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e (Classical confidence intervals

Exact method

Examples:

® (Gaussian distributed estimator

® Poisson distributed estimator
Likelihood and LS confidence intervals

Multi-dimensional confidence regions

Evaluations: Lecture & Computerpraktikum.

Please take a few minutes to fill them out. Your feedback is greatly
appreciated. We will take your comments into consideration in trying to
improve the course.

Evaluation period: through 22 June (lecture) & 15 July (Computerpraktikum)
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Type I versus Type Il errors

1. You have two hypotheses Hy and H; and a test statistics ¢ distributed according to g(t|Ho)
and g(t|Hy), as shown in the figure below. You now choose a certain value t.,; to accept Hy
/ reject Hy. Using the figure, explain the meaning of Type I and Type II errors.

http://www.pp.rhul.ac.uk/~cowan/sda/
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Fisher etc.

a) Write down the definition of a Fisher discriminant of n data points x = (1, 2o, ..., x,).
n
— — T
1(x) = Zaixl- =a'x
i=1

b) When is it beneficial to construct a Fisher discriminant instead using the full likelihood
ratio?

Computationally easier to construct, especially for high dimensional PDFs
that need MC simulation

c¢) You carried out least square fits (LS) using two hypotheses and obtained x3 and 3.
What is the equivalent of the likelihood ratio for binned data?
See Sec. 6.11 (Testing goodness-of-fit with ML)

—21In % = y> — y> = Ay?, where for hypothesis i, y? = (X;... —x,) C7' (x;.. —x.)
g() = X1 — Xy = X yp v Xi = Xdata i i data i

d)* Explain step-by-step how you would obtain ¢g(¢|Hy) and ¢g(¢|X;) using MC techniques

Generate pseudo-experiments for x according to H,, or H, then calculate #(x) for
each pseudo-experiment and produce histograms for both sets. The histograms
will be proportional to g(¢| Hy) and g(t| H,).
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Review

Parameter estimation

Suppose: n observations (x;, x,, . . . , x,,) and PDF f(x; 0)
— Construct é(xl, X, - - - ,X,) to estimate true value 0

— 0, = value of estimator actually observed

— Aé = estimate of its standard deviation

Modern Methods of Data Analysis I 6



'MC, RCF bound ¢ "

* Discussed 3 methods on estimating the variance of the found
estimators

Analytical method:

e (Calculate the variance directly using the likelihood, e.qg.

1 http://www.pp.rhul.ac.uk/~cowan/sda/

f(@)

log £(7) = Zn: log f(z;7) = Zn: (log l — 2)
i=1

0.75 i=1

1
flt:r) = ="
T

V[#] = E[#%] — (E[%])?
05 F

0.25

T TR
0 1 2

w
IS
[8)]

t i=1

’ 2
1 < 1 1 T
—[[ . [(—Z tl) —eTWT  —e T df, . .dtn] -
n T T

e Often does not work. If it works, can become very complicated: a priori trivial

changes in the fit function (e.g. linear to quadratic PDF) result in you needing to
recalculate complicated expressions
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Review

Analytical method, , RCF bound i)

®* Discussed 3 methods on estimating the variance of the found
estimators

MC Method

e Simulate a large number of experiments, compute the ML or LS estimates

1 http://www.pp.rhul.ac.uk/~cowan/sda/

http://www.pp.rhul.ac.uk/~cowan/sda/
' |

f®

N(3)
2

0.75

1
flt:r) = ="
T

100 r

05

50 r
0.25

T TR
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3 4 5 0 0.5 1 1.5 2

! 1

e Simple. Often a good cross-check for variances obtained via other methods

(e.g. RCF/graphical) if validity is in question; can become too computationally
expensive though.
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Analytical method, MC, iy

* Discussed 3 methods on estimating the variance of the found

estimators
i 2
RCF/graphical method 1+ ob
Rao-Cramer- R 90
Frechet (RCF) VI[O] > .
- 1 http://www.pp.rhul.ac.uk/~cowan/sda/ | N eq u al |ty E a log g
= 06°

