f. g(B; a), where 

a is the lower limit of the confidence 

b 
(b) interval. If the true parameter B were 

equal to a, the estimates 0 would be 
&reater than the one actually observed 
Bobs with a probability Q. (b) The 

0.5 p.d.f. g(O; b), where b is the upper limit 
of the confidence interval. If B were 
equal to b, B would be observed less 

2 3 4 5 than Bobs with probability {3. o o 
9 

Figure 9.3 also illustrates the relationship between a confidence interval and a 
test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis 
() == a using B as a test statistic. If we define the region e Bobs as having equal 
or less agreement with the hypothesis than the result obtained (a one-sided test), 
then the resulting P-value of the test is a. For the confidence interval, however, 
the probability a is specified first, and the value a is a random quantity depending 
on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 
and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 
level' of the test, whereas the one-sided confidence interval () a has a confidence 
level of 1 - a. That is, for a test, small a indicates a low level of confidence in 
the hypothesis () = a. For a confidence interval, small a indicates a high level of 
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indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 
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Figure 9.3 also illustrates the relationship between a confidence interval and a 
test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis 
() == a using B as a test statistic. If we define the region e Bobs as having equal 
or less agreement with the hypothesis than the result obtained (a one-sided test), 
then the resulting P-value of the test is a. For the confidence interval, however, 
the probability a is specified first, and the value a is a random quantity depending 
on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 
and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 
level' of the test, whereas the one-sided confidence interval () a has a confidence 
level of 1 - a. That is, for a test, small a indicates a low level of confidence in 
the hypothesis () = a. For a confidence interval, small a indicates a high level of 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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Figure 9.3 also illustrates the relationship between a confidence interval and a 
test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis 
() == a using B as a test statistic. If we define the region e Bobs as having equal 
or less agreement with the hypothesis than the result obtained (a one-sided test), 
then the resulting P-value of the test is a. For the confidence interval, however, 
the probability a is specified first, and the value a is a random quantity depending 
on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 
and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 
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If the experiment were repeated many times, the interval  would include 
the true value of the parameter  in a fraction  of the experiments 

[a, b]
θ 1 − α − β

http://www.pp.rhul.ac.uk/~cowan/sda/

Confidence  
Interval

http://www.pp.rhul.ac.uk/~cowan/sda/
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• The confidence interval  is 
often expressed by reporting the 
result of a measurement as


• In many cases the PDF  is 
approximatively Gaussian, so that 
an interval of  one standard 
deviation around the measured value 
corresponds to a central confidence 
interval with . 

• The 68.3% central confidence interval is 

usually adopted as the conventional 
definition for error bars even when the 
PDF of the estimator is not Gaussian

[a, b]

g( ̂θ; θ)

±1

1 − γ = 0.683
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Error bars
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Figure 12: Summary of the signal strengths measured for the di�erent production processes (ggH, VBF, VH
and top) and globally (µRun�2), compared to the global signal strength measured at 7 and 8 TeV (µRun�1) [75].
The black and orange error bars show the total and statistical uncertainties. The signal strength µRun�1 was
derived assuming the Higgs production-mode cross section based on Refs. [17, 110]. Uncertainties smaller
than 0.05 are displayed as 0.0. In the more recent theoretical predictions used in this analysis [7, 32], the
gluon–gluon fusion production-mode cross section is larger by approximately 10%. In this measurement, the
bb̄H contributions are scaled with ggH (µbbH = µggH), and the tH and tt̄H productions are measured together
(µtop = µttH+tH). Associated production with Z or W bosons is assumed to be scaled by a single signal strength
parameter (µVH = µZH = µWH).

µggH = 0.81 +0.19
�0.18 = 0.81 ± 0.16 (stat.) +0.07

�0.06 (exp.) +0.07
�0.05 (theo.)

µVBF = 2.0 +0.6
�0.5 = 2.0 ± 0.5 (stat.) +0.3

�0.2 (exp.) +0.3
�0.2 (theo.)

µVH = 0.7 +0.9
�0.8 = 0.7 ± 0.8 (stat.) +0.2

�0.2 (exp.) +0.2
�0.1 (theo.)

µtop = 0.5 +0.6
�0.6 = 0.5 +0.6

�0.5 (stat.) +0.1
�0.1 (exp.) +0.1

�0.0 (theo.)

For Higgs boson production via VH the signal strength is assumed to be scaled by a single parameter
(i.e. µVH = µZH = µWH). The bb̄H contributions are scaled with ggH (i.e. µbbH = µggH), and the tH
and tt̄H productions are measured together rather than separately (i.e. µtop = µttH+tH).

The ggH signal strength is 1 � below the Standard Model prediction, while the VBF signal strength
is 2.2 � above the prediction. The expected and observed significances Z0 of VBF production are
reported in Table 7: the significance of the observed VBF signal is close to 5 �.

Since no significant evidence is observed for VH and top-associated Higgs boson production, upper
limits at 95% CL are reported for their signal strengths, as shown in Table 8 and Figure 13. The accuracy
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Gaussian Confidence Intervals

Let’s apply what we’ve built up to the Gaussian limit
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• For a normal RV , its CDF has no closed form


• However, can solve for probabilities numerically using a function 

X ∼ 𝒩(μ, σ2)

Φ

First recall how we compute probabilities 

with Normal RVs   (Lecture 3, s14)

CDF of the Standard 
(unit) Normal, Z

Expectation:  E[Z] = μ = 0
Variance:    Var[Z] = σ2 = 1

F(x) = Φ ( x − μ
σ )

P(X ≤ x) = F(x) = ∫
x

−∞

1

σ 2π
e− (y − μ)2

2σ2 dy

Review

Standard Normal Table 
Note: An entry in the table is the area under the curve to the left of z, P(Z ≤ z) = F(z) 

 
 
 
 
 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 
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• Simple and very important application: 

•  is Gaussian with mean  and standard deviation 


• Cumulative distribution of  is then


• Suppose that the standard deviation is known and that the experiment 
resulted in an estimate . Then we can determine the confidence interval

 by solving

̂θ θ σ ̂θ

̂θ

̂θobs
[a, b]
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confidence that the interval () 2: a includes the true parameter. To avoid confusion 
we will use the term P-value or (observed) significance level for goodness-of-fit 
tests, and reserve the term confidence level to mean the coverage probability of 
a confidence interval. 

The confidence interval [a, b] is often expressed by reporting the result of 
a measurement as where 0 is the estimated value, and c = 0 - a and 
d = b - 0 are usually displayed as error bars. In many cases the p.d.f. g(O; ()) 
is approximately Gaussian, so that an interval of plus or minus one standard 
deviation around the measured value corresponds to a central confidence interval 
with 1 - I = 0.683 (see Section 9.3). The 68.3% central confidence interval is 
usually adopted as the conventional definition for error bars even when the p.d.f. 
of the estimator is not Gaussian. 

If, for example, the result of an experiment is reported as = it 
is meant that if one were to construct the interval [0 - c, 0 + d] according to the 
prescription described above in a large number of similar experiments with the 
same number of measurements per experiment, then the interval would include 
the true value () in 1 - Q' - {3 of the cases. It does not mean that the probability 
(in the sense of relative frequency) that the true value of () is in the fixed interval 
[5.54,6.11] is 1 - Q' - {3. In the frequency interpretation, the true parameter () 
is not a random variable and is assumed to not fluctuate from experiment to 
experiment. In this sense the probability that () is in [5.54,6.11] is either 0 or 1, 
but we do not know which. The interval itself, however, is subject to fluctuations 
since it is constructed from the data. 

A difficulty in constructing confidence intervals is that the p.d.f. of the estima-
tor g(O; ()), or equivalently the cumulative distribution G(O; ()), must be known. 
An example is given in 10.4, where the p.d.f. for the estimator of the 
mean of an exponential distribution is derived, and from this a confidence inter-
val for is determined. In many practical applications, estimators are Gaussian 
distributed (at least approximately). In this case the confidence interval can be 
determined easily; this is treated in detail in the next section. Even in the case 
of a non-Gaussian estimator, however, a simple approximate technique can be 
applied using the likelihood function; this is described in Section 9.6. 

9.3 Confidence interval for a Gaussian distributed estimator 
A simple and very important application of a confidence interval is when the 
distribution of 0 is Gaussian with mean () and standard deviation (Y 8. That is, 
the cumulative distribution of 0 is 

18 1 (_(Of _ ())2) 
G( (); () , (Yo) = Po exp 2 d() . 

-00 (Yo o 
(9.10) 

This is a commonly occurring situation since, according to the central limit 
theorem, any estimator that is a linear function of a sum of random variables 
becomes Gaussian in the large sample limit. We will see that for this case, the 
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Fig. 9.4 The standard Gaussian p.d.f. <p(x) showing the relationship between the quantiles 
and the confidence level for (a) a central confidence interval and (b) a one-sided confidence 

interval. 

somewhat complicated procedure explained in the previous section results in a 
simple prescription for determining the confidence interval. 

Suppose that the standard deviation (J'§ is known, and that the experiment 
has resulted in an estimate Bobs. According to equations (9.9), the confidence 
interval [a, b] is determined by solving the equations 

(9.11) 

(3 

for a and b, where G has been expressed using the cumulative distribution of the 
standard Gaussian 4> (2.26) (see also (2.27)). This gives 

a = Bobs - (J'§4>-1(1- a), 
A -1 b=()obs+(J'§4> (1-(3). 

(9.12) 

Here 4>-1 is the inverse function of 4>, i.e. the quantile of the standard Gaussian, 
and in order to make the two equations symmetric we have used 4>-1 ((3) = 
_4>-1(1 - (3). 

The quantiles 4>-1(1_ a) and 4>-1 (1- (3) represent how far away the interval 
limits a and b are located with respect to the estimate Bobs in units of the standard 
deviation (J'§. The relationship between the quantiles of the standard Gaussian 
distribution and the confidence level is illustrated in Fig. 9.4( a) for central and 
Fig. 9.4(b) for one-sided confidence intervals. 

standard normal CDF
Φ = G( ̂μ ; μ = 0, σ = 1)

Commonly occurring 
situation, since according 
to the CLT, any estimator 
that is a linear function of 
a sum of RVs becomes 
Gaussian in the large 
sample limit
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• This results in 
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i.e., the inverse function 
of  equals the quantile 

of the std. Gaussian
Φ

The relationship between the quantiles of the std. Gaussian distribution and the CI

Central CI One-sided CI

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Consider a central confidence interval with 


• The confidence level ( ) is often chosen, such that 
 is a small integer (e.g., 1,2,3)


• Similarly, one-sided intervals are often small integer values


• Sometimes one also prefers to use a round value for  or 

α = β = γ/2
1 − γ

Φ−1(1 − γ/2)

1 − α 1 − γ
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Consider a central confidence interval with a =.(3 = ,/2. The confidence level 
1-, is often chosen such that the quantile is a small integer, e.g. cI>-1(1-,/2) = 
1,2,3, .... Similarly, for one-sided intervals (limits) one often chooses a small 
integer for cI>-1 (1 - a). Commonly used values for both central and one-sided 
intervals are shown in Table 9.1. Alternatively one can choose a round number 
for the confidence level instead of for the quantile. Commonly used values are 
shown in Table 9.2. Other possible values can be obtained from [Bra92, Fr079 , 
Dud88] or from computer routines (e.g. the routine GAUSIN in [CER97]). 

Table 9.1 The values of the confidence level for different values of the quantile of the standard 
Gaussian for central intervals (left) the quantile (1-,/2) and confidence level 1-,; 
for one-sided intervals (right) the quantile - Q) and confidence level 1- Q. 

cI> (1 - ,/2) 
1 
2 
3 

0.6827 
0.9544 
0.9973 

cI> (1-0') 
1 
2 
3 

1 - a 
0.8413 
0.9772 
0.9987 

Table 9.2 The values of the quantile of the standard Gaussian for different values 
of the confidence level: for central intervals (left) the confidence level 1 - , and the quan-
tile (1 - ,/2); for one-sided intervals (right) the confidence level I - Q and the quantile 

(I - Q). 

0.90 
0.95 
0.99 

-1.645 
1.960 
2.576 

1 - a 
0.90 
0.95 
0.99 

1.282 
1.645 
2.326 

For the conventional 68.3% central confidence interval one has a = {3 = ,/2, 
with cI>-1 (1-, /2) = 1, i.e. a' 1 (J' error bar'. This results in the simple prescription 

(9.13) 

Thus for the case of a Gaussian distributed estimator, the 68.3% central confi-
dence interval is given by the estimated value plus or minus one standard de-
viation. The final result of the measurement of () is then simply reported as 
Oobs±(J'o· 

If the standard deviation (J'o is not known a priori but rather is estimated 
from the data, then the situation is in principle somewhat more complicated. 
If, for example, the estimated standard deviation (;-0 had been used instead of 
(J'o' then it would not have been so simple to relate the cumulative distribution 
G(e; (), (;-g) to cI>, the cumulative distribution of the standard Gaussian, since (;-{} 
depends in general on O. In practice, however, the recipe given above can still 
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from the data, then the situation is in principle somewhat more complicated. 
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(J'o' then it would not have been so simple to relate the cumulative distribution 
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depends in general on O. In practice, however, the recipe given above can still 

• For conventional 
68.3% CI one has
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• All of this is valid, if  is known


• Often not the case, but in 
large  limit can use 

σ ̂θ

n
σ ̂θ → ̂σ ̂θ

CI for Gaussian distributed estimators   (iii)



Let’s look at cases where  does not workσ ̂θ → ̂σ ̂θ

Poisson Confidence Intervals
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• The other common case: Outcome of a measurement is a 
Poisson variable 


• Recall that the probability to observe  events is 


• Expectation value:  

• Maximum Likelihood estimator: 


• You will have some issues directly applying previous prescription:    
only integer values for  are possible, i.e. you cannot find  for    
arbitrary values of ,  such that:

n (n = 0,1,2, . . . )

n
E[n] = ν

̂ν = n

̂ν ̂ν
α β

35

Assume: single measurement and 
want to construct CI for ν

CI for Poisson distributed estimators   (i)

̂νobs = nobs

  with   


  with   

uα P ( ̂ν ≥ uα(ν)) = α

νβ P ( ̂ν ≤ νβ(ν)) = β

f(n; ν) =
νn

n!
e−ν
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• However, the confidence interval  can still be determined using:


• For an estimate  and given probabilities  and , the following equations can be 
solved numerically for  and :

[a, b]

̂ν = nobs α β
a b

36
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be applied using the estimate U e instead of U e, as long as U e is a sufficiently 
good approximation of the true standard deviation, e.g. for a large enough data 
sample. For the small sample case where 0 represents the mean of n Gaussian 
random variables of unknown standard deviation, the confidence interval can 
be determined by relating the cumulative distribution G(O; (), ue) to Student's t 
distribution (see e.g. [Fro79], [Dud88] Section 10.2). 

Exact determination of confidence intervals becomes more difficult if the p.d.f. 
of the estimator g(O; ()) is not Gaussian, or worse, if it is not known analytically. 
For a non-Gaussian p.d.f. it is sometimes possible to transform the parameter 
() -+ 7J(()) such that the p.d.f. for the estimator ij is approximately Gaussian. The 
confidence interval for the transformed parameter 7J can then be converted back 
into an interval for (). An example of this technique is given in Section 9.5. 

9.4 Confidence interval for the mean of the Poisson distribu-
tion 

Along with the Gaussian distributed estimator, another commonly occurring case 
is where the outcome of a measurement is a Poisson variable n (n = 0, 1,2, ... ). 
Recall from (2.9) that the probability to observe n is 

(9.14) 

and that the parameter v is equal to the expectation value E[n]. The maximum 
likelihood estimator for v can easily be found to be v = n. Suppose that a single 
measurement has resulted in the value Vobs = nobs, and that from this we would 
like to construct a confidence interval for the mean v. 

For the case of a discrete variable, the procedure for determining the confi-
dence interval described in Section 9.2 cannot be directly applied. This is because 
the functions ua(()) and v{3(fJ), which determine the confidence belt, do not exist 
for all values of the parameter (). For the Poisson case, for example, we would 
need to find ua(v) and v{3(v) such that P(v ua(v)) = Q and P(v:::; v{3(v)) = {3 
for all values of the parameter v. But if Q and (3 are fixed, then because [) only 
takes on discrete values, these equations hold in general only for particular values 
of v. 

A confidence interval [a, b] can still be determined, however, by using equa-
tions (9.9). For the case of a discrete random variable and a parameter v these 
become 

(9.15) 

and in particular for a Poisson variable one has 
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00 nob.- 1 nob.- 1 n a I: f(n;a) = 1- I: f(n;a) = 1- I: ;e-a
, n. 

n=nobs n=O n=O 
(9.16) 

nob. 

(3 L f(n; b) 
n=O 

For an estimate v = nobs and given probabilities a and (3, these equations 
can be solved numerically for a and b. Here one can use the following relation 
between the Poisson and X2 distributions, 

nI:0bS 

v n 
-v -e n! 

n=O 100 fx.2 (z; nd = 2(nobs + 1)) dz 
2£1 

(9.17) 

where fx.2 is the X2 p.d.f. for nd degrees of freedom and Fx.2 is the corresponding 
cumulative distribution. One then has 

a 1 F- 1(. - 2 ) 2" x.2 a, nd - nobs, 
(9.18) 

b 

Quantiles of the X2 distribu_tion can be obtained from standard tables (e.g. 
in [Bra92]) or from computer routines such as CHISIN in [CER97]. Some values 
for nobs = 0, ... ,10 are shown in Table 9.3. 

Note that the lower limit a cannot be determined ifnobs = O. Equations (9.15) 
say that if v = a (v = b), then the probability is a ((3) to observe a value greater 
(less) than or equal to the one actually observed. Because the case of equality, 
v = Vobs, is included in the inequalities (9.15), one obtains a conservatively large 
confidence interval, i.e. 

> I-a, 

P(v b) > 1 - (3, 

> l-a-(3. 

(9.19) 

An important special case is when the observed number nobs is zero, and one 
is interested in establishing an upper limit b. Equation (9.15) becomes 

o bn -b 

L e -b (3= ---=e, n! 
n=O 

(9.20) 
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one actually obtained, Bobs, as is illustrated in Fig. 9.3. Similarly, b is the value 
of () for which a fraction {3 of the estimates would be lower than Bobs. That is, 
taking eobs = ua(a) = v,6(b), equations (9.1) and (9.2) become 

(9.9) 

{3 

The previously described procedure to determine the confidence interval is thus 
equivalent to solving (9.9) for a and b, e.g. numerically. 