0.75

1
flt:r) = ="
T

for bias free and efficient estimators

(;2A= _1/a2logg
A 0 002

0=0

05

0.25

T TR
0 1 2

. 2
= <V‘1> zdlogff
ij 00,00,

t 0=0

— ——

* \lery nice graphical way to obtain the variance from the likelihood or LS
curves
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Review

(iv)

Analytical method, MC,

* Discussed 3 methods on estimating the variance of the found

Taylor expand around maximum
1 | 0’logZ
[ g ] @—07+ ...
0=0

estimators
RCF/graphical method log2(6) = log L (@) + 010g5f] 6—0)+
i 20| 002 |
Likelihood l
1

max

logff(é * 6y) = logZ

(0) =20+ 1 = 3, + 1
@) =x0)+1=y. +
For the case of A(x; @) linear in the parameters 6
http://www.pp.rhul.ac.uk/~cowan/sda/ T oo Thulac. Uk ~cowan/sda
;B 47 — T ,_r E -52.5 . hlttp.// PP hll k/ /sda/
= 3
L T-A T T+AR,
46.5 ;
-53 log Lmax T
46
-535 logL,,, —12 A
45.5 i
1 - . 1 | -54 i 1 1
25 2.6 27 2.8 29 0.8 1 1.2 1.4 1.6
Example from the 0" order 6 Exponential function example T
polynomial fit in Fig. 7.2 0 from the previous slides
Modern Methods of Data Analysis
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Review

Analytical method, MC, RCF bound )

Report Hobs + 6, as a proxy for 6 + o, distributed as 2(0;0)

Tsampling PDF
Interpret: repeated estimates all based on n observations of x

would be distributed according to a PDF g(é) centered around
some true value @ and true standard deviation 0, Which are

estimated to be 0, and 6,

For most practical estimators: g(é) — Gaussian in the large
sample limit

But what if g(é) is NOT Gaussian?

= Need to report confidence intervals (which can lead to asymmetric error bars)

Modern Methods of Data Analysis I 11



Confidence Intervals

Up to now: when discussing ‘error analysis’ we focused on estimating the
(co)variances of estimators. This is not always adequate and other ways of
communicating the statistical uncertainty of measurements have to be found.

A




Classical confidence intervals (Cl)

Suppose you have n observations of a random

variable X, which can be used to evaluate an

estimator for an unknown true parameter &
O(x,...,x,) =10

obs

http://www.pp.rhul.ac.uk/~cowan/sda/

05
tvalue obtained
Furthermore, suppose we know the PDF of é
denoted by g(é’; 0)

0
Real value of @ unknown, BUT for a given @ one
knows what the PDF of 6 would be

>

From g(é; @), can determine Vg and u, such that

P(us(6) < <ug()) =1—a—g.
there are fixed probabilities f and a to observe
0 <vzor0 > u,

Shows the probability density for an estimator é
for a particular value of the true parameter 0
U, and u; depend on the true value @ and are thus determined by

G(vs(6);0), a=P(0 > us(f) = / A
A U
|

«(6)

... So ¢ and [ are the probabilities!

Next: lets build the CI step by step...
Modern Methods of Data Analysis

|13


http://www.pp.rhul.ac.uk/~cowan/sda/

Confidence Belt

8’“ | | |
& 1 F :
O
05 .
0
0 1 2 3 4 5
0
_ vp(0) . A o0 A X
p=Pl<u@) = [ o008 =G60p0:0, ||a=Pizu)=[ , 9(0:00 = 1= G(ua(0);0),
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Confidence Belt i

O

2(6;0)

for a given value 0 1 ‘ L2 ‘3 4 5
of (true) 0
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Confidence Belt ji

O

2(0;0) .

for another given
value of (true) 0
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Confidence Belt (iv)