(a) 

0.5 

o o 2 3 4 5 
9 Fig. 9.3 (a) The p.d.f. g(B; a), where 

a is the lower limit of the confidence 

b 
(b) interval. If the true parameter B were 

equal to a, the estimates 0 would be 
&reater than the one actually observed 
Bobs with a probability Q. (b) The 

0.5 p.d.f. g(O; b), where b is the upper limit 
of the confidence interval. If B were 
equal to b, B would be observed less 

2 3 4 5 than Bobs with probability {3. o o 
9 

Figure 9.3 also illustrates the relationship between a confidence interval and a 
test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis 
() == a using B as a test statistic. If we define the region e Bobs as having equal 
or less agreement with the hypothesis than the result obtained (a one-sided test), 
then the resulting P-value of the test is a. For the confidence interval, however, 
the probability a is specified first, and the value a is a random quantity depending 
on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 
and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 
level' of the test, whereas the one-sided confidence interval () a has a confidence 
level of 1 - a. That is, for a test, small a indicates a low level of confidence in 
the hypothesis () = a. For a confidence interval, small a indicates a high level of 
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then the resulting P-value of the test is a. For the confidence interval, however, 
the probability a is specified first, and the value a is a random quantity depending 
on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 
and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 
level' of the test, whereas the one-sided confidence interval () a has a confidence 
level of 1 - a. That is, for a test, small a indicates a low level of confidence in 
the hypothesis () = a. For a confidence interval, small a indicates a high level of 
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one actually obtained, Bobs, as is illustrated in Fig. 9.3. Similarly, b is the value 
of () for which a fraction {3 of the estimates would be lower than Bobs. That is, 
taking eobs = ua(a) = v,6(b), equations (9.1) and (9.2) become 

(9.9) 

{3 

The previously described procedure to determine the confidence interval is thus 
equivalent to solving (9.9) for a and b, e.g. numerically. 
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Bobs with a probability Q. (b) The 
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test of goodness-of-fit, cf. Section 4.5. For example, we could test the hypothesis 
() == a using B as a test statistic. If we define the region e Bobs as having equal 
or less agreement with the hypothesis than the result obtained (a one-sided test), 
then the resulting P-value of the test is a. For the confidence interval, however, 
the probability a is specified first, and the value a is a random quantity depending 
on the data. For a goodness-of-fit test, the hypothesis, here () = a, is specified 
and the P-value is treated as a random variable. 

Note that one sometimes calls the P-value, here equal to a, the 'confidence 
level' of the test, whereas the one-sided confidence interval () a has a confidence 
level of 1 - a. That is, for a test, small a indicates a low level of confidence in 
the hypothesis () = a. For a confidence interval, small a indicates a high level of 

Next use the 
following relation 
between the 
Poisson and  
distributions… 

χ 2
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• There exists a useful relation between the Poisson and  distributions:


• Here  is the  distribution with  degrees of freedom and  is the 
corresponding cumulative distribution.


• Our two equations thus become

χ2

fχ2 χ2 nd Fχ2
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00 nob.- 1 nob.- 1 n a I: f(n;a) = 1- I: f(n;a) = 1- I: ;e-a
, n. 

n=nobs n=O n=O 
(9.16) 

nob. 

(3 L f(n; b) 
n=O 

For an estimate v = nobs and given probabilities a and (3, these equations 
can be solved numerically for a and b. Here one can use the following relation 
between the Poisson and X2 distributions, 

nI:0bS 

v n 
-v -e n! 

n=O 100 fx.2 (z; nd = 2(nobs + 1)) dz 
2£1 

(9.17) 

where fx.2 is the X2 p.d.f. for nd degrees of freedom and Fx.2 is the corresponding 
cumulative distribution. One then has 

a 1 F- 1(. - 2 ) 2" x.2 a, nd - nobs, 
(9.18) 

b 

Quantiles of the X2 distribu_tion can be obtained from standard tables (e.g. 
in [Bra92]) or from computer routines such as CHISIN in [CER97]. Some values 
for nobs = 0, ... ,10 are shown in Table 9.3. 

Note that the lower limit a cannot be determined ifnobs = O. Equations (9.15) 
say that if v = a (v = b), then the probability is a ((3) to observe a value greater 
(less) than or equal to the one actually observed. Because the case of equality, 
v = Vobs, is included in the inequalities (9.15), one obtains a conservatively large 
confidence interval, i.e. 

> I-a, 

P(v b) > 1 - (3, 

> l-a-(3. 

(9.19) 

An important special case is when the observed number nobs is zero, and one 
is interested in establishing an upper limit b. Equation (9.15) becomes 

o bn -b 

L e -b (3= ---=e, n! 
n=O 

(9.20) 

Confidence interval for the mean of the Poisson distribution 127 

00 nob.- 1 nob.- 1 n a I: f(n;a) = 1- I: f(n;a) = 1- I: ;e-a
, n. 

n=nobs n=O n=O 
(9.16) 

nob. 

(3 L f(n; b) 
n=O 

For an estimate v = nobs and given probabilities a and (3, these equations 
can be solved numerically for a and b. Here one can use the following relation 
between the Poisson and X2 distributions, 

nI:0bS 

v n 
-v -e n! 

n=O 100 fx.2 (z; nd = 2(nobs + 1)) dz 
2£1 

(9.17) 

where fx.2 is the X2 p.d.f. for nd degrees of freedom and Fx.2 is the corresponding 
cumulative distribution. One then has 

a 1 F- 1(. - 2 ) 2" x.2 a, nd - nobs, 
(9.18) 

b 

Quantiles of the X2 distribu_tion can be obtained from standard tables (e.g. 
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Note that the lower limit a cannot be determined ifnobs = O. Equations (9.15) 
say that if v = a (v = b), then the probability is a ((3) to observe a value greater 
(less) than or equal to the one actually observed. Because the case of equality, 
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An important special case is when the observed number nobs is zero, and one 
is interested in establishing an upper limit b. Equation (9.15) becomes 

o bn -b 

L e -b (3= ---=e, n! 
n=O 

(9.20) 
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• Example values for Poisson lower and upper limits for  observed events:nobs
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Table 9.3 Poisson lower and upper limits for nobs observed events. 

lower limit a upper limit b 
nobs a = 0.1 a = 0.05 a = 0.01 ,13 = 0.1 ,13 = 0.05 ,13 = 0.01 

0 - - - 2.30 3.00 4.61 
1 0.105 0.051 0.010 3.89 4.74 6.64 
2 0.532 0.355 0.149 5.32 6.30 8.41 
3 1.10 0.818 0.436 6.68 7.75 10.04 
4 1.74 1.37 0.823 7.99 9.15 11.60 
5 2.43 1.97 1.28 9.27 10.51 13.11 
6 3.15 2.61 1.79 10.53 11.84 14.57 
7 3.89 3.29 2.33 11.77 13.15 16.00 
8 4.66 3.98 2.91 12.99 14.43 17.40 
9 5.43 4.70 3.51 14.21 15.71 18.78 
10 6.22 5.43 4.13 15.41 16.96 20.14 

or b = -log,B. For the upper limit at a confidence level of 1 - ,13 = 95% one 
has b = -log(0.05) = 2.996:::::::: 3. Thus if the number of occurrences of some rare 
event is treated as a Poisson variable with mean v, and one looks for events of 
this type and finds none, then the 95% upper limit on the mean is 3. That is, if 
the mean were in fact v = 3, then the probability to observe zero would be 5%. 

9.5 Confidence interval for correlation coefficient, transforma-
tion of parameters 

In many situations one can assume that the p.d.f. for an estimator is Gaussian, 
and the results of Section 9.3 can then be used to obtain a confidence interval. As 
an example where this may not be the case, consider the correlation coefficient 
p of two continuous random variables x and y distributed according to a two-
dimensional Gaussian p.d.f. f(x, y) (equation (2.30)). Suppose we have a sample 
of n independent observations of x and y, and we would like to determine a 
confidence interval for p based on the estimator 1', cf. equation (5.12), 

l' = 1/2' (2:7:=1 (Xj - x)2 . (Yk _]])2) 
(9.21) 

The p.d.f. g(1'; p, n) has a rather complicated form; it is given, for example, 
in [Mui82] p. 151. A graph is shown in Fig. 9.5 for a sample of size n = 20 for 
several values of the true correlation coefficient p. One can see that g(1'; p, n) is 
asymmetric and that the degree of asymmetry depends on p. It can be shown 
that g(1'; p, n) approaches a Gaussian in the large sample limit, but for this 
approximation to be valid, one requires a fairly large sample. (At least n :::: 500 
is recommended [Bra92].) For smaller samples such as in Fig. 9.5, one cannot 
rely on the Gaussian approximation for g(1'; p, n), and thus one cannot use (9.12) 
to determine the confidence interval. 

Quantiles  of the  can be obtained from standard tablesF−1
χ2 χ2
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Now look at the case 
where you have no 
observed events, but 
still want to set an 
upper limit 
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• Very important special case:


• For the upper limit of a confidence level of  one has                                                 


• Thus if the number of occurrences of some rare event is treated as a Poisson variable with mean , 
and one looks for events of this type and finds none, then the 95% upper limit on the mean is 3.


• That is, if the mean were in fact , the probability of observing zero would be 5%

1 − β = 95 % b = − log(0.05) ≊ 3
ν

ν = 3
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Poisson upper limits for nobs = 0
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in [Bra92]) or from computer routines such as CHISIN in [CER97]. Some values 
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v = Vobs, is included in the inequalities (9.15), one obtains a conservatively large 
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P(v b) > 1 - (3, 

> l-a-(3. 
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An important special case is when the observed number nobs is zero, and one 
is interested in establishing an upper limit b. Equation (9.15) becomes 

o bn -b 

L e -b (3= ---=e, n! 
n=O 

(9.20) 

Confidence interval for the mean of the Poisson distribution 127 

00 nob.- 1 nob.- 1 n a I: f(n;a) = 1- I: f(n;a) = 1- I: ;e-a
, n. 

n=nobs n=O n=O 
(9.16) 

nob. 