Region between the curves: http://www.pp.rhul.ac.uk/~cowan/sda/
Confidence Belt 5 r T T "
(Neyman Belt) é
P(up(6) <0 < ua(6)) =1— a — f.
~ 4
The probability for the estimator &
to be inside the belt, regardless of
the value of 0
3
- -
N 2
| T —_
- 1
0
0 1 2 3 4 5
0
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Confidence Interval i

http://www.pp.rhul.ac.uk/~cowan/sda/

If u,(0) and v4(0) are 5 u T x 1
monotonically increasing 0
functions of @, then one
. . 4
can determine the inverse
functions
3
a(f) = uz'(0),
~ ~ 2
b(0) = v ()
1
(Should be the case if 0 is : :
a good estimator for 0) 0 0 ’ 5 3 4 5
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Confidence Interval i

51(6).
This then implies: B
6 > uql(6), R a(f) > 0, P(a(f) > 6) = o,
6 < vg(6), invert b(d) < 0. P(b(6) < 6) = B,
or
P(yp(6) <0< ua(f)) =1-a-p P(a(0) <0<b(0))=1-a~-p

If the functions a(é) and b(é) are evaluated with the
value of the estimator obtained in the experiment

A

(@,1,.), then this determines 2 values [a, b

Modern Methods of Data Analysis I 19



Confidence Interval
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5 J L | T

O

Often chooses a = ﬂ — %

giving a so-called central CI 3
with probability =1 — v 0

..........................................

: Confidence /':
: Intefval

[a, b]: Confidence Interval,
at a confidence level (or
coverage probability) of

l—a-p

Pa(§) <0 <b(f)=1-a-2. 0
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All together now

http://www.pp.rhul.ac.uk/~cowan/sda/

X 5 T T T T
0
] 4 .
P(og(0) <O <ua(®) =1-a—p. | .
3 -

..........................................

: Confidence /':
{ Intefval -~

Note where the “s are
in the 2 equations!

[a, b]: Confidence Interval,
at a confidence level (or

coverage probability) of b
l—a-p

2 3 4 5
Pa(f)<0<b)=1-a-p. 0
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true ua(e)
The value a gives the hypothetical value of the T / 1
true parameter @ for which a fraction a of 2 | ]
repeated estimates 6 would be higher than the . L
one actually obtained, 0, 0
0 1 2 3 4 5
Similarly the value b is the value of @ for which a 0

fraction /7 of the estimates would be lower than 0,

- Taking 0, = u,(a) = v4(b), the original equations become
oo . . R éobs A A .
a = / g(0;a)df =1 — G(Oobs; a), g = / g(0;6)df = G(Oobs; b).
Oobs —OC
— http://www.pp.rhul.ac.uk/~cowan/sda/ S http://www.pp.rhul.ac.uk/~cowan/sda/
3 = A (b)
% 1F a éobs @ . > T eotgs b )
05 i 05 r ,
1/ ’
0
0
0 4 5 0 5

Modern Methods of Data Analysis I 22


http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/

R el Do you see a?

http://www.pp.rhul.ac.uk/~cowan/sda/

T T o T 1

t 1 o { 1
- g o 3 4 5
(v'g)b g
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Do you see f?

o
1
0.5
0
I
o
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If the experiment were repeated many times, the interval [a, b] would include

the true value of the parameter @ in a fraction 1 — & — f of the experiments

http://www.pp.rhul.ac.uk/~cowan/sda/

" 5 | 1 | 1
0
4 r -
3 _
. B
...... :Confidence /:
2 | :Intetval -
b
0 l iy iy 1
0 1 2 3 4 5
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Error bars

e The confidence interval [a, b] is

often expressed by reporting the
result of a measurement as >

often displayed as error bars

g+d d=b—10

T_C c=0—a

estimated value

* In many cases the PDF g(é’; 0) is
approximatively Gaussian, so that

an interval of =1 one standard T ATLAS e e S
deviation around the measured value -y M 12009 G S
. Mtop — e Mop = 05 "6 L-05 -01 -o00
corresponds to a central confidence L o o s [ e ses
interval with 1 — y = 0.683. o L Y
: : : Mg - o1 o =081 105 (7016 Tooe Toos]
The 68.3% Centra/ COnfldence Interval IS T R M 099+015[[+012+006+007]
s Run-2 [~ s"eNio el Moune = 99 _014 L-012 -005 -0.05
usually adopted as the conventional . Ty e o
definition for error bars even when the g F ZH SR :Z S
PDF of the estimator is not Gaussian Signal strength
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Gaussian Confidence Intervals




First recall how we compute probabilities Review

with Normal RVs (Lecture 3, s14)

 Foranormal RV X ~ A/ (u, 6°), its CDF has no closed form

. (v = p)?

PX <x)=F(x) = 202 (ly
—00 O 271'

e However, can solve for probabilities numerically using a function ®

Standard Normal Table
Note: An entry in the table is the area under the curve to the left of z, P(Z < z) = ®(z)

‘ — 3 3 7 o 1 H H
z 0.00 | 0.01 0.02 | 0.03 0.04 | 0.05 0.06 0.07 | 0.08 0.09

0.0 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359

— 0.1 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
— 0.2 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
03 06179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
04 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879

0.5 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0 0.6 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549

0.7 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7703 | 0.7734 | 0.7764 | 0.7793 | 0.7823 | 0.7852
0.8 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
0.9 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
1.0 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
1.1 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
12 0.8849 | 0.8869 | 0.8888 | 0.8906 | 0.8925 | 0.8943 | 0.8962 | 0.8980 | 0.8997 | 0.9015
13 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 09115 | 09131 | 0.9147 | 09162 | 0.9177
14 09192 | 0.9207 | 09222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319
15 0.9332 | 0.9345 | 09357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545
17 0.9554 | 0.9564 | 09573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
18 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
09713 | 0.9719 | 09726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767
0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817
21 09821 | 09826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857
22 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890

23 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916

24 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936
25 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952
2.6 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 ] 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974
28 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981
29 09981 | 09982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986
3.0 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990
31 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993
32 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995
33 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997
34 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998
35 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 30

Expectation: E[Z]
Variance: Var|[/Z]

|
Q =
|
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Cl for Gaussian distributed estimators j

¢ Simple and very important application: Commonly oceurring

situation, since according
to the CLT, any estimator

0 is Gaussian with mean 6 and standard deviation 6;  <— iatis alinear function of

a sum of RVs becomes

Cumulative distribution of @ is then S:nl:zial?r:‘?tthe large
8 "/ 2
A 1 —(6" — 0 .
G(6;0,0;) -_-/ exp( ( 5 ) )dﬂ’.
— oo Qﬂ.o.g 205

Suppose that the standard deviation is known and that the experiment
resulted in an estimate 0_; .. Then we can determine the confidence interval

la, b] by solving

o = 1-G(Ops;a,05)=1—-& : O=G(i; u=0,0=1)

A éobs 4 ‘ standard normal CDF
04

)
1

) Oobs — b
G(gobs;b: Jé) = ( > ) )

T4
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Cl for Gaussian distributed estimators (i

® This results In

1 -p).

“1(1-a),

i.e., the inverse function

of ® equals the quantile
of the std. Gaussian

inverse of standard normal CDF

@ (x)

0.4

0.2

http://www.pp.rhul.ac.uk/~cowan/sda/

Central CI

7'(y/2)

0.6

@ (x)

(a)
o' (1-y/2)

. 02 r

One-sided CI

(b)

The relationship between the quantiles of the std. Gaussian distribution and the CI

Modern Methods of Data Analysis
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Cl for Gaussian distributed estimators

(i)

o Consider a central confidence interval with a = ff = y/2

The confidence level (1 — 7) is often chosen, such that
®~!(1 — y/2) is a small integer (e.g., 1,2,3)

Similarly, one-sided intervals are often small integer values

e Sometimes one also prefers to use a round value for | —aorl —y

e For conventional
68.3% CI| one has

[aa b] — [éobs — Oy, éobs + 0'9‘]

P 11—-~/2) 1—+v | & !11-0a) 1-a
1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9973 3 0.9987
l1—y & '(1-9/2){1-a & '(1-a)
0.90 -1.645 0.90 1.282
0.95 1.960 0.95 1.645
0.99 2.576 0.99 2.326

o All of this is valid, if 6 is known

Often not the case, but in
large n limit can use
Oy — 0

Modern Methods of Data Analysis






Cl for Poisson distributed estimators i

¢ The other common case: Outcome of a measurement is a
Poisson variablen (n = 0,1,2, ...)

n

Recall that the probability to observe n events is  f(n;v) = —e
n!