(3 L f(n; b) 
n=O 

For an estimate v = nobs and given probabilities a and (3, these equations 
can be solved numerically for a and b. Here one can use the following relation 
between the Poisson and X2 distributions, 

nI:0bS 

v n 
-v -e n! 

n=O 100 fx.2 (z; nd = 2(nobs + 1)) dz 
2£1 

(9.17) 

where fx.2 is the X2 p.d.f. for nd degrees of freedom and Fx.2 is the corresponding 
cumulative distribution. One then has 
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(9.18) 
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Quantiles of the X2 distribu_tion can be obtained from standard tables (e.g. 
in [Bra92]) or from computer routines such as CHISIN in [CER97]. Some values 
for nobs = 0, ... ,10 are shown in Table 9.3. 

Note that the lower limit a cannot be determined ifnobs = O. Equations (9.15) 
say that if v = a (v = b), then the probability is a ((3) to observe a value greater 
(less) than or equal to the one actually observed. Because the case of equality, 
v = Vobs, is included in the inequalities (9.15), one obtains a conservatively large 
confidence interval, i.e. 

> I-a, 

P(v b) > 1 - (3, 

> l-a-(3. 

(9.19) 

An important special case is when the observed number nobs is zero, and one 
is interested in establishing an upper limit b. Equation (9.15) becomes 

o bn -b 

L e -b (3= ---=e, n! 
n=O 

(9.20) 

• Note that the lower limit  cannot be determined if .


• Inverse function does not exist! 


‣ By construction  is always equal to 1 for any 

a nobs = 0

α a
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Table 9.3 Poisson lower and upper limits for nobs observed events. 

lower limit a upper limit b 
nobs a = 0.1 a = 0.05 a = 0.01 ,13 = 0.1 ,13 = 0.05 ,13 = 0.01 

0 - - - 2.30 3.00 4.61 
1 0.105 0.051 0.010 3.89 4.74 6.64 
2 0.532 0.355 0.149 5.32 6.30 8.41 
3 1.10 0.818 0.436 6.68 7.75 10.04 
4 1.74 1.37 0.823 7.99 9.15 11.60 
5 2.43 1.97 1.28 9.27 10.51 13.11 
6 3.15 2.61 1.79 10.53 11.84 14.57 
7 3.89 3.29 2.33 11.77 13.15 16.00 
8 4.66 3.98 2.91 12.99 14.43 17.40 
9 5.43 4.70 3.51 14.21 15.71 18.78 
10 6.22 5.43 4.13 15.41 16.96 20.14 

or b = -log,B. For the upper limit at a confidence level of 1 - ,13 = 95% one 
has b = -log(0.05) = 2.996:::::::: 3. Thus if the number of occurrences of some rare 
event is treated as a Poisson variable with mean v, and one looks for events of 
this type and finds none, then the 95% upper limit on the mean is 3. That is, if 
the mean were in fact v = 3, then the probability to observe zero would be 5%. 

9.5 Confidence interval for correlation coefficient, transforma-
tion of parameters 

In many situations one can assume that the p.d.f. for an estimator is Gaussian, 
and the results of Section 9.3 can then be used to obtain a confidence interval. As 
an example where this may not be the case, consider the correlation coefficient 
p of two continuous random variables x and y distributed according to a two-
dimensional Gaussian p.d.f. f(x, y) (equation (2.30)). Suppose we have a sample 
of n independent observations of x and y, and we would like to determine a 
confidence interval for p based on the estimator 1', cf. equation (5.12), 

l' = 1/2' (2:7:=1 (Xj - x)2 . (Yk _]])2) 
(9.21) 

The p.d.f. g(1'; p, n) has a rather complicated form; it is given, for example, 
in [Mui82] p. 151. A graph is shown in Fig. 9.5 for a sample of size n = 20 for 
several values of the true correlation coefficient p. One can see that g(1'; p, n) is 
asymmetric and that the degree of asymmetry depends on p. It can be shown 
that g(1'; p, n) approaches a Gaussian in the large sample limit, but for this 
approximation to be valid, one requires a fairly large sample. (At least n :::: 500 
is recommended [Bra92].) For smaller samples such as in Fig. 9.5, one cannot 
rely on the Gaussian approximation for g(1'; p, n), and thus one cannot use (9.12) 
to determine the confidence interval. 

& one is interested in establishing an upper limit b
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…or b = − log β
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and surprisingly hard to break
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Recall the Method of LS  (L05,S34-39)

g(y1, . . . , yN; λ1, . . . , λN, σ2
1 , . . . , σ2

N) =
N

∏
i=1

1

2πσ2
i

exp ( −(yi − λ(xi; θ))2

2σ2
i )

log ℒ(θ) = −
1
2

N

∑
i=1

(yi − λ(xi; θ))2

σ2
i

Take the log (and drop 
additive terms that do not 
depend on the parameters)

χ2(θ) =
N

∑
i=1

(yi − λ(xi; θ))2

σ2
i

Maximize by finding the values 
of the parameters  that 
minimize 

θ
χ 2(θ)
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Joint PDF is the product of  GaussiansN

96 The method of least squares 
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Fig. 7.1 Ingredients of the least 
squares problem: N values Yl,···, YN 
are measured with errors 0"1,···,0" N 
at the values of x given without er-
ror by Xl, ... ,X N. The true value Ai 
of Y. is assumed to be given by a func-
tion Ai = A(Xii6). The value of 6 is 
adjusted to minimize the value of X2 

given by equation (7.3). 

namely the quadratic sum of the differences between measured and hypothe-
sized values, weighted by the inverse of the variances. This is the basis of the 
method of least squares (LS), and is used to define the procedure even in cases 
where the individual measurements Yi are not Gaussian, but as long as they are 
independent. 

If the measurements are not independent but described by an N-dimensional 
Gaussian p.d.f. with known covariance matrix V but unknown mean values, the 
corresponding log-likelihood function is obtained from the logarithm of the joint 
p.d.f. given by equation (2.28), 

1 N 
log L(8) = -"2 L (Yi - -\(Xi; 8))(V- 1 )ij(Yj - -\(Xj; 8)), (7.4) 

i,j=l 

where additive terms not depending on the parameters have been dropped. This 
is maximized by minimizing the quantity 

N 

X2 (8) = L (Yi - -\(Xi; 8))(V- 1 )ij(Yj - -\(Xj; 8)), (7.5) 
i,j=l 

which reduces to equation (7.3) if the covariance matrix (and hence its inverse) 
are diagonal. 

The parameters that minimize the X2 are called the LS estimators, e1 , ... , em. 
As will be discussed in Section 7.5, the resulting minimum X2 follows under 
certain circumstances the X2 distribution, as defined in Section 2.7. Because of 
this the quantity defined by equations (7.3) or (7.5) is often called X2, even in 
more general circumstances where its minimum value is not distributed according 
to the X2 p.d.f. 

http://www.pp.rhul.ac.uk/~cowan/sda/
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log ℒ(θ) = −
1
2

χ2(θ)

ℒ(θ) = exp (−
χ2(θ)

2 )
or

http://www.pp.rhul.ac.uk/~cowan/sda/


Modern Methods of Data Analysis

• Even in the case of a non-Gaussian estimator, the confidence intervals can 
be determined with a simple approximate technique


• This makes use of the likelihood function or equivalently with the  function where 
one has the relation (see last slide)


• Let’s first consider a ML estimator  for a parameter  in the large sample 
limit:


• The PDF  does become Gaussian centered around the true value  with a 
standard deviation of 

χ2

̂θ θ

g( ̂θ; θ) θ
σ ̂θ
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for p simply by using the inverse of the transformation (9.22), i.e. A = tanh a 
:ind B = tanh b. 

Consider for example a sample of size n = 20 for which one has obtained 
the estimate l' = 0.5. From equation (5.17) the standard deviation of l' can 
be estimated as Cr r = (1 - 1'2) / Vn = 0.168. If one were to make the incorrect 
approximation that l' is Gaussian distributed for such a small sample, this would 
lead to a 68.3% central confidence interval for p of [0.332, 0.668]' or [0.067,0.933] 
at a confidence level of 99%. Thus since the sample correlation coefficient l' is 
almost three times the standard error Crr , one might be led to the incorrect 
conclusion that there is significant evidence for a non-zero value of p, i.e. a '3 cr 
effect'. By using the z-transformation, however, one obtains z = 0.549 and Crz = 
0.243. This corresponds to a 99% central confidence interval of [-0.075, 1.174] 
for (, and [-0.075,0.826] for p. Thus the 99% central confidence interval includes 
zero. 

Recall that the lower limit of the confidence interval is equal to the hypothet-
ical value of the true parameter such that l' would be observed higher than the 
one actually observed with the probability Q. One can ask, for example, what 
the confidence level would be for a lower limit of zero. If we had assumed that 
g(1'; p, n) was Gaussian, the corresponding probability would be 0.14%. By using 
the z-transformation, however, the confidence level for a limit of zero is 2.3%, 
i.e. if p were zero one would obtain l' greater than or equal to the one observed, 
l' = 0.5, with a probability of 2.3%. The actual evidence for a non-zero corre-
lation is therefore not nearly as strong as one would have concluded by simply 
using the standard error Crr with the assumption that l' is Gaussian. 