—U

e Expectation value: E[n] = v

® Maximum Likelihood estimator: v = n —» ‘ Uobs = Mobs ‘

Assume: single measurement and
want to construct CI for v

You will have some issues directly applying previous prescription:
only integer values for U are possible, i.e. you cannot find o for

arbitrary values of @, f such that:  u, with P (D > u,(v)) = «a
vy with P (0 < yﬂ(y)> =

Modern Methods of Data Analysis I 35



Cl for Poisson distributed estimators i

» However, the confidence interval [a, b] can still be determined using:

http://www.pp.rhul.ac.uk/~cowan/sda/

S : °°° ) a = / g(é;a) dé =1 — G(éobs; a),
] eobs A ~
0s | . | 84 — P(V Z Vobs, a))
.g . () éobs R R . ﬁ _— P(V S ObS, b)’
=l wo o g = / 9(6;6) d0 = G(Bovs; b).

o For an estimate & = n_,, and given probabilities @ and /3, the following equations can be
solved numerically for a and b:

oQ Nobs—1 Nobs—1 an
a = f(n;a)=1-— f(n;a) =1— — e~ | Nextuse the
n; . nz___% nz___% n! following relation
between the
o S Poisson and y*
— n; b) = —e . .. ]
p nz::o f(n; ) n}___: n! distributions...
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Connection between ¥ and Poisson CDF

e There exists a useful relation between the Poisson and )(2 distributions:

Nobs _n o0
| 74

fx2(z;n4 = 2(nobs + 1)) dz

]
2|
mi
<
/l

2v

1 — Fy2(2v;nd4 = 2(nobs + 1)),

Here f,» is the x* distribution with n,degrees of freedom and F , is the
corresponding cumulative distribution.

e QOur two equations thus become

a — %Fx_zl (a; nq = 2nobs)a

b = L1FZN(1—B;na=2(nobs +1)).
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Lower and upper limits

Quantiles F){‘Z1 of the )(2 can be obtained from standard tables

o Example values for Poisson lower and upper limits for n,  observed events:

_— lower limit a upper limit b Now look at the case
P la=01 a=005 a=001|8=01 =005 B=0.0I where you have no
2 0105 0051  0.010 ggg ?1(7)2 g.géll sl L
2 | 0532 0355 0.149 5.32 6.30 8.41 still want to set an
3 1.10 0.818 0.436 6.68 775 10.04 upper limit
4 1.74 .37 0.823 7.99 9.15 11.60
5 9.43 1.97 1.98 9.97 10.51 13.11
6 3.15 2.61 1.79 1053 11.84 14.57
7 3.89 3.99 2.33 11.77  13.15 16.00
8 4.66 3.98 2.91 12.99  14.43 17.40
9 5.43 4.70 3.51 1421 15.71 18.78
10 | 6.22 5.43 4.13 15.41  16.96 20.14
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Poisson upper limits form

® Very important special case: 0 pnp=b

B=_ o ¢ ..orb =—logp

& one is interested in establishing an upper limit b

For the upper limit of a confidence level of 1 — f =95 % one has b = — log(0.05) =~ 3

Thus if the number of occurrences of some rare event is treated as a Poisson variable with mean v,
and one looks for events of this type and finds none, then the 95% upper limit on the mean is 3.

That is, if the mean were in fact v = 3, the probability of observing zero would be 5%

» Note that the lower limit @ cannot be determined if n_,, = 0.