9.6 Confidence intervals using the likelihood function or X2 

Even in the case of a non-Gaussian estimator, the confidence interval can be 
determined with a simple approximate technique which makes use of the likeli-
hood function or equivalently the X2 function where one has L = exp( _X2 /2). 
Consider first a maximum likelihood estimator fJ for a parameter B in the large 
sample limit. In this limit it can be shown ([Stu91] Chapter 18) that the p.d.f. 
g(O; B) becomes Gaussian, 

A 1 (-(fJ _ B)2) 
g(B;B) = M exp 2 2 ' 

cr e 
() 

(9.26) 

centered about the true value of the parameter B and with a standard deviation 
cro· 

One can also show that in the large sample limit the likelihood function itself 
becomes Gaussian in form centered about the ML estimate fJ, 

(
-(B - 8)2) L(B) = Lmax exp 2 . 2cr. 

() 

(9.27) 

ℒ(θ) = exp (−
χ2(θ)

2 )
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• One can also show that in the large sample limit, the likelihood 
function becomes Gaussian in form centered about the ML 
estimate


• As discussed in recap, RCF inequality becomes an equality in the large 
sample limit and one can obtain the standard deviation via

43

Large sample limit
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one actually observed with the probability Q. One can ask, for example, what 
the confidence level would be for a lower limit of zero. If we had assumed that 
g(1'; p, n) was Gaussian, the corresponding probability would be 0.14%. By using 
the z-transformation, however, the confidence level for a limit of zero is 2.3%, 
i.e. if p were zero one would obtain l' greater than or equal to the one observed, 
l' = 0.5, with a probability of 2.3%. The actual evidence for a non-zero corre-
lation is therefore not nearly as strong as one would have concluded by simply 
using the standard error Crr with the assumption that l' is Gaussian. 

9.6 Confidence intervals using the likelihood function or X2 

Even in the case of a non-Gaussian estimator, the confidence interval can be 
determined with a simple approximate technique which makes use of the likeli-
hood function or equivalently the X2 function where one has L = exp( _X2 /2). 
Consider first a maximum likelihood estimator fJ for a parameter B in the large 
sample limit. In this limit it can be shown ([Stu91] Chapter 18) that the p.d.f. 
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From the ReF inequality (6.16), which for an ML estimator in the large sample 
limit becomes an equality, one obtains that (To in the likelihood function (9.27) is 
the same as in the p.d.f. (9.26). This has already been encountered in Section 6.7, 
equation (6.24), where the likelihood function was used to estimate the variance 
of an estimator B. This led to a simple prescription for estimating (To' since by 
changing the parameter () by N standard deviations, the log-likelihood function 
decreases by N 2 /2 from its maximum value, 

(9.28) 

From the results of the previous section, however, we know that for a Gaussian 
distributed estimator e, the 68.3% central confidence interval can be constructed 
from the estimator and its estimated standard deviation (j 0 as [a, b] = [e - 0-B' e + 
0-0] (or more generally according to (9.12) for a confidence level of 1 - ,). The 
68.3% central confidence interval is thus given by the values of () at which the log-
likelihood function decreases by 1/2 from its maximum value. (This is assuming, 
of course, that B is the ML estimator and thus corresponds to the maximum of 
the likelihood function.) 

In fact, it can be shown that even if the likelihood function is not a Gaussian 
function of the parameters, the central confidence interval [a, b] = [0 - c, e + d] 
can still be approximated by using 

(9.29) 

where N = <1>-1 (1-, /2) is the quantile of the standard Gaussian corresponding 
to the desired confidence level 1 - ,. (For example, N = 1 for a 68.3% central 
confidence interval; see Table 9.1.) In the case of a least squares fit with Gaussian 
errors, i.e. with log L = _X2/2, the prescription becomes 

X
2 (B+ d ) = X2. + N 2 

-c mm . (9.30) 

A heuristic proof that the intervals defined by equations (9.29) and (9.30) ap-
proximate the classical confidence intervals of Section 9.2 can be found in [Ead71, 
Fr079]. Equations (9.29) and (9.30) represent one of the most commonly used 
methods for estimating statistical uncertainties. One should keep in mind, how-
ever, that the correspondence with the method of Section 9.2 is only exact in the 
large sample limit. Several authors have recommended using the term 'likelihood 
interval' for an interval obtained from the likelihood function [Fr079, Hud64]. 
Regardless of the name, it should be kept in mind that it is interpreted here 
as an approximation to the classical confidence interval, i.e. a random interval 
constructed so as to include the true parameter value with a given probability. 

As an example consider the estimator f = 2::7=1 ti for the parameter T of 
an exponential distribution, as in the example of Section 6.2 (see also Section 
6.7). There, the ML method was used to estimate T given a sample of n = 50 
measurements of an exponentially distributed random variable t. This sample 

find decreases by  from maximum 
value of ML to estimate 

N2 /2
Nσ ̂θ

Recall: For a Gaussian distributed estimator , the 68.3% central CI can be constructed from 
the estimator and its estimated std. dev.  as , i.e., for a CL of 

̂θ
̂σ ̂θ [a, b] = [ ̂θ − ̂σ ̂θ, ̂θ + ̂σ ̂θ] 1 − γ

Thus, the 68.3% CI is given by the values of  at which the 
 function decreases by  from it’s max. value.

θ
log ℒ 1/2
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• In fact, it can be shown that even if the likelihood function is not a 
Gaussian function of the parameters, the central confidence interval 

 can still be approximated by using


• Here  is the quantile of the standard Gaussian corresponding 
to the desired confidence level 


• Now use  (i.e., a  fit with Gaussian errors), 

and the prescription becomes

[a, b] = [ ̂θ − c, ̂θ + d]

N = Φ−1(1 − γ/2)
1 − γ

ℒ(θ) = exp (−
χ2(θ)

2 ) χ2
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From the ReF inequality (6.16), which for an ML estimator in the large sample 
limit becomes an equality, one obtains that (To in the likelihood function (9.27) is 
the same as in the p.d.f. (9.26). This has already been encountered in Section 6.7, 
equation (6.24), where the likelihood function was used to estimate the variance 
of an estimator B. This led to a simple prescription for estimating (To' since by 
changing the parameter () by N standard deviations, the log-likelihood function 
decreases by N 2 /2 from its maximum value, 

(9.28) 

From the results of the previous section, however, we know that for a Gaussian 
distributed estimator e, the 68.3% central confidence interval can be constructed 
from the estimator and its estimated standard deviation (j 0 as [a, b] = [e - 0-B' e + 
0-0] (or more generally according to (9.12) for a confidence level of 1 - ,). The 
68.3% central confidence interval is thus given by the values of () at which the log-
likelihood function decreases by 1/2 from its maximum value. (This is assuming, 
of course, that B is the ML estimator and thus corresponds to the maximum of 
the likelihood function.) 

In fact, it can be shown that even if the likelihood function is not a Gaussian 
function of the parameters, the central confidence interval [a, b] = [0 - c, e + d] 
can still be approximated by using 

(9.29) 

where N = <1>-1 (1-, /2) is the quantile of the standard Gaussian corresponding 
to the desired confidence level 1 - ,. (For example, N = 1 for a 68.3% central 
confidence interval; see Table 9.1.) In the case of a least squares fit with Gaussian 
errors, i.e. with log L = _X2/2, the prescription becomes 

X
2 (B+ d ) = X2. + N 2 

-c mm . (9.30) 

A heuristic proof that the intervals defined by equations (9.29) and (9.30) ap-
proximate the classical confidence intervals of Section 9.2 can be found in [Ead71, 
Fr079]. Equations (9.29) and (9.30) represent one of the most commonly used 
methods for estimating statistical uncertainties. One should keep in mind, how-
ever, that the correspondence with the method of Section 9.2 is only exact in the 
large sample limit. Several authors have recommended using the term 'likelihood 
interval' for an interval obtained from the likelihood function [Fr079, Hud64]. 
Regardless of the name, it should be kept in mind that it is interpreted here 
as an approximation to the classical confidence interval, i.e. a random interval 
constructed so as to include the true parameter value with a given probability. 

As an example consider the estimator f = 2::7=1 ti for the parameter T of 
an exponential distribution, as in the example of Section 6.2 (see also Section 
6.7). There, the ML method was used to estimate T given a sample of n = 50 
measurements of an exponentially distributed random variable t. This sample 
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From the ReF inequality (6.16), which for an ML estimator in the large sample 
limit becomes an equality, one obtains that (To in the likelihood function (9.27) is 
the same as in the p.d.f. (9.26). This has already been encountered in Section 6.7, 
equation (6.24), where the likelihood function was used to estimate the variance 
of an estimator B. This led to a simple prescription for estimating (To' since by 
changing the parameter () by N standard deviations, the log-likelihood function 
decreases by N 2 /2 from its maximum value, 

(9.28) 

From the results of the previous section, however, we know that for a Gaussian 
distributed estimator e, the 68.3% central confidence interval can be constructed 
from the estimator and its estimated standard deviation (j 0 as [a, b] = [e - 0-B' e + 
0-0] (or more generally according to (9.12) for a confidence level of 1 - ,). The 
68.3% central confidence interval is thus given by the values of () at which the log-
likelihood function decreases by 1/2 from its maximum value. (This is assuming, 
of course, that B is the ML estimator and thus corresponds to the maximum of 
the likelihood function.) 