Nobs—1

o = i na—-l—ana

Inverse function does not exist!

» By construction a is always equal to 1 for any a

http://www.pp.rhul.ac.uk/~cowan/sda/
n lower limit a upper limit b
s | 4=01 a=005 a=001{8=01 B=005 =001
0 - - = 2.30 3.00 4.61
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Confidence intervals using
likelihood or LS

N



Recall the Method of LS (L05,534-39)

Joint PDF is the product of N Gaussians

N 2
H 1 —(y; — Ax;30))
g(yl""’yN;Al’"’QA’N,G]?, 000,6]%]): eXp : 22l
http://www.pp.rhul.ac.uk/~cowan/sda/ i= 1 2”01'2' Gi

Take the log (and drop
additive terms that do not
depend on the parameters)

1.5 r

2
05 1 Al (yi _ /1()61-; H))
log £(0) = — — Z
. b - o?
0 =1 l
0 1 2 3 4 5 6
X
Maximize by finding the values
---------------------------------- . of the parameters 6 that
‘ minimize y*(0)

or . N (3= A0 0))
2 A 2 _ J :
20) — exs <_)( ;m) 5 . 20 Z} p

- -
------------------------------
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Confidence Intervals with likelihood or LS

® Even in the case of a non-Gaussian estimator, the confidence intervals can
be determined with a simple approximate technique

This makes use of the likelihood function or equivalently with the )(2 function where
one has the relation (see last slide)

2
F(0) = exp (-’( ;9))

o Let’s first consider a ML estimator & for a parameter @ in the large sample
limit:

The PDF g(é’; @) does become Gaussian centered around the true value 6 with a
standard deviation of o,

- 1 —(6 — 6)?
9(6;0) = exp ( 5 ,
. /271'0‘3 205 )
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Large sample limit

®* One can also show that in the large sample limit, the likelihood
function becomes Gaussian in form centered about the ML

estimate

L(9)

—
—

~(6 — )2
Linax €xp ( 5 :
20(5

As discussed in recap, RCF inequality becomes an equality in the large
sample limit and one can obtain the standard deviation via

~

log L(9 + NO'é)

= log Lmax

N? find decreases by N*/2 from maximum

9 © value of ML to estimate Ndé

Recall: For a Gaussian distributed estimator 9 the 68. 3% central Cl can be constructed from
the estimator and its estimated std. dev. 6; as [a, b] = [(9 04, 0 + 04l, i.e., foraCL of 1 —

Thus, the 68.3% Cl is given by the values of 6 at which the
log £ function decreases by1/2 from it's max. value.
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Non-Gaussian limit

¢ |n fact, it can be shown that even if the likelihood function is not a
Gaussian functlon of the parameters, the central confidence interval

la, b] = [(9 — C, 0 + d ] can still be approximated by using

log L(éi’g) log Linax — —

Here N = ®~!(1 — y/2) is the quantile of the standard Gaussian cor

to the desired confidence level 1 — ¥

aC)

* Now use Z(0) = exp

and the prescription becomes

One of the most commonly
used methods to determine
the statistical uncertainty

(i.e., a )(2 fit with Gaussian errors),

Modern Methods of Data Analysis

The proof that these
intervals approximate
the classical Cl
discussed earlier is
beyond the scope of
this course
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Warning:

The correspondence with the classical Cl developed in
slides 12-27 is only exact in the large sample limit

~ N 2 Many statisticians recommend using the

log L 9+d — log Linas term ‘Likelihood interval’ for an interval
Og —C Og max 3

) obtained from the likelihood function

Interpret here as: an approximation to the classical Cl,
l.e., a random interval constructed so as to include the
true parameter value with a given probability
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A familiar example:

ﬂ?ecall Lecture 5 (sec. 6.2): The ML method was \

used to estimate 7 given a sample of n = 50
measurements

Reading off from the curve

e A7 _=0.137

o A7 _=0.165

Both reasonably close and we find

o 6;RAT_x~AT_=0.15

In Lecture 5, we said: we’ll make a reinterpretation
of the interval [T — 65,7 + 6] as an approximation
of the 68.3% central confidence interval

http://www.pp.rhul.ac.uk/~cowan/sda/

'52.5 | ¥ T

log L(1)

-535 : X log Ly, —1/2 1

1.6

_ | . Y,

1

n
The estimator 7 = — Z t; for the parameter 7 of

n
i=1

an exponential distribution

\_

ﬂlow consider n = 5 measurements

log £(0) is less parabolic

so the half-width of the interval determined by

log & .. — 1/2 is not what we

max
estimate the std. dev.

Better to use the Cl to commun

want to use to

icate the statistical

uncertainty, since one then knows the probability that
the interval covers the true parameter value.

log £(7) =log &£ .«—1/2

N +0.52
T — 0085_0.30

http://www.pp.rhul.ac.uk/~cowan/sda/
K™ T T T T
3
o T-AT 1 T+ AT,
o -4 f : -
............................. log Lmax

log L .. .—1/2

~

Modern Methods of Data Analysis


http://www.pp.rhul.ac.uk/~cowan/sda/
http://www.pp.rhul.ac.uk/~cowan/sda/

Multi-dimensional CL

g




Multi-dimensional confidence regions

* In 1D, we constructed a confidence interval [a, b], to have a certain
probability 1 — y of containing a (true) parameter 6.

In order to generalize this to the case of n parameters, @ = (0,,6,, ..., 8,), one
might attempt to find an n-dimensional confidence interval [a, b| constructed so
as to have a given probability that a; < @, < b;, simultaneously for all i.
This turns out to be computationally difficult, not uniquely defined, and is thus rarely
done.
It is nevertheless quite simple to construct a confidence region in parameter
space such that the true parameter @ is contained within the region with a given
probability.
o This region will not have the form a; < 6, < b, withi = 1,2, ..., n, but will be more
complicated, approaching an n-dimensional hyper-ellipsoid in the large sample limit
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Multi-dimensional confidence regions

® As in the single-parameter case, one makes use of the fact that both

the joint PDF for the estimator 6 = 0,,0,, ..., 0)as well as the
likelihood function become Gaussian in the Iarge sample limit.

That is, the joint PDF of 6 becomes:

~ 1
g(ale) - (27T)n/2|V|1/2

exp [—;— Q(8, 9)] ,

o Here V_1 is the inverse covariance matrix and 7 refers to
transposed.
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Multi-dimensional confidence regions

o correspond to constant Q(é; 0)

These are in @ - space
centered around the true parameters

l.ac.uk/~cowan/sda/

' 2(0;0) @

<~ 10
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Multi-dimensional confidence regions

® Also, as in the one-dimensional case, one can show that the likelihood function
£ (0) takes on a Gaussian form centered about the ML estimate 6

L(8) = Limax exp [~ 5(8 — )TV} (6 — )| = Lmaxexp [-1Q(8,6)] .

The function Q i s here regarded as a functlon of the parameters 0 which has |ts maximum
at the estimates 6. Since O is symmetric in 0 < 0, Q is identical in £(0) & g(H 0)

http://www.pp.rhul.ac.uk/~cowan/sda/

> 10 T 1 T T oo 10 T T T T
). (a) (0 (b)
8 | g(09 0) _ 8 F ( ) |
6 . 6 -
: | T etrue ]
| [l _
constant £(0)

O 1 1 1 1 o i 1 1 L

0 2 4 6 8 10 0 2 4 6 8 10
8, 00;0) = 00,0) 6,
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Multi-dimensional confidence regions

o 1f @ is described by an n-dimensional Gaussian PDF g(é; 0), then

the quantity Q(é; 0) is distributed according to a y* with n
degrees of freedom

The statement that Q(é; 0) is less than some value Q,

(i.e., that the estimate 0 is within a certain distance of the true value 0)
implies Q(0;0) < 0,

(i.e., that the true value 0 is within the same certain distance of the
estimate 0).