In fact, it can be shown that even if the likelihood function is not a Gaussian 
function of the parameters, the central confidence interval [a, b] = [0 - c, e + d] 
can still be approximated by using 

(9.29) 

where N = <1>-1 (1-, /2) is the quantile of the standard Gaussian corresponding 
to the desired confidence level 1 - ,. (For example, N = 1 for a 68.3% central 
confidence interval; see Table 9.1.) In the case of a least squares fit with Gaussian 
errors, i.e. with log L = _X2/2, the prescription becomes 

X
2 (B+ d ) = X2. + N 2 

-c mm . (9.30) 

A heuristic proof that the intervals defined by equations (9.29) and (9.30) ap-
proximate the classical confidence intervals of Section 9.2 can be found in [Ead71, 
Fr079]. Equations (9.29) and (9.30) represent one of the most commonly used 
methods for estimating statistical uncertainties. One should keep in mind, how-
ever, that the correspondence with the method of Section 9.2 is only exact in the 
large sample limit. Several authors have recommended using the term 'likelihood 
interval' for an interval obtained from the likelihood function [Fr079, Hud64]. 
Regardless of the name, it should be kept in mind that it is interpreted here 
as an approximation to the classical confidence interval, i.e. a random interval 
constructed so as to include the true parameter value with a given probability. 

As an example consider the estimator f = 2::7=1 ti for the parameter T of 
an exponential distribution, as in the example of Section 6.2 (see also Section 
6.7). There, the ML method was used to estimate T given a sample of n = 50 
measurements of an exponentially distributed random variable t. This sample 

One of the most commonly 
used methods to determine 

the statistical uncertainty

The proof that these 
intervals approximate 
the classical CI 
discussed earlier is 
beyond the scope of 
this course
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Warning:
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From the ReF inequality (6.16), which for an ML estimator in the large sample 
limit becomes an equality, one obtains that (To in the likelihood function (9.27) is 
the same as in the p.d.f. (9.26). This has already been encountered in Section 6.7, 
equation (6.24), where the likelihood function was used to estimate the variance 
of an estimator B. This led to a simple prescription for estimating (To' since by 
changing the parameter () by N standard deviations, the log-likelihood function 
decreases by N 2 /2 from its maximum value, 

(9.28) 

From the results of the previous section, however, we know that for a Gaussian 
distributed estimator e, the 68.3% central confidence interval can be constructed 
from the estimator and its estimated standard deviation (j 0 as [a, b] = [e - 0-B' e + 
0-0] (or more generally according to (9.12) for a confidence level of 1 - ,). The 
68.3% central confidence interval is thus given by the values of () at which the log-
likelihood function decreases by 1/2 from its maximum value. (This is assuming, 
of course, that B is the ML estimator and thus corresponds to the maximum of 
the likelihood function.) 

In fact, it can be shown that even if the likelihood function is not a Gaussian 
function of the parameters, the central confidence interval [a, b] = [0 - c, e + d] 
can still be approximated by using 

(9.29) 

where N = <1>-1 (1-, /2) is the quantile of the standard Gaussian corresponding 
to the desired confidence level 1 - ,. (For example, N = 1 for a 68.3% central 
confidence interval; see Table 9.1.) In the case of a least squares fit with Gaussian 
errors, i.e. with log L = _X2/2, the prescription becomes 

X
2 (B+ d ) = X2. + N 2 

-c mm . (9.30) 

A heuristic proof that the intervals defined by equations (9.29) and (9.30) ap-
proximate the classical confidence intervals of Section 9.2 can be found in [Ead71, 
Fr079]. Equations (9.29) and (9.30) represent one of the most commonly used 
methods for estimating statistical uncertainties. One should keep in mind, how-
ever, that the correspondence with the method of Section 9.2 is only exact in the 
large sample limit. Several authors have recommended using the term 'likelihood 
interval' for an interval obtained from the likelihood function [Fr079, Hud64]. 
Regardless of the name, it should be kept in mind that it is interpreted here 
as an approximation to the classical confidence interval, i.e. a random interval 
constructed so as to include the true parameter value with a given probability. 

As an example consider the estimator f = 2::7=1 ti for the parameter T of 
an exponential distribution, as in the example of Section 6.2 (see also Section 
6.7). There, the ML method was used to estimate T given a sample of n = 50 
measurements of an exponentially distributed random variable t. This sample 
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From the ReF inequality (6.16), which for an ML estimator in the large sample 
limit becomes an equality, one obtains that (To in the likelihood function (9.27) is 
the same as in the p.d.f. (9.26). This has already been encountered in Section 6.7, 
equation (6.24), where the likelihood function was used to estimate the variance 
of an estimator B. This led to a simple prescription for estimating (To' since by 
changing the parameter () by N standard deviations, the log-likelihood function 
decreases by N 2 /2 from its maximum value, 

(9.28) 

From the results of the previous section, however, we know that for a Gaussian 
distributed estimator e, the 68.3% central confidence interval can be constructed 
from the estimator and its estimated standard deviation (j 0 as [a, b] = [e - 0-B' e + 
0-0] (or more generally according to (9.12) for a confidence level of 1 - ,). The 
68.3% central confidence interval is thus given by the values of () at which the log-
likelihood function decreases by 1/2 from its maximum value. (This is assuming, 
of course, that B is the ML estimator and thus corresponds to the maximum of 
the likelihood function.) 

In fact, it can be shown that even if the likelihood function is not a Gaussian 
function of the parameters, the central confidence interval [a, b] = [0 - c, e + d] 
can still be approximated by using 

(9.29) 

where N = <1>-1 (1-, /2) is the quantile of the standard Gaussian corresponding 
to the desired confidence level 1 - ,. (For example, N = 1 for a 68.3% central 
confidence interval; see Table 9.1.) In the case of a least squares fit with Gaussian 
errors, i.e. with log L = _X2/2, the prescription becomes 

X
2 (B+ d ) = X2. + N 2 

-c mm . (9.30) 

A heuristic proof that the intervals defined by equations (9.29) and (9.30) ap-
proximate the classical confidence intervals of Section 9.2 can be found in [Ead71, 
Fr079]. Equations (9.29) and (9.30) represent one of the most commonly used 
methods for estimating statistical uncertainties. One should keep in mind, how-
ever, that the correspondence with the method of Section 9.2 is only exact in the 
large sample limit. Several authors have recommended using the term 'likelihood 
interval' for an interval obtained from the likelihood function [Fr079, Hud64]. 
Regardless of the name, it should be kept in mind that it is interpreted here 
as an approximation to the classical confidence interval, i.e. a random interval 
constructed so as to include the true parameter value with a given probability. 

As an example consider the estimator f = 2::7=1 ti for the parameter T of 
an exponential distribution, as in the example of Section 6.2 (see also Section 
6.7). There, the ML method was used to estimate T given a sample of n = 50 
measurements of an exponentially distributed random variable t. This sample 

The correspondence with the classical CI developed in 
slides 12-27 is only exact in the large sample limit 

Many statisticians recommend using the 
term ‘Likelihood interval’ for an interval 

obtained from the likelihood function

Interpret here as: an approximation to the classical CI, 
i.e., a random interval constructed so as to include the 

true parameter value with a given probability
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A familiar example:

Variance of ML estimators: graphical method 79 

By definition of B we know that log L (B) = log Lmax and that the second term 
in the expansion is zero. Using equation (6.22) and ignoring higher order terms 
gIves 

(8 - 0)2 
log L(8) = log Lmax - __ , 

20-2 e 
(6.24) 

or 

A 1 
log L(8 ± O"e) = log Lmax - "2. (6.25) 

That is, a change in the parameter 8 of one standard deviation from its ML 
estimate leads to a decrease in the log-likelihood of 1/2 from its maximum value. 

It can be shown that the log-likelihood function becomes a parabola (i.e. 
the likelihood function becomes a Gaussian curve) in the large sample limit. 
Even if log L is not parabolic, one can nevertheless adopt equation (6.25) as the 
definition of the statistical error. The interpretation of such errors is discussed 
further in Chapter 9. 

As an example of the graphical method for determining the variance of an es-
timator, consider again the examples of Sections 6.2 and 6.5 with the exponential 
distribution. Figure 6.4 shows the log-likelihood function log L( r) as a function 
of the parameter r for a Monte Carlo experiment consisting of 50 measurements. 
The standard deviation of f is estimated by changing r until log L( r) decreases 
by 1/2, giving Llf_ = 0.137, Llf+ = 0.165. In this case logL(r) is reasonably 
close to a parabola and one can approximate 0" f Ll f _ Ll f + 0.15. This 
leads to approximately the same answer as from the exact standard deviation 
r /...;n evaluated with r = f. In Chapter 9 the interval [f - Ll f _ , f + Ll f +] will 
be reinterpreted as an approximation for the 68.3% central confidence interval 
(cf. Section 9.6). 

-53 

-53.5 

-54 
0.8 1.2 1.4 1.6 

Fig. 6.4 The log-likelihood function 
logL(T). In the large sample limit, the 
widths of the intervals [i-Lli-,il and 
[i,f + Llf+l correspond to one stan-
dard deviation at. 

• Reading off from the curve

• 


• 


• Both reasonably close and we find 

• 


• In Lecture 5, we said: we’ll make a reinterpretation 
of the interval   as an approximation 
of the 68.3% central confidence interval 

Δ ̂τ− = 0.137
Δ ̂τ+ = 0.165

̂σ ̂τ ≈ Δ ̂τ− ≈ Δ ̂τ+ ≈ 0.15

[ ̂τ − ̂σ ̂τ, ̂τ + ̂σ ̂τ]

The estimator   for the parameter  of 

an exponential distribution

̂τ =
1
n

n

∑
i=1

ti τ

Recall Lecture 5 (sec. 6.2): The ML method was 
used to estimate  given a sample of  
measurements

τ n = 50

f (t; τ) =
1
τ

e−t/τ

http://www.pp.rhul.ac.uk/~cowan/sda/
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was sufficiently large that the standard deviation crf could be approximated 
by the values of T where the log-likelihood function decreased by 1/2 from its 
maximum (see Fig. 6.4). This gave 7 = 1.06 and Crf ,6,.7_ ,6,.7+ 0.15. 

Figure 9.6 shows the log-likelihood function log L( T) as a function of T for 
a sample of only n = 5 measurements of an exponentially distributed random 
variable, generated using the Monte Carlo method with the true parameter r = 1. 
Because of the smaller sample size the log-likelihood function is less parabolic 
than before. 

-4.5 

-5 

.. .... ··············· .. ··t .. · log Lmax 

............. '''''''''''''''j .......................... ; ... log Lmax - 1/2 

0.5 1.5 2 

Fig. 9.6 The log-likelihood function 
log L( r) as a function of r for a sam-
ple of n = 5 measurements. The in-
terval (f - f:l.f _, f + f:l.f +] determined 
by log L(r) = log Lmax - 1/2 can be 
used to approximate the 68.3% central 
confidence interval. 

One could still use the half-width of the interval determined by log Lmax -1/2 
to approximate the standard deviation crr, but this is not really what we want. 
The statistical uncertainty is better communicated by giving the confidence in-
terval, since one then knows the probability that the interval covers the true pa-
rameter value. Furthermore, by giving a central confidence interval (and hence 
asymmetric errors, ,6,.7_ "# ,6,.7+), one has equal probabilities for the true pa-
rameter to be higher or lower than the interval limits. As illustrated in Fig. 9.6, 
the central confidence interval can be approximated by the values of T where 
10gL(r) = log Lmax - 1/2, which gives [7 - ,6,.7_,7 + ,6,.7+] = [0.55,1.37] or 
7 = 

In fact, the same could have been done in Section 6.7 by giving the result 
there as f = Whether one chooses this method or simply reports an 
averaged symmetric error (i.e. 7 = 1.06 ± 0.15) will depend on how accurately 
the statistical error needs to be given. For the case of n = 5 shown in Fig. 9.6, 
the error bars are sufficiently asymmetric that one would probably want to use 
the 68.3% central confidence interval and give the result as f = 

9.7 Multidimensional confidence regions 
In Section 9.2, a confidence interval [a, b] was constructed so as to have a cer-
tain probability 1 - I of containing a parameter (). In order to generalize this 

Now consider  measurements
n = 5

•  is less parabolic 


• so the half-width of the interval determined by 
 is not what we want to use to 

estimate the std. dev. 


• Better to use the CI to communicate the statistical 
uncertainty, since one then knows the probability that 
the interval covers the true parameter value.  


log ℒ(θ)

log ℒmax − 1/2

log ℒ(τ) = log ℒmax−1/2

̂τ = 0.85+0.52
−0.30

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/
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• In 1D, we constructed a confidence interval , to have a certain 
probability  of containing a (true) parameter .


• In order to generalize this to the case of  parameters, , one 
might attempt to find an -dimensional confidence interval  constructed so 
as to have a given probability that , simultaneously for all .


This turns out to be computationally difficult, not uniquely defined, and is thus rarely 
done.  

• It is nevertheless quite simple to construct a confidence region in parameter 
space such that the true parameter  is contained within the region with a given 
probability. 


• This region will not have the form  with , but will be more 
complicated, approaching an -dimensional hyper-ellipsoid in the large sample limit 

[a, b]
1 − γ θ

n θ = (θ1, θ2, . . . , θn)
n [a, b]

ai < θi < bi i

θ

ai < θi < bi i = 1,2, . . . , n
n
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Multi-dimensional confidence regions

̂θ
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• As in the single-parameter case, one makes use of the fact that both 
the joint PDF for the estimator  as well as the 
likelihood function become Gaussian in the large sample limit. 
That is, the joint PDF of  becomes:


• Here  is the inverse covariance matrix and  refers to 
transposed.

̂θ = ( ̂θ1, ̂θ2, . . . , ̂θn)

̂θ

V−1 T
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Fig. 9.7 (a) A contour of constant g(8;8true ) (i.e. constant Q(8,Btrue » in 8-space. (b) A 
of constant L(8) corresponding to constant Q(8obg , 8) in 8-space. The values Btrue 

and Bobs represent particular constant values of 8 and 8, respectively. 

to the case of n parameters, 0 = ((}l, ... , (}n), one might attempt to find an 
n-dimensional confidence interval [a, b] constructed so as to have a given prob-
ability that ai < (}i < bi, simultaneously for all i. This turns out to be computa-
tionally difficult, and is rarely done. 

It is nevertheless quite simple to construct a confidence region in the pa-
rameter space such that the true parameter 0 is contained within the region 
with a given probability (at least approximately). This region will not have the 
form ai < (}i < bi , i = 1, ... , n, but will be more complicated, approaching an 
n-dimensional hyperellipsoid in the large sample limit. 

As in the single-parameter case, one makes use of the fact that both the joint 
p.d.f. for the estimator fJ = (0 1 , ... , On) as well as the likelihood function become 
Gaussian in the large sample limit. That is, the joint p.d.f. of fJ becomes 

1 g(OIO) = (2rr)n/2IVI 1/ 2 exp Q(O, 0) , (9.31) 

where Q is defined as 

(9.32) 

Here V-I is the inverse covariance matrix and the superscript T indicates a 
transposed (i.e. row) vector. Contours of constant g(fJIO) correspond to constant 
Q(fJ, 0). These are ellipses (or for more than two dimensions, hyperellipsoids) in 
fJ-space centered about the true parameters O. Figure 9.7(a) shows a contour of 
constant Q(fJ), where Otrue represents a particular value of o. 

Also as in the one-dimensional case, one can show that the likelihood function 
L(O) takes on a Gaussian form centered about the ML estimators fJ, 
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to the case of n parameters, 0 = ((}l, ... , (}n), one might attempt to find an 
n-dimensional confidence interval [a, b] constructed so as to have a given prob-
ability that ai < (}i < bi, simultaneously for all i. This turns out to be computa-
tionally difficult, and is rarely done. 

It is nevertheless quite simple to construct a confidence region in the pa-
rameter space such that the true parameter 0 is contained within the region 
with a given probability (at least approximately). This region will not have the 
form ai < (}i < bi , i = 1, ... , n, but will be more complicated, approaching an 
n-dimensional hyperellipsoid in the large sample limit. 

As in the single-parameter case, one makes use of the fact that both the joint 
p.d.f. for the estimator fJ = (0 1 , ... , On) as well as the likelihood function become 
Gaussian in the large sample limit. That is, the joint p.d.f. of fJ becomes 

1 g(OIO) = (2rr)n/2IVI 1/ 2 exp Q(O, 0) , (9.31) 

where Q is defined as 

(9.32) 

Here V-I is the inverse covariance matrix and the superscript T indicates a 
transposed (i.e. row) vector. Contours of constant g(fJIO) correspond to constant 
Q(fJ, 0). These are ellipses (or for more than two dimensions, hyperellipsoids) in 
fJ-space centered about the true parameters O. Figure 9.7(a) shows a contour of 
constant Q(fJ), where Otrue represents a particular value of o. 

Also as in the one-dimensional case, one can show that the likelihood function 
L(O) takes on a Gaussian form centered about the ML estimators fJ, 
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• Contours of constant  correspond to constant 


• These are ellipses (or for more than 2D, hyper-ellipsoids) in  - space 
centered around the true parameters 

g( ̂θ; θ) Q( ̂θ; θ)
̂θ
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and Bobs represent particular constant values of 8 and 8, respectively. 

to the case of n parameters, 0 = ((}l, ... , (}n), one might attempt to find an 
n-dimensional confidence interval [a, b] constructed so as to have a given prob-
ability that ai < (}i < bi, simultaneously for all i. This turns out to be computa-
tionally difficult, and is rarely done. 

It is nevertheless quite simple to construct a confidence region in the pa-
rameter space such that the true parameter 0 is contained within the region 
with a given probability (at least approximately). This region will not have the 
form ai < (}i < bi , i = 1, ... , n, but will be more complicated, approaching an 
n-dimensional hyperellipsoid in the large sample limit. 

As in the single-parameter case, one makes use of the fact that both the joint 
p.d.f. for the estimator fJ = (0 1 , ... , On) as well as the likelihood function become 
Gaussian in the large sample limit. That is, the joint p.d.f. of fJ becomes 

1 g(OIO) = (2rr)n/2IVI 1/ 2 exp Q(O, 0) , (9.31) 

where Q is defined as 
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Here V-I is the inverse covariance matrix and the superscript T indicates a 
transposed (i.e. row) vector. Contours of constant g(fJIO) correspond to constant 
Q(fJ, 0). These are ellipses (or for more than two dimensions, hyperellipsoids) in 
fJ-space centered about the true parameters O. Figure 9.7(a) shows a contour of 
constant Q(fJ), where Otrue represents a particular value of o. 

Also as in the one-dimensional case, one can show that the likelihood function 
L(O) takes on a Gaussian form centered about the ML estimators fJ, 
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particular value of θ

θ
̂θ1

̂θ2

̂θ3g( ̂θ; θ)
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constant ℒ(θ)

• Also, as in the one-dimensional case, one can show that the likelihood function 
 takes on a Gaussian form centered about the ML estimate 


• The function  is here regarded as a function of the parameters  which has its maximum 
at the estimates . Since  is symmetric in ,  is identical in  & 

ℒ(θ) ̂θ

Q θ
̂θ Q ̂θ ↔ θ Q ℒ(θ) g( ̂θ; θ)
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[ 1 T -1 ] [1 ] L(O) = Lmax exp -2(0 - 0) V (0 - 0) = Lmax exp -2 Q(O, 0) . (9.33) 

The inverse covariance matrix V-I is the same here as in (9.31); this can be 
seen from the ReF inequality (6.19) and using the fact that the ML estimators 
attain the ReF bound in the large sample limit. The quantity Q here is regarded 
as a function of the parameters 0 which has its maximum at the estimates O. 
This is shown in Fig. 9.7(b) for 0 equal to a particular value Oobs. Because of 
the symmetry between 0 and iJ in the definition (9.32), the quantities Q have 
the same value in both the p.d.f. (9.31) and in the likelihood function (9.33), i.e. 
Q(8,0) = Q(O, 8). 