The two events therefore have the same probability:

Quantile of the order

— Chosen to correspond to a given

Q-y probability content
P(Q(6,0) < Qy) = f(z;n)dz, =1—7.
1 TN
This region of H—Space is called the )(2 distribution for n degrees of freedom

confidence region with CL 1 —
Modern Methods of Data Analysis



Multi-dimensional confidence regions

o The region in @-space defined by Q(é;/\ 0) < Q, is called a
confidence region with a confidence level of 1 — ¥

For a likelihood function of Gaussian form, it can be constructed by
finding the values of @ at which the log-likelihood function decreases by

Q},/Z from its maximum value

Q,

log L(6) = log Linax — 5

Analogous to what was discussed before, one can still use the same
prescription even if the likelihood function is not Gaussian

® The coverage is then only approximative but in many use cases still
adequate <= need to check coverage using Monte Carlo

Modern Methods of Data Analysis I 53



Quantiles

» Quantiles for the y? distribution Q}, = F~1(1 — y; n) for several

confidence levels 1 — yand n = 1,2,3,4 parameters are given below,
as well as confidence levels for various values of the quantile Q},.

1-— Y Q
O n=_. n=<4 nN=Y nN=—2 N= b=7 n=1 n=2 n;3 n=4 n=5
1.0 [ 0683 0393 0.199 0.090 0.037 0683 1 100 230 353 479 589
40| 0954 0.865 0.739 0594 0.451 095 | 384 599 782 949 111

o Note that for increasing n the confidence level for a given Qy

decreases.

Eg.forn=1Q, = 1implies1 —y = 0.683. Butn =2 Q, = 1 gives a confidence

level of only 0.393

Modern Methods of Data Analysis
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For next time

* Required reading
Cowan textbook: chapter 9 (through 9.7)
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Quiz Time: 7th Round



Neyman Belt

1) Using the figure, explain how a confidence .5 . T , l
interval is constructed for an observation 6, 9 0,  U(0)

4 | —

3

2

1

0

0 1 2 3 4 5
6
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Poisson RV without background

Derive starting from

a=P0> )= Y e 7, (1)
N=Ngohs A
B P ) < ) B obs Q L 2
5— (V_Vobs)—zn'e ()
n=0

the Poisson upper-limit for 7 = n,,, = 0 and a = 8 = 0.05. Why is there no lower-limit?
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KCETA Colloquium

From QCD to Visible Matter: An Insight into
the U.S. Eletron-lon Collider

Thursday, June 15, 2023
Kleiner Horsaal A (CS) 15:45 -17:00

Professor Or Hen
(Massachusetts Institute of Technology)

Recently the United States greenlit the construction of a
revolutionary Electron-lon Collider (EIC) at the
Brookhaven National Lab. This once-in-a-generation
$2.4 billion investment is set to propel our
understanding of subatomic matter by generating
unmatched high-current polarized electron and proton/
ion beams that will interact at two distinct collision
points. These interactions will be meticulously analyzed
by cutting-edge detectors to uncover unprecedented
insights into the formation and properties of subatomic
matter.

The EIC's research program is primed to address some
of the most profound questions in quantum physics
encompassing the emergence of nucleon spin and
mass the role of Quantum Chromodynamics (QCD) in
nuclear interactions and its influence on bound nucleon
structure and the three-dimensional structure of
nucleons and nuclei. It will further delve into the -||"‘|\|\‘
uncharted territories of low-temperature dense gluonic :
matter properties and the quest for physics beyond the
confines of the standard model.

In this talk | will elaborate on how the EIC will serve as an invaluable tool in addressing these perplexing questions.
Additionally | will present an overview of the ePIC detector currently under design and construction by an international
collaboration of scientists from over 160 institutions promising to redefine our understanding of the subatomic world.

Please note:

The colloquium will also be live-streamed to B402 SR224 (CN).

KIT Center Elementary Particle and Astroparticle Physics (KCETA) %(I I
www.kceta.kit.edu o

Karlsruher Institut fur Technologie
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