As discussed in Section 7.5, it can be shown that if iJ is described by an 
n-dimensional Gaussian p.d.f. g(iJ, 0), then the quantity Q(O,O) is distributed 
according to a X2 distribution for n degrees of freedom. The statement that 
Q(O,O) is less than some value Q-y, i.e. that the estimate is within a certain 
distance of the true value 0, implies Q(O, iJ) < Q-y, i.e. that the true value () 
is within the same distance of the estimate. The two events therefore have the 
same probability, 

rQ-y 
P(Q(O,O) ::; Q-y) = Jo J(z; n)dz, (9.34) 

where J(z;n) is the X2 distribution for n degrees of freedom (equation (2.34)). 
The value Q-y is chosen to correspond to a given probability content, 

rQ-y 
Jo J(z;n)dz = 1 -i· (9.35) 

That is, 

(9.36) 

is the quantile of order 1-i of the X2 distribution. The region of O-space defined 
by Q(O, iJ) ::; Q-y is called a confidence region with the confidence levell-i. For 
a likelihood function of Gaussian form (9.33) it can be constructed by finding 
the values of 0 at which the log-likelihood function decreases by Q-y/2 from its 
maximum value, 

log L( 0) = log Lmax - (9.37) 

As in the single-parameter case, one can still use the prescription given by (9.37) 
even if the likelihood function is not Gaussian, in which case the probability 
statement (9.34) is only approximate. For an increasing number of parameters, 
the approach to the Gaussian limit becomes slower as a function of the sample 
size, and furthermore it is difficult to quantify when a sample is large enough 
for (9.34) to apply. If needed, one can determine the probability that a region 

g( ̂θ; θ) ℒ(θ)

Q( ̂θ; θ) = Q(θ; ̂θ)

http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
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• If  is described by an -dimensional Gaussian PDF , then 
the quantity  is distributed according to a  with  
degrees of freedom


• The statement that  is less than some value 


 (i.e., that the estimate  is within a certain distance of the true value ),  

• implies  


(i.e., that the true value  is within the same certain distance of the         
estimate ). 

‣ The two events therefore have the same probability:

̂θ n g( ̂θ; θ)
Q( ̂θ; θ) χ2 n

Q( ̂θ; θ) Qγ

̂θ θ

Q( ̂θ; θ) < Qγ

θ
̂θ
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even if the likelihood function is not Gaussian, in which case the probability 
statement (9.34) is only approximate. For an increasing number of parameters, 
the approach to the Gaussian limit becomes slower as a function of the sample 
size, and furthermore it is difficult to quantify when a sample is large enough 
for (9.34) to apply. If needed, one can determine the probability that a region 
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 distribution for  degrees of freedomχ2 nThis region of -space is called the 
confidence region with CL 

θ
1 − γ

Chosen to correspond to a given 
probability content
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• The region in -space defined by  is called a 
confidence region with a confidence level of  

• For a likelihood function of Gaussian form, it can be constructed by 
finding the values of  at which the log-likelihood function decreases by 

 from its maximum value


• Analogous to what was discussed before, one can still use the same 
prescription even if the likelihood function is not Gaussian


• The coverage is then only approximative but in many use cases still 
adequate ↔︎ need to check coverage using Monte Carlo

θ Q( ̂θ; θ) ≤ Qγ
1 − γ

θ
Qγ /2
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• Quantiles for the  distribution  for several 
confidence levels  and  parameters are given below, 
as well as confidence levels for various values of the quantile .

χ2 Qγ = F−1(1 − γ; n)
1 − γ n = 1,2,3,4

Qγ
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constructed according to (9.37) includes the true parameter by means of a Monte 
Carlo calculation. 

Quantiles of the X2 distribution Q/ = p-l (1 - ,; n) for several confidence 
levels 1 - , and n = 1,2,3,4,5 parameters are given in Table 9.4. Values of the 
confidence level are shown for various values of the quantile Q1 in Table 9.5. 

Table 9.4 The values of the confidence level 1 - r for different values of Q-y and for 
n = 1,2,3,4,5 fitted parameters. 

Q1 
1-, 

n=l n=2 n=3 n=4 n=5 
1.0 0.683 0.393 0.199 0.090 0.037 
2.0 0.843 0.632 0.428 0.264 0.151 
4.0 0.954 0.865 0.739 0.594 0.451 
9.0 0.997 0.989 0.971 0.939 0.891 

Table 9.5 The values of the quantile Q-y for different values of the confidence level 1 - r for 
n = 1,2,3,4,5 fitted parameters. 

1-, Q1 
n=l n=2 n=3 n=4 n=5 

0.683 1.00 2.30 3.53 4.72 5.89 
0.90 2.71 4.61 6.25 7.78 9.24 
0.95 3.84 5.99 7.82 9.49 11.1 
0.99 6.63 '9.21 11.3 13.3 15.1 

For n = 1 the expression (9.36) for Q1 can be shown to imply 

(9.38) 

where cI>-1 is the inverse function of the standard normal distribution. The pro-
cedure here thus reduces to that for a single parameter given in Section 9.6, 
where N = vr:r; is the half-width of the interval in standard deviations (see 
equations (9.28), (9.29)). The values for n = 1 in Tables 9.4 and 9.5 are thus 
related to those in Tables 9.1 and 9.2 by equation (9.38). 

For increasing n, the confidence level for a given Q1 decreases. For example, 
in the single-parameter case, Q/ = 1 corresponds to 1 - , = 0.683. For n = 2, 
Q/ = 1 gives a confidence level of only 0.393, and in order to obtain 1-, = 0.683 
one needs Q/ = 2.30. 

We should emphasize that, as in the single-parameter case, the confidence 
region Q(8, 6) Q1 is a random region in 8-space. The confidence region varies 
upon repetition of the experiment, since {j is a random variable. The true pa-
rameters, on the other hand, are unknown constants. 
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• Note that for increasing  the confidence level for a given  
decreases.


E.g. for  implies . But  gives a confidence 
level of only 0.393

n Qγ

n = 1 Qγ = 1 1 − γ = 0.683 n = 2 Qγ = 1

http://www.pp.rhul.ac.uk/~cowan/sda/
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• Required reading

• Cowan textbook: chapter 9 (through 9.7)
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Fig. 9.1 A p.d.f. g(8; 8) for an esti-
mator e for a given value of the true 
parameter 8. The two shaded regions 
indicate the values of 8 :::; v{3, which 
has a probability {J, and e u a , which 
has a probabilit:y a. 

Fig. 9.2 Construction of the confi-
dence interval [a, b] given an observed 
value 80bs of the estimator 8 for the 
parameter 8 (see text). 

Figure 9.2 shows an example of how the functions ua(O) and vf3(O) might appear 
as a function of the true value of O. The region between the two curves is called 
the confidence belt. The probability for the estimator to be inside the belt, 
regardless of the value of 0, is given by 

P(Vf3(O) 0 ua(O)) = 1 - ex - (3. (9.3) 

As long as ua( 0) and vf3 (0) are monotonically increasing functions of 0, which 
in general should be the case if (; is to be a good estimator for 0, one can determine 
the inverse functions 

The ineqllalities 

a(O) == 
b(O) == v;! (0). 

(9.4) 

1) Using the figure, explain how a confidence 
interval is constructed for an observation ̂θobs
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KCETA Colloquium
From QCD to Visible Matter: An Insight into 
the U.S. Eletron-Ion Collider
Thursday, June 15, 2023       
Kleiner Hörsaal A (CS) 15:45 - 17:00

Professor Or Hen 
(Massachusetts Institute of Technology)

KIT Center Elementary Particle and Astroparticle Physics (KCETA)

www.kceta.kit.edu

Recently the United States greenlit the construction of a 
revolutionary Electron-Ion Collider (EIC) at the 
Brookhaven National Lab. This once-in-a-generation 
$2.4 bi l l ion investment is set to propel our 
understanding of subatomic matter by generating 
unmatched high-current polarized electron and proton/
ion beams that will interact at two distinct collision 
points. These interactions will be meticulously analyzed 
by cutting-edge detectors to uncover unprecedented 
insights into the formation and properties of subatomic 
matter.

The EIC's research program is primed to address some 
of the most profound questions in quantum physics 
encompassing the emergence of nucleon spin and 
mass the role of Quantum Chromodynamics (QCD) in 
nuclear interactions and its influence on bound nucleon 
structure and the three-dimensional structure of 
nucleons and nuclei. It will further delve into the 
uncharted territories of low-temperature dense gluonic 
matter properties and the quest for physics beyond the 
confines of the standard model.

Please note:  
The colloquium will also be live-streamed to B402 SR224 (CN).

In this talk I will elaborate on how the EIC will serve as an invaluable tool in addressing these perplexing questions. 
Additionally I will present an overview of the ePIC detector currently under design and construction by an international 
collaboration of scientists from over 160 institutions promising to redefine our understanding of the subatomic world.
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• Part of the material presented in this lecture is taken from the following 

sources. See the active links (when available) for a complete reference   


• Statistical Data Analysis textbook by G. Cowan (U. London): all figures & equations with white 

background
